Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Treatment of a New Entity in Advanced Non-small Cell Lung Cancer: MET Exon 14 Skipping Mutation

Author(s): Danilo Rocco, Luigi Della Gravara, Giovanni Palazzolo and Cesare Gridelli*

Volume 31, Issue 21, 2024

Published on: 22 September, 2023

Page: [3043 - 3056] Pages: 14

DOI: 10.2174/0929867331666230803094432

Price: $65

Abstract

Background: MET (MET Proto-Oncogene, Receptor Tyrosine Kinase) exon 14 skipping mutation represents one of the most common MET alterations, accounting for approximately 1-3% of all mutations in advanced lung adenocarcinomas. While until 2020 no specific treatment was available for this subset of patients, as of today, three MET Tyrosine Kinase Inhibitors (TKIs) are currently approved in this setting, namely capmatinib, tepotinib and savolitinib.

Objective: This article aims to provide an extensive overview of the current therapeutic standard of care for exon 14 skipped advanced Non-small Cell Lung Cancer (NSCLC) patients, alongside with mentions of the main future challenges and opportunities.

Conclusion: FDA-approved MET-TKIs currently represent the best option for treating exon 14 skipped advanced NSCLC patients, thanks to their excellent efficacy profile, alongside their manageable safety and tolerability. However, we currently lack specific agents to treat patients progressing on capmatinib or tepotinib, due to a limited understanding of the mechanisms underlying both on- and off-target resistance. In this respect, on-target mutations presently constitute the most explored ones from a mechanistic point of view, and type II MET-TKIs are currently under investigation as the most promising agents capable of overcoming the acquired resistance.

Next »
[1]
Zhang, Y.; Xia, M.; Jin, K.; Wang, S.; Wei, H.; Fan, C.; Wu, Y.; Li, X.; Li, X.; Li, G.; Zeng, Z.; Xiong, W. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol. Cancer, 2018, 17(1), 45.
[http://dx.doi.org/10.1186/s12943-018-0796-y] [PMID: 29455668]
[2]
Giordano, S.; Di Renzo, M.F.; Narsimhan, R.P.; Cooper, C.S.; Rosa, C.; Comoglio, P.M. Biosynthesis of the protein encoded by the c-met proto-oncogene. Oncogene, 1989, 4(11), 1383-1388.
[PMID: 2554238]
[3]
Sierra, J.R.; Tsao, M.S. c-MET as a potential therapeutic target and biomarker in cancer. Ther. Adv. Med. Oncol., 2011, 3(S1), S21-S35.
[http://dx.doi.org/10.1177/1758834011422557] [PMID: 22128285]
[4]
Safaie Qamsari, E.; Safaei Ghaderi, S.; Zarei, B.; Dorostkar, R.; Bagheri, S.; Jadidi-Niaragh, F.; Somi, M.H.; Yousefi, M. The c-Met receptor: Implication for targeted therapies in colorectal cancer. Tumour Biol., 2017, 39(5)
[http://dx.doi.org/10.1177/1010428317699118] [PMID: 28459362]
[5]
Yang, X.; Liao, H.Y.; Zhang, H.H. Roles of MET in human cancer. Clin. Chim. Acta, 2022, 525, 69-83.
[http://dx.doi.org/10.1016/j.cca.2021.12.017] [PMID: 34951962]
[6]
Matsumoto, K.; Umitsu, M.; De Silva, D.M.; Roy, A.; Bottaro, D.P. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci., 2017, 108(3), 296-307.
[http://dx.doi.org/10.1111/cas.13156] [PMID: 28064454]
[7]
Tolbert, W.D.; Daugherty-Holtrop, J.; Gherardi, E.; Vande Woude, G.; Xu, H.E. Structural basis for agonism and antagonism of hepatocyte growth factor. Proc. Natl. Acad. Sci., 2010, 107(30), 13264-13269.
[http://dx.doi.org/10.1073/pnas.1005183107] [PMID: 20624990]
[8]
Zhang, J.; Babic, A. Regulation of the MET oncogene: Molecular mechanisms. Carcinogenesis., 2016, 37(4), 345-355.
[http://dx.doi.org/10.1093/carcin/bgw015] [PMID: 26905592]
[9]
Linossi, E.M.; Estevam, G.O.; Oshima, M.; Fraser, J.S.; Collisson, E.A.; Jura, N. State of the structure address on MET receptor activation by HGF. Biochem. Soc. Trans., 2021, 49(2), 645-661.
[http://dx.doi.org/10.1042/BST20200394] [PMID: 33860789]
[10]
Modi, V.; Dunbrack, R.L.Jr. Defining a new nomenclature for the structures of active and inactive kinases. Proc. Natl. Acad. Sci., 2019, 116(14), 6818-6827.
[http://dx.doi.org/10.1073/pnas.1814279116] [PMID: 30867294]
[11]
Treiber, D.K.; Shah, N.P. Ins and outs of kinase DFG motifs. Chem. Biol., 2013, 20(6), 745-746.
[http://dx.doi.org/10.1016/j.chembiol.2013.06.001] [PMID: 23790484]
[12]
Uchikawa, E.; Chen, Z.; Xiao, G.Y.; Zhang, X.; Bai, X. Structural basis of the activation of c-MET receptor. Nat. Commun., 2021, 12(1), 4074.
[http://dx.doi.org/10.1038/s41467-021-24367-3] [PMID: 34210960]
[13]
Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(S1), S7-S19.
[http://dx.doi.org/10.1177/1758834011422556] [PMID: 22128289]
[14]
Raj, S.; Kesari, K.K.; Kumar, A.; Rathi, B.; Sharma, A.; Gupta, P.K.; Jha, S.K.; Jha, N.K.; Slama, P.; Roychoudhury, S.; Kumar, D. Molecular mechanism(s) of regulation(s) of c-MET/HGF signaling in head and neck cancer. Mol. Cancer, 2022, 21(1), 31.
[http://dx.doi.org/10.1186/s12943-022-01503-1] [PMID: 35081970]
[15]
Sachs, M.; Brohmann, H.; Zechner, D.; Müller, T.; Hülsken, J.; Walther, I.; Schaeper, U.; Birchmeier, C.; Birchmeier, W. Essential role of Gab1 for signaling by the c-Met receptor in vivo. J. Cell Biol., 2000, 150(6), 1375-1384.
