Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Microtubules and Cell Division: Potential Pharmacological Targets in Cancer Therapy

Author(s): Jomon Sebastian* and Krishnan Rathinasamy*

Volume 24, Issue 11, 2023

Published on: 07 August, 2023

Page: [889 - 918] Pages: 30

DOI: 10.2174/1389450124666230731094837

Price: $65

Abstract

Microtubules are a well-known target in cancer chemotherapy because of their critical role in cell division. Chromosome segregation during mitosis depends on the establishment of the mitotic spindle apparatus through microtubule dynamics. The disruption of microtubule dynamics through the stabilization or destabilization of microtubules results in the mitotic arrest of the cells. Microtubule-targeted drugs, which interfere with microtubule dynamics, inhibit the growth of cells at the mitotic phase and induce apoptotic cell death. The principle of microtubule-targeted drugs is to arrest the cells at mitosis and reduce their growth because cancer is a disease of unchecked cell proliferation. Many anti-microtubule agents produce significant inhibition of cancer cell growth and are widely used as chemotherapeutic drugs for the treatment of cancer. The drugs that interact with microtubules generally bind at one of the three sites vinblastine site, taxol site, or colchicine site. Colchicine binds to the interface of tubulin heterodimer and induces the depolymerization of microtubules. The colchicine binding site on microtubules is a much sought-after target in the history of anti-microtubule drug discovery. Many colchicine-binding site inhibitors have been discovered, but their use in the treatment of cancer is limited due to their dose-limiting toxicity and resistance in humans. Combination therapy can be a new treatment strategy to overcome these drawbacks of currently available microtubule-targeted anticancer drugs. This review discusses the significance of microtubules as a potential pharmacological target for cancer and stresses the necessity of finding new microtubule inhibitors to fight the disease.

Graphical Abstract

[1]
Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: An overview. Int J Cancer 2021; 149(4): 778-89.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[2]
Christiansen K, Buswell L, Fadelu T. A systematic review of patient education strategies for oncology patients in low-and middle-income countries. Oncologist 2023; 28(1): 2-11.
[http://dx.doi.org/10.1093/oncolo/oyac206] [PMID: 36269170]
[3]
Collatuzzo G, Boffetta P. Cancers attributable to modifiable risk factors: A road map for prevention. Annu Rev Public Health 2023; 44(1): 279-300.
[http://dx.doi.org/10.1146/annurev-publhealth-052220-124030] [PMID: 36516461]
[4]
Gonzalez-Flores D, Gripo AA, Rodríguez AB, Franco L. Consequences of glucose enriched diet on oncologic patients. Appl Sci 2023; 13(5): 2757.
[http://dx.doi.org/10.3390/app13052757]
[5]
Parsa N. Environmental factors inducing human cancers. Iran J Public Health 2012; 41(11): 1-9.
[PMID: 23304670]
[6]
Sharma A, Sharma L, Nandy SK, et al. Molecular aspects and therapeutic implications of herbal compounds targeting different types of cancer. Molecules 2023; 28(2): 750.
[http://dx.doi.org/10.3390/molecules28020750] [PMID: 36677808]
[7]
Gerstberger S, Jiang Q, Ganesh K. Metastasis. Cell 2023; 186(8): 1564-79.
[http://dx.doi.org/10.1016/j.cell.2023.03.003] [PMID: 37059065]
[8]
Abbas Z, Rehman S. An overview of cancer treatment modalities. Neoplasm 2018; 1: 139-57.
[9]
Chabner BA, Roberts TG Jr. Chemotherapy and the war on cancer. Nat Rev Cancer 2005; 5(1): 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[10]
van Vuuren RJ, Visagie MH, Theron AE, Joubert AM. Antimitotic drugs in the treatment of cancer. Cancer Chemother Pharmacol 2015; 76(6): 1101-12.
[http://dx.doi.org/10.1007/s00280-015-2903-8] [PMID: 26563258]
[11]
Dumontet C, Jordan MA. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010; 9(10): 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[12]
Jordan MA, Thrower D, Wilson L. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res 1991; 51(8): 2212-22.
[PMID: 2009540]
[13]
Jordan MA, Toso RJ, Thrower D, Wilson L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci 1993; 90(20): 9552-6.
[http://dx.doi.org/10.1073/pnas.90.20.9552] [PMID: 8105478]
[14]
Rathinasamy K, Panda D. Suppression of microtubule dynamics by benomyl decreases tension across kinetochore pairs and induces apoptosis in cancer cells. FEBS J 2006; 273(17): 4114-28.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05413.x] [PMID: 16903866]
[15]
Kelling J, Sullivan K, Wilson L, Jordan MA. Suppression of centromere dynamics by Taxol in living osteosarcoma cells. Cancer Res 2003; 63(11): 2794-801.
[PMID: 12782584]
[16]
Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 2007; 8(5): 379-93.
[http://dx.doi.org/10.1038/nrm2163] [PMID: 17426725]
[17]
Rieder CL, Maiato H. Stuck in division or passing through: What happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 2004; 7(5): 637-51.
[http://dx.doi.org/10.1016/j.devcel.2004.09.002] [PMID: 15525526]
[18]
Gadde S, Heald R. Mechanisms and molecules of the mitotic spindle