[http://dx.doi.org/10.1083/jcb.150.6.1375] [PMID: 10995442]
[16]
Park, T. Crk and CrkL as therapeutic targets for cancer treatment. Cells, 2021, 10(4), 739.
[http://dx.doi.org/10.3390/cells10040739] [PMID: 33801580]
[17]
Hervieu, A.; Kermorgant, S. The role of PI3K in met driven cancer: A recap. Front. Mol. Biosci., 2018, 5, 86.
[http://dx.doi.org/10.3389/fmolb.2018.00086] [PMID: 30406111]
[18]
Rivas, S.; Marín, A.; Samtani, S.; González-Feliú, E.; Armisén, R. MET signaling pathways, resistance mechanisms, and opportunities for target therapies. Int. J. Mol. Sci., 2022, 23(22), 13898.
[http://dx.doi.org/10.3390/ijms232213898] [PMID: 36430388]
[19]
Trusolino, L.; Comoglio, P.M. Scatter-factor and semaphorin receptors: Cell signalling for invasive growth. Nat. Rev. Cancer, 2002, 2(4), 289-300.
[http://dx.doi.org/10.1038/nrc779] [PMID: 12001990]
[20]
Andermarcher, E.; Surani, M.A.; Gherardi, E. Co-expression of theHGF/SF andc-met genes during early mouse embryogenesis precedes reciprocal expression in adjacent tissues during organogenesis. Dev. Genet., 1996, 18(3), 254-266.
[http://dx.doi.org/10.1002/(SICI)1520-6408(1996)18:3<254::AID-DVG6>3.0.CO;2-8] [PMID: 8631159]
[21]
Kolatsi-Joannou, M.; Moore, R.; Winyard, P.J.D.; Woolf, A.S. Expression of hepatocyte growth factor/scatter factor and its receptor, MET, suggests roles in human embryonic organogenesis. Pediatr. Res., 1997, 41(5), 657-665.
[http://dx.doi.org/10.1203/00006450-199705000-00010] [PMID: 9128288]
[22]
Neuss, S.; Becher, E.; Wöltje, M.; Tietze, L.; Jahnen-Dechent, W. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells, 2004, 22(3), 405-414.
[http://dx.doi.org/10.1634/stemcells.22-3-405] [PMID: 15153617]
[23]
Chmielowiec, J.; Borowiak, M.; Morkel, M.; Stradal, T.; Munz, B.; Werner, S.; Wehland, J.; Birchmeier, C.; Birchmeier, W. c-Met is essential for wound healing in the skin. J. Cell Biol., 2007, 177(1), 151-162.
[http://dx.doi.org/10.1083/jcb.200701086] [PMID: 17403932]
[24]
Socinski, M.A.; Pennell, N.A.; Davies, K.D. MET Exon 14 skipping mutations in non-small-cell lung cancer: An overview of biology, clinical outcomes, and testing considerations. JCO Precis. Oncol., 2021, 5, 5.
[PMID: 34036238]
[25]
Fujino, T.; Suda, K.; Mitsudomi, T. Lung cancer with MET exon 14 skipping mutation: Genetic feature, current treatments, and future challenges. Lung. Cancer., 2021, 12, 35-50.
[http://dx.doi.org/10.2147/LCTT.S269307] [PMID: 34295201]
[26]
Hu, H.; Mu, Q.; Bao, Z.; Chen, Y.; Liu, Y.; Chen, J.; Wang, K.; Wang, Z.; Nam, Y.; Jiang, B.; Sa, J.K.; Cho, H.J.; Her, N.G.; Zhang, C.; Zhao, Z.; Zhang, Y.; Zeng, F.; Wu, F.; Kang, X.; Liu, Y.; Qian, Z.; Wang, Z.; Huang, R.; Wang, Q.; Zhang, W.; Qiu, X.; Li, W.; Nam, D.H.; Fan, X.; Wang, J.; Jiang, T. Mutational landscape of secondary glioblastoma guides MET-targeted trial in brain tumor. Cell, 2018, 175(6), 1665-1678.e18.
[http://dx.doi.org/10.1016/j.cell.2018.09.038] [PMID: 30343896]
[27]
Raghav, K.; Morris, V.; Tang, C.; Morelli, P.; Amin, H.M.; Chen, K.; Manyam, G.C.; Broom, B.; Overman, M.J.; Shaw, K.; Meric-Bernstam, F.; Maru, D.; Menter, D.; Ellis, L.M.; Eng, C.; Hong, D.; Kopetz, S. MET amplification in metastatic colorectal cancer: An acquired response to EGFR inhibition, not a de novo phenomenon. Oncotarget, 2016, 7(34), 54627-54631.
[http://dx.doi.org/10.18632/oncotarget.10559] [PMID: 27421137]
[28]
Guo, R.; Luo, J.; Chang, J.; Rekhtman, N.; Arcila, M.; Drilon, A. MET-dependent solid tumours — molecular diagnosis and targeted therapy. Nat. Rev. Clin. Oncol., 2020, 17(9), 569-587.
[http://dx.doi.org/10.1038/s41571-020-0377-z] [PMID: 32514147]
[29]
Maroun, C.R.; Rowlands, T. The Met receptor tyrosine kinase: A key player in oncogenesis and drug resistance. Pharmacol. Ther., 2014, 142(3), 316-338.
[http://dx.doi.org/10.1016/j.pharmthera.2013.12.014] [PMID: 24384534]
[30]
Graveel, C.R.; Tolbert, D.; Vande Woude, G.F. MET: A critical player in tumorigenesis and therapeutic target. Cold Spring Harb. Perspect. Biol., 2013, 5(7), a009209.
[http://dx.doi.org/10.1101/cshperspect.a009209] [PMID: 23818496]
[31]
Christensen, J.G.; Burrows, J.; Salgia, R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett., 2005, 225(1), 1-26.
[http://dx.doi.org/10.1016/j.canlet.2004.09.044] [PMID: 15922853]
[32]
Gelsomino, F.; Facchinetti, F.; Haspinger, E.R.; Garassino, M.C.; Trusolino, L.; De Braud, F.; Tiseo, M. Targeting the MET gene for the treatment of non-small-cell lung cancer. Crit. Rev. Oncol. Hematol., 2014, 89(2), 284-299.
[http://dx.doi.org/10.1016/j.critrevonc.2013.11.006] [PMID: 24355409]
[33]
Awad, M.M.; Oxnard, G.R.; Jackman, D.M.; Savukoski, D.O.; Hall, D.; Shivdasani, P.; Heng, J.C.; Dahlberg, S.E.; Jänne, P.A.; Verma, S.; Christensen, J.; Hammerman, P.S.; Sholl, L.M. MET Exon 14 mutations in non–small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-met overexpression. J. Clin. Oncol., 2016, 34(7), 721-730.
[http://dx.doi.org/10.1200/JCO.2015.63.4600] [PMID: 26729443]
[34]
Ma, P.C.; Jagadeeswaran, R.; Jagadeesh, S.; Tretiakova, M.S.; Nallasura, V.; Fox, E.A.; Hansen, M.; Schaefer, E.; Naoki, K.; Lader, A.; Richards, W.; Sugarbaker, D.; Husain, A.N.; Christensen, J.G.; Salgia, R. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res., 2005, 65(4), 1479-1488.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2650] [PMID: 15735036]
[35]
Cortot, A.B.; Kherrouche, Z.; Descarpentries, C.; Wislez, M.; Baldacci, S.; Furlan, A.; Tulasne, D. Exon 14 deleted MET receptor as a new biomarker and target in cancers. J. Natl. Cancer Inst., 2017, 109(5)
[http://dx.doi.org/10.1093/jnci/djw262] [PMID: 28376232]
[36]
Peschard, P.; Ishiyama, N.; Lin, T.; Lipkowitz, S.; Park, M. A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. J. Biol. Chem., 2004, 279(28), 29565-29571.
[http://dx.doi.org/10.1074/jbc.M403954200] [PMID: 15123609]
[37]
Lu, X.; Peled, N.; Greer, J.; Wu, W.; Choi, P.; Berger, A.H.; Wong, S.; Jen, K.Y.; Seo, Y.; Hann, B.; Brooks, A.; Meyerson, M.; Collisson, E.A. MET exon 14 mutation encodes an actionable therapeutic target in lung adenocarcinoma. Cancer Res., 2017, 77(16), 4498-4505.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1944] [PMID: 28522754]
[38]
Hashigasako, A.; Machide, M.; Nakamura, T.; Matsumoto, K.; Nakamura, T. Bi-directional regulation of Ser-985 phosphorylation of c-met via protein kinase C and protein phosphatase 2A involves c-Met activation and cellular responsiveness to hepatocyte growth factor. J. Biol. Chem., 2004, 279(25), 26445-26452.
[http://dx.doi.org/10.1074/jbc.M314254200] [PMID: 15075332]
[39]
Gandino, L.; Longati, P.; Medico, E.; Prat, M.; Comoglio, P.M. Phosphorylation of serine 985 negatively regulates the hepatocyte growth factor receptor kinase. J. Biol. Chem., 1994, 269(3), 1815-1820.
[http://dx.doi.org/10.1016/S0021-9258(17)42099-0] [PMID: 8294430]
[40]
Awad, M.M.; Lee, J.K.; Madison, R.; Classon, A.; Kmak, J.; Frampton, G.M.; Alexander, B.M.; Venstrom, J.; Schrock, A.B. Characterization of 1,387 NSCLCs with MET exon 14 (METex14) skipping alterations (SA) and potential acquired resistance (AR) mechanisms. J. Clin. Oncol., 2020, 38(15_suppl), 9511.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.9511]
[41]
Cheng, T.; Gu, Z.; Song, D.; Liu, S.; Tong, X.; Wu, X.; Lin, Z.; Hong, W. Genomic and clinical characteristics of MET exon14 alterations in a large cohort of Chinese cancer patients revealed distinct features and a novel resistance mechanism for crizotinib. J. Cancer, 2021, 12(3), 644-651.
[http://dx.doi.org/10.7150/jca.49391] [PMID: 33403024]
[42]
Gow, C.H.; Hsieh, M.S.; Wu, S.G.; Shih, J.Y. A comprehensive analysis of clinical outcomes in lung cancer patients harboring a MET exon 14 skipping mutation compared to other driver mutations in an East Asian population. Lung Cancer, 2017, 103, 82-89.
[http://dx.doi.org/10.1016/j.lungcan.2016.12.001] [PMID: 28024701]
[43]
Lu, D.; Nagelberg, A.; Chow, J.L.M.; Chen, Y.T.; Michalchuk, Q.; Somwar, R.; Lockwood, W.W. MET exon 14 splice-site mutations preferentially activate KRAS signaling to drive tumourigenesis. Cancer., 2022, 14(6), 1378.
[http://dx.doi.org/10.3390/cancers14061378] [PMID: 35326531]
[44]
Kim, S.Y.; Yin, J.; Bohlman, S.; Walker, P.; Dacic, S.; Kim, C.; Khan, H.; Liu, S.V.; Ma, P.C.; Nagasaka, M.; Reckamp, K.L.; Abraham, J.; Uprety, D.; Wang, F.; Xiu, J.; Zhang, J.; Cheng, H.; Halmos, B. Characterization of MET exon 14 skipping alterations (in NSCLC) and identification of potential therapeutic targets using whole transcriptome sequencing. JTO. Clin. Res. Rep., 2022, 3(9), 100381.
[http://dx.doi.org/10.1016/j.jtocrr.2022.100381] [PMID: 36082279]
[45]
Liu, L.; Kalyani, F.S.; Yang, H.; Zhou, C.; Xiong, Y.; Zhu, S.; Yang, N.; Qu, J. Prognosis and concurrent genomic alterations in patients with advanced NSCLC harboring MET amplification or MET exon 14 skipping mutation treated with MET inhibitor: A retrospective study. Front. Oncol., 2021, 11, 649766.
[http://dx.doi.org/10.3389/fonc.2021.649766] [PMID: 34249687]
[46]
Lee, J.K.; Madison, R.; Classon, A.; Gjoerup, O.; Rosenzweig, M.; Frampton, G.M.; Alexander, B.M.; Oxnard, G.R.; Venstrom, J.M.; Awad, M.M.; Schrock, A.B. Characterization of non–small-cell lung cancers with MET exon 14 skipping alterations detected in tissue or liquid: Clinicogenomics and real-world treatment patterns. JCO Precis. Oncol., 2021, 5(5), 1354-1376.
[http://dx.doi.org/10.1200/PO.21.00122] [PMID: 34476332]
[47]
Jamme, P.; Fernandes, M.; Copin, M.C.; Descarpentries, C.; Escande, F.; Morabito, A.; Grégoire, V.; Jamme, M.; Baldacci, S.; Tulasne, D.; Kherrouche, Z.; Cortot, A.B. Alterations in the PI3K pathway drive resistance to MET inhibitors in NSCLC harboring MET exon 14 skipping mutations. J. Thorac. Oncol., 2020, 15(5), 741-751.
[http://dx.doi.org/10.1016/j.jtho.2020.01.027] [PMID: 32169477]
[48]
Schrock, A.B.; Frampton, G.M.; Suh, J.; Chalmers, Z.R.; Rosenzweig, M.; Erlich, R.L.; Halmos, B.; Goldman, J.; Forde, P.; Leuenberger, K.; Peled, N.; Kalemkerian, G.P.; Ross, J.S.; Stephens, P.J.; Miller, V.A.; Ali, S.M.; Ou, S.H.I. Characterization of 298 patients with lung cancer harboring MET exon 14 skipping alterations. J. Thorac. Oncol., 2016, 11(9), 1493-1502.
[http://dx.doi.org/10.1016/j.jtho.2016.06.004] [PMID: 27343443]
[49]
Sabari, J.K.; Leonardi, G.C.; Shu, C.A.; Umeton, R.; Montecalvo, J.; Ni, A.; Chen, R.; Dienstag, J.; Mrad, C.; Bergagnini, I.; Lai, W.V.; Offin, M.; Arbour, K.C.; Plodkowski, A.J.; Halpenny, D.F.; Paik, P.K.; Li, B.T.; Riely, G.J.; Kris, M.G.; Rudin, C.M.; Sholl, L.M.; Nishino, M.; Hellmann, M.D.; Rekhtman, N.; Awad, M.M.; Drilon, A. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann. Oncol., 2018, 29(10), 2085-2091.
[http://dx.doi.org/10.1093/annonc/mdy334] [PMID: 30165371]
[50]
Hur, J.Y.; Ku, B.M.; Shim, J.H.; Jung, H.A.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. Characteristics and clinical outcomes of non-small cell lung cancer patients in Korea with MET exon 14 skipping. In Vivo, 2020, 34(3), 1399-1406.
[http://dx.doi.org/10.21873/invivo.11920] [PMID: 32354937]
[51]
Huang, C.; Zou, Q.; Liu, H.; Qiu, B.; Li, Q.; Lin, Y.; Liang, Y. Management of non-small cell lung cancer patients with MET exon 14 skipping mutations. Curr. Treat. Options Oncol., 2020, 21(4), 33.
[http://dx.doi.org/10.1007/s11864-020-0723-5] [PMID: 32306194]
[52]
Bittoni, M.; Yang, J.C.H.; Shih, J.Y.; Peled, N.; Smit, E.F.; Camidge, D.R.; Arasada, R.R.; Oksen, D.; Boutmy, E.; Stroh, C.; Johne, A.; Carbone, D.P.; Paik, P.K. Real-world insights into patients with advanced NSCLC and MET alterations. Lung Cancer, 2021, 159, 96-106.
[http://dx.doi.org/10.1016/j.lungcan.2021.06.015] [PMID: 34320421]
[53]
Wong, S.K.; Alex, D.; Bosdet, I.; Hughesman, C.; Karsan, A.; Yip, S.; Ho, C. MET exon 14 skipping mutation positive non-small cell lung cancer: Response to systemic therapy. Lung Cancer, 2021, 154, 142-145.
[http://dx.doi.org/10.1016/j.lungcan.2021.02.030] [PMID: 33667719]
[54]
Brazel, D.; Zhang, S.; Nagasaka, M. Spotlight on tepotinib and capmatinib for non-small cell lung cancer with MET exon 14 skipping mutation. Lung. Cancer., 2022, 13, 33-45.
[http://dx.doi.org/10.2147/LCTT.S360574] [PMID: 35592355]
[55]
Wise-Draper, T.M.; Gulati, S.; Palackdharry, S.; Hinrichs, B.H.; Worden, F.P.; Old, M.O.; Dunlap, N.E.; Kaczmar, J.M.; Patil, Y.; Riaz, M.K.; Tang, A.; Mark, J.; Zender, C.; Gillenwater, A.M.; Bell, D.; Kurtzweil, N.; Mathews, M.; Allen, C.L.; Mierzwa, M.L.; Casper, K.; Jandarov, R.; Medvedovic, M.; Lee, J.J.; Harun, N.; Takiar, V.; Gillison, M. Phase II clinical trial of neoadjuvant and adjuvant pembrolizumab in resectable local–regionally advanced head and neck squamous cell carcinoma. Clin. Cancer Res., 2022, 28(7), 1345-1352.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-3351] [PMID: 35338369]
[56]
Mathieu, L.N.; Larkins, E.; Akinboro, O.; Roy, P.; Amatya, A.K.; Fiero, M.H.; Mishra-Kalyani, P.S.; Helms, W.S.; Myers, C.E.; Skinner, A.M.; Aungst, S.; Jin, R.; Zhao, H.; Xia, H.; Zirkelbach, J.F.; Bi, Y.; Li, Y.; Liu, J.; Grimstein, M.; Zhang, X.; Woods, S.; Reece, K.; Abukhdeir, A.M.; Ghosh, S.; Philip, R.; Tang, S.; Goldberg, K.B.; Pazdur, R.; Beaver, J.A.; Singh, H. FDA approval summary: Capmatinib and tepotinib for the treatment of metastatic NSCLC harboring MET exon 14 skipping mutations or alterations. Clin. Cancer Res., 2022, 28(2), 249-254.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-1566] [PMID: 34344795]
[57]
Dhillon, S. Capmatinib: First approval. Drugs, 2020, 80(11), 1125-1131.
[http://dx.doi.org/10.1007/s40265-020-01347-3] [PMID: 32557339]
[58]
Markham, A. Tepotinib: First approval. Drugs, 2020, 80(8), 829-833.
[http://dx.doi.org/10.1007/s40265-020-01317-9] [PMID: 32361823]
[59]
Jia, H.; Dai, G.; Weng, J.; Zhang, Z.; Wang, Q.; Zhou, F.; Jiao, L.; Cui, Y.; Ren, Y.; Fan, S.; Zhou, J.; Qing, W.; Gu, Y.; Wang, J.; Sai, Y.; Su, W. Discovery of (S)-1-(1-(Imidazo[1,2-a]pyridin-6-yl)ethyl)-6-(1-methyl-1H-pyrazol-4-yl)-1H-[1,2,3]triazolo[4,5-b]pyrazine (volitinib) as a highly potent and selective mesenchymal-epithelial transition factor (c-Met) inhibitor in clinical development for treatment of cancer. J. Med. Chem., 2014, 57(18), 7577-7589.
[http://dx.doi.org/10.1021/jm500510f] [PMID: 25148209]
[60]
Zhu, X.; Lu, Y.; Lu, S. Landscape of savolitinib development for the treatment of non-small cell lung cancer with MET alteration—a narrative review. Cancers., 2022, 14(24), 6122.
[http://dx.doi.org/10.3390/cancers14246122] [PMID: 36551608]
[61]
Wolf, J.; Seto, T.; Han, J.Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.W.; Hida, T.; de Jonge, M.; Orlov, S.V.; Smit, E.F.; Souquet, P.J.; Vansteenkiste, J.; Hochmair, M.; Felip, E.; Nishio, M.; Thomas, M.; Ohashi, K.; Toyozawa, R.; Overbeck, T.R.; de Marinis, F.; Kim, T.M.; Laack, E.; Robeva, A.; Le Mouhaer, S.; Waldron-Lynch, M.; Sankaran, B.; Balbin, O.A.; Cui, X.; Giovannini, M.; Akimov, M.; Heist, R.S. Capmatinib in MET exon 14–mutated or MET-amplified non–small-cell lung cancer. N. Engl. J. Med., 2020, 383(10), 944-957.
[http://dx.doi.org/10.1056/NEJMoa2002787] [PMID: 32877583]
[62]
Wolf, J; Garon, EB; Groen, HJM; Tan, DS-W; Robeva, A; Mouhaer, SL Capmatinib in MET exon 14-mutated, advanced NSCLC: Updated results from the GEOMETRY mono-1 study. N Engl J Med., 2021, 39(S15), 9020.
[63]
Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Van Meerbeeck, J.; Raskin, J.; Reinmuth, N.; Conte, P.; Kowalski, D.; Cho, B.C.; Patel, J.D.; Horn, L.; Griesinger, F.; Han, J.Y.; Kim, Y.C.; Chang, G.C.; Tsai, C.L.; Yang, J.C.H.; Chen, Y.M.; Smit, E.F.; van der Wekken, A.J.; Kato, T.; Juraeva, D.; Stroh, C.; Bruns, R.; Straub, J.; Johne, A.; Scheele, J.; Heymach, J.V.; Le, X. Tepotinib in non–small-cell lung cancer with MET exon 14 skipping mutations. N. Engl. J. Med., 2020, 383(10), 931-943.
[http://dx.doi.org/10.1056/NEJMoa2004407] [PMID: 32469185]
[64]
Veillon, R; Sakai, H; Le, X; Felip, E; Garassino, MC; Cortot, A Tepotinib safety in MET Exon 14 (METex14) skipping NSCLC: Updated results from the VISION trial. J Thorac Oncol, 2021, 16(3), S231.
[65]
Le, X.; Sakai, H.; Felip, E.; Veillon, R.; Garassino, M.C.; Raskin, J.; Cortot, A.B.; Viteri, S.; Mazieres, J.; Smit, E.F.; Thomas, M.; Iams, W.T.; Cho, B.C.; Kim, H.R.; Yang, J.C.H.; Chen, Y.M.; Patel, J.D.; Bestvina, C.M.; Park, K.; Griesinger, F.; Johnson, M.; Gottfried, M.; Britschgi, C.; Heymach, J.; Sikoglu, E.; Berghoff, K.; Schumacher, K.M.; Bruns, R.; Otto, G.; Paik, P.K. Tepotinib efficacy and safety in patients with MET exon 14 skipping NSCLC: outcomes in patient subgroups from the VISION study with relevance for clinical practice. Clin. Cancer Res., 2022, 28(6), 1117-1126.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-2733] [PMID: 34789481]
[66]
Lu, S.; Fang, J.; Li, X.; Cao, L.; Zhou, J.; Guo, Q.; Liang, Z.; Cheng, Y.; Jiang, L.; Yang, N.; Han, Z.; Shi, J.; Chen, Y.; Xu, H.; Zhang, H.; Chen, G.; Ma, R.; Sun, S.; Fan, Y.; Li, J.; Luo, X.; Wang, L.; Ren, Y.; Su, W. Once-daily savolitinib in Chinese patients with pulmonary sarcomatoid carcinomas and other non-small-cell lung cancers harbouring MET exon 14 skipping alterations: a multicentre, single-arm, open-label, phase 2 study. Lancet Respir. Med., 2021, 9(10), 1154-1164.
[http://dx.doi.org/10.1016/S2213-2600(21)00084-9] [PMID: 34166627]
[67]
Prabhash, K.; Noronha, V.; Joshi, A.; Desai, S.; Sahu, A. Crizotinib: A comprehensive review. South Asian J. Cancer, 2013, 2(2), 91-97.
[http://dx.doi.org/10.4103/2278-330X.110506] [PMID: 24455567]
[68]
Drilon, A.E.; Camidge, D.R.; Ou, S.H.I.; Clark, J.W.; Socinski, M.A.; Weiss, J.; Riely, G.J.; Winter, M.; Wang, S.C.; Monti, K.; Wilner, K.D.; Paik, P.K. Efficacy and safety of crizotinib in patients (pts) with advanced MET exon 14-altered non-small cell lung cancer (NSCLC). J. Clin. Oncol., 2016, 34(S15), 108.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.108]
[69]
Drilon, A.; Clark, J.W.; Weiss, J.; Ou, S.H.I.; Camidge, D.R.; Solomon, B.J.; Otterson, G.A.; Villaruz, L.C.; Riely, G.J.; Heist, R.S.; Awad, M.M.; Shapiro, G.I.; Satouchi, M.; Hida, T.; Hayashi, H.; Murphy, D.A.; Wang, S.C.; Li, S.; Usari, T.; Wilner, K.D.; Paik, P.K. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat. Med., 2020, 26(1), 47-51.
[http://dx.doi.org/10.1038/s41591-019-0716-8] [PMID: 31932802]
[70]
Landi, L.; Chiari, R.; Tiseo, M.; D’Incà, F.; Dazzi, C.; Chella, A.; Delmonte, A.; Bonanno, L.; Giannarelli, D.; Cortinovis, D.L.; de Marinis, F.; Borra, G.; Morabito, A.; Gridelli, C.; Galetta, D.; Barbieri, F.; Grossi, F.; Capelletto, E.; Minuti, G.; Mazzoni, F.; Verusio, C.; Bria, E.; Alì, G.; Bruno, R.; Proietti, A.; Fontanini, G.; Crinò, L.; Cappuzzo, F. Crizotinib in MET -Deregulated or ROS1 -rearranged pretreated non–small cell lung cancer (METROS): A phase II, prospective, multicenter, two-arms trial. Clin. Cancer Res., 2019, 25(24), 7312-7319.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0994] [PMID: 31416808]
[71]
Moro-Sibilot, D.; Cozic, N.; Pérol, M.; Mazières, J.; Otto, J.; Souquet, P.J.; Bahleda, R.; Wislez, M.; Zalcman, G.; Guibert, S.D.; Barlési, F.; Mennecier, B.; Monnet, I.; Sabatier, R.; Bota, S.; Dubos, C.; Verriele, V.; Haddad, V.; Ferretti, G.; Cortot, A.; De Fraipont, F.; Jimenez, M.; Hoog-Labouret, N.; Vassal, G. Crizotinib in c-MET- or ROS1-positive NSCLC: Results of the AcSé phase II trial. Ann. Oncol., 2019, 30(12), 1985-1991.
[http://dx.doi.org/10.1093/annonc/mdz407] [PMID: 31584608]
[72]
Middleton, G.; Fletcher, P.; Popat, S.; Savage, J.; Summers, Y.; Greystoke, A.; Gilligan, D.; Cave, J.; O’Rourke, N.; Brewster, A.; Toy, E.; Spicer, J.; Jain, P.; Dangoor, A.; Mackean, M.; Forster, M.; Farley, A.; Wherton, D.; Mehmi, M.; Sharpe, R.; Mills, T.C.; Cerone, M.A.; Yap, T.A.; Watkins, T.B.K.; Lim, E.; Swanton, C.; Billingham, L. The national lung matrix trial of personalized therapy in lung cancer. Nature, 2020, 583(7818), 807-812.
[http://dx.doi.org/10.1038/s41586-020-2481-8] [PMID: 32669708]
[73]
Study of crizotinib for ROS1 and MET activated lung cancer. NCT04084717, 2019.
[74]
Targeted therapy directed by genetic testing in treating patients with advanced refractory solid tumors, lymphomas, or multiple myeloma. NCT02465060, 2023.
[75]
APL-101 study of subjects with NSCLC with c-Met EXON 14 skip mutations and c-Met dysregulation advanced solid tumors (SPARTA). NCT03175224, 2022.
[76]
Study of TPX-0022 in patients with advanced NSCLC, gastric cancer or solid tumors harboring genetic alterations in MET (SHIELD-1). NCT03993873, 2023.
[77]
Cabozantinib in patients with RET fusion-positive advanced non-small cell lung cancer and those with other genotypes: ROS1 or NTRK fusions or increased MET or AXL activity. NCT01639508, 2023.
[78]
Merestinib In non-small cell lung cancer and solid tumors. NCT02920996, 2023.
[79]
Assessment of anti-tumor and safety in glumetinib in patients with c-MET-positive non-small cell lung cancer. NCT04270591, 2022.
[80]
Singh, N.; Temin, S.; Baker, S., Jr; Blanchard, E.; Brahmer, J.R.; Celano, P.; Duma, N.; Ellis, P.M.; Elkins, I.B.; Haddad, R.Y.; Hesketh, P.J.; Jain, D.; Johnson, D.H.; Leighl, N.B.; Mamdani, H.; Masters, G.; Moffitt, P.R.; Phillips, T.; Riely, G.J.; Robinson, A.G.; Rosell, R.; Schiller, J.H.; Schneider, B.J.; Spigel, D.R.; Jaiyesimi, I.A. Therapy for stage IV non–small-cell lung cancer with driver alterations: ASCO living guideline. J. Clin. Oncol., 2022, 40(28), 3310-3322.
[http://dx.doi.org/10.1200/JCO.22.00824] [PMID: 35816666]
[81]
Hanna, N.H.; Robinson, A.G.; Temin, S.; Baker, S., Jr; Brahmer, J.R.; Ellis, P.M.; Gaspar, L.E.; Haddad, R.Y.; Hesketh, P.J.; Jain, D.; Jaiyesimi, I.; Johnson, D.H.; Leighl, N.B.; Moffitt, P.R.; Phillips, T.; Riely, G.J.; Rosell, R.; Schiller, J.H.; Schneider, B.J.; Singh, N.; Spigel, D.R.; Tashbar, J.; Masters, G. Therapy for stage IV non–small-cell lung cancer with driver alterations: ASCO and OH (CCO) joint guideline update. J. Clin. Oncol., 2021, 39(9), 1040-1091.
[http://dx.doi.org/10.1200/JCO.20.03570] [PMID: 33591844]
[82]
Rocco, D.; Battiloro, C.; Gravara, L.D.; Gridelli, C. Advanced non-small cell lung cancer with activating epidermal growth factor receptor mutation: First line treatment and beyond. Rev. Recent Clin. Trials, 2019, 14(2), 120-128.
[http://dx.doi.org/10.2174/1574887114666181205155211] [PMID: 30520383]
[83]
Lin, J.J.; Choudhury, N.J.; Yoda, S.; Zhu, V.W.; Johnson, T.W.; Sakhtemani, R.; Dagogo-Jack, I.; Digumarthy, S.R.; Lee, C.; Do, A.; Peterson, J.; Prutisto-Chang, K.; Malik, W.; Hubbeling, H.G.; Langenbucher, A.; Schoenfeld, A.J.; Falcon, C.J.; Temel, J.S.; Sequist, L.V.; Yeap, B.Y.; Lennerz, J.K.; Shaw, A.T.; Lawrence, M.S.; Ou, S.H.I.; Hata, A.N.; Drilon, A.; Gainor, J.F. Spectrum of mechanisms of resistance to crizotinib and lorlatinib in ROS1 fusion–positive lung cancer. Clin. Cancer Res., 2021, 27(10), 2899-2909.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0032] [PMID: 33685866]
[84]
Facchinetti, F.; Lacroix, L.; Mezquita, L.; Scoazec, J.Y.; Loriot, Y.; Tselikas, L.; Gazzah, A.; Rouleau, E.; Adam, J.; Michiels, S.; Massard, C.; André, F.; Olaussen, K.A.; Vassal, G.; Howarth, K.; Besse, B.; Soria, J.C.; Friboulet, L.; Planchard, D. Molecular mechanisms of resistance to BRAF and MEK inhibitors in BRAFV600E non–small cell lung cancer. Eur. J. Cancer, 2020, 132, 211-223.
[http://dx.doi.org/10.1016/j.ejca.2020.03.025] [PMID: 32388065]
[85]
Rocco, D.; Battiloro, C.; Della Gravara, L.; Gridelli, C. Safety and tolerability of anaplastic lymphoma kinase inhibitors in non-small-cell lung cancer. Drug Saf., 2019, 42(2), 199-209.
[http://dx.doi.org/10.1007/s40264-018-0771-y] [PMID: 30649741]
[86]
Addeo, A.; Banna, G.L.; Friedlaender, A. KRAS G12C mutations in NSCLC: From target to resistance. Cancers., 2021, 13(11), 2541.
[http://dx.doi.org/10.3390/cancers13112541] [PMID: 34064232]
[87]
Rocco, D.; Sapio, L.; Della Gravara, L.; Naviglio, S.; Gridelli, C. Treatment of advanced non-small cell lung cancer with RET fusions: Reality and hopes. Int. J. Mol. Sci., 2023, 24(3), 2433.
[http://dx.doi.org/10.3390/ijms24032433] [PMID: 36768754]
[88]
Fujino, T.; Kobayashi, Y.; Suda, K.; Koga, T.; Nishino, M.; Ohara, S.; Chiba, M.; Shimoji, M.; Tomizawa, K.; Takemoto, T.; Mitsudomi, T. Sensitivity and resistance of MET exon 14 mutations in lung cancer to eight MET tyrosine kinase inhibitors in vitro. J. Thorac. Oncol., 2019, 14(10), 1753-1765.
[http://dx.doi.org/10.1016/j.jtho.2019.06.023] [PMID: 31279006]
[89]
Vijayan, R.S.K.; He, P.; Modi, V.; Duong-Ly, K.C.; Ma, H.; Peterson, J.R.; Dunbrack, R.L., Jr; Levy, R.M. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. J. Med. Chem., 2015, 58(1), 466-479.
[http://dx.doi.org/10.1021/jm501603h] [PMID: 25478866]
[90]
Fujino, T.; Suda, K.; Koga, T.; Hamada, A.; Ohara, S.; Chiba, M.; Shimoji, M.; Takemoto, T.; Soh, J.; Mitsudomi, T. Foretinib can overcome common on-target resistance mutations after capmatinib/tepotinib treatment in NSCLCs with MET exon 14 skipping mutation. J. Hematol. Oncol., 2022, 15(1), 79.
[http://dx.doi.org/10.1186/s13045-022-01299-z] [PMID: 35690785]
[91]
Recondo, G.; Bahcall, M.; Spurr, L.F.; Che, J.; Ricciuti, B.; Leonardi, G.C.; Lo, Y.C.; Li, Y.Y.; Lamberti, G.; Nguyen, T.; Milan, M.S.D.; Venkatraman, D.; Umeton, R.; Paweletz, C.P.; Albayrak, A.; Cherniack, A.D.; Price, K.S.; Fairclough, S.R.; Nishino, M.; Sholl, L.M.; Oxnard, G.R.; Jänne, P.A.; Awad, M.M. Molecular mechanisms of acquired resistance to MET tyrosine kinase inhibitors in patients with MET exon 14–mutant NSCLC. Clin. Cancer Res., 2020, 26(11), 2615-2625.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3608] [PMID: 32034073]
[92]
Bahcall, M.; Paweletz, C.P.; Kuang, Y.; Taus, L.J.; Sim, T.; Kim, N.D.; Dholakia, K.H.; Lau, C.J.; Gokhale, P.C.; Chopade, P.R.; Hong, F.; Wei, Z.; Köhler, J.; Kirschmeier, P.T.; Guo, J.; Guo, S.; Wang, S.; Jänne, P.A. Combination of type I and type II MET tyrosine kinase inhibitors as therapeutic approach to prevent resistance. Mol. Cancer Ther., 2022, 21(2), 322-335.
[http://dx.doi.org/10.1158/1535-7163.MCT-21-0344] [PMID: 34789563]
[93]
Rotow, J.K.; Gui, P.; Wu, W.; Raymond, V.M.; Lanman, R.B.; Kaye, F.J.; Peled, N.; Fece de la Cruz, F.; Nadres, B.; Corcoran, R.B.; Yeh, I.; Bastian, B.C.; Starostik, P.; Newsom, K.; Olivas, V.R.; Wolff, A.M.; Fraser, J.S.; Collisson, E.A.; McCoach, C.E.; Camidge, D.R.; Pacheco, J.; Bazhenova, L.; Li, T.; Bivona, T.G.; Blakely, C.M. Co-occurring alterations in the RAS–MAPK pathway limit response to MET inhibitor treatment in MET exon 14 skipping mutation-positive lung cancer. Clin. Cancer Res., 2020, 26(2), 439-449.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1667] [PMID: 31548343]
[94]
Guo, R.; Offin, M.; Brannon, A.R.; Chang, J.; Chow, A.; Delasos, L.; Girshman, J.; Wilkins, O.; McCarthy, C.G.; Makhnin, A.; Falcon, C.; Scott, K.; Tian, Y.; Cecchi, F.; Hembrough, T.; Alex, D.; Shen, R.; Benayed, R.; Li, B.T.; Rudin, C.M.; Kris, M.G.; Arcila, M.E.; Rekhtman, N.; Paik, P.; Zehir, A.; Drilon, A. MET exon 14–altered lung cancers and MET inhibitor resistance. Clin. Cancer Res., 2021, 27(3), 799-806.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2861] [PMID: 33172896]
[95]
Drusbosky, L.M.; Dawar, R.; Rodriguez, E.; Ikpeazu, C.V. Therapeutic strategies in METex14 skipping mutated non-small cell lung cancer. J. Hematol. Oncol., 2021, 14(1), 129.
[http://dx.doi.org/10.1186/s13045-021-01138-7] [PMID: 34425853]
[96]
Suzawa, K.; Offin, M.; Lu, D.; Kurzatkowski, C.; Vojnic, M.; Smith, R.S.; Sabari, J.K.; Tai, H.; Mattar, M.; Khodos, I.; de Stanchina, E.; Rudin, C.M.; Kris, M.G.; Arcila, M.E.; Lockwood, W.W.; Drilon, A.; Ladanyi, M.; Somwar, R. Activation of KRAS mediates resistance to targeted therapy in MET exon 14–mutant non–small cell lung cancer. Clin. Cancer Res., 2019, 25(4), 1248-1260.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1640] [PMID: 30352902]
[97]
Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.M.E.; Lee, C.K.; Sebastian, M.; Templeton, A.; Mann, H.; Marotti, M.; Ghiorghiu, S.; Papadimitrakopoulou, V.A. Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer. N. Engl. J. Med., 2017, 376(7), 629-640.
[http://dx.doi.org/10.1056/NEJMoa1612674] [PMID: 27959700]
[98]
Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737.
[http://dx.doi.org/10.1038/s41416-019-0573-8] [PMID: 31564718]
[99]
Pan, Y.; Deng, C.; Qiu, Z.; Cao, C.; Wu, F. The resistance mechanisms and treatment strategies for ALK-rearranged non-small cell lung cancer. Front. Oncol., 2021, 11, 713530.
[http://dx.doi.org/10.3389/fonc.2021.713530] [PMID: 34660278]
[100]
Solomon, B.J.; Besse, B.; Bauer, T.M.; Felip, E.; Soo, R.A.; Camidge, D.R.; Chiari, R.; Bearz, A.; Lin, C.C.; Gadgeel, S.M.; Riely, G.J.; Tan, E.H.; Seto, T.; James, L.P.; Clancy, J.S.; Abbattista, A.; Martini, J.F.; Chen, J.; Peltz, G.; Thurm, H.; Ou, S.H.I.; Shaw, A.T. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol., 2018, 19(12), 1654-1667.
[http://dx.doi.org/10.1016/S1470-2045(18)30649-1] [PMID: 30413378]
[101]
Lin, J.J.; Shaw, A.T. Refining precision cancer therapy in ALK-positive NSCLC. EBioMedicine, 2019, 41, 9-10.
[http://dx.doi.org/10.1016/j.ebiom.2019.01.059] [PMID: 30737082]
[102]
Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D. Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol., 2018, 29(S4), iv192-iv237.
[http://dx.doi.org/10.1093/annonc/mdy275]
[103]
Nieva, J.; Reckamp, K.L.; Potter, D.; Taylor, A.; Sun, P. Retrospective analysis of real-world management of EGFR-mutated advanced NSCLC, after first-line EGFR-TKI treatment: US treatment patterns, attrition, and survival data. Drugs Real World Outcomes, 2022, 9(3), 333-345.
[http://dx.doi.org/10.1007/s40801-022-00302-w] [PMID: 35661118]
[104]
Cortellini, A.; Ficorella, C.; Crisci, R.; Divisi, D. A reflection on the actual place of osimertinib in the treatment algorithm of EGFR-positive non-small cell lung cancer patients. J. Thorac. Dis., 2020, 12(10), 6107-6111.
[http://dx.doi.org/10.21037/jtd-20-1733] [PMID: 33209443]
[105]
Lee, C.S.; Milone, M.; Seetharamu, N. Osimertinib in EGFR-mutated lung cancer: A review of the existing and emerging clinical data. OncoTargets Ther., 2021, 14, 4579-4597.
[http://dx.doi.org/10.2147/OTT.S227032] [PMID: 34471361]
[106]
Lazzari, C.; Gregorc, V.; Karachaliou, N.; Rosell, R.; Santarpia, M. Mechanisms of resistance to osimertinib. J. Thorac. Dis., 2020, 12(5), 2851-2858.
[http://dx.doi.org/10.21037/jtd.2019.08.30] [PMID: 32642198]
[107]
Yu, H.; Goldberg, S.; Le, X. ORCHARD: A phase II platform study in patients with advanced NSCLC who have progressed on first-line osimertinib therapy. J Thorac Oncol., 2019, 14(10), S647.
[http://dx.doi.org/10.1016/j.jtho.2019.08.1366]
[108]
Phase 2 Platform Study in Patients with Advanced Non-Small Lung Cancer who Progressed on First-Line Osimertinib Therapy (ORCHARD) (ORCHARD); clinicaltrials.org [internet]. ClinicalTrials.gov Identifier: NCT03944772 Available from: https://www.clinicaltrials.gov/ct2/show/NCT03944772. Accessed May 2023

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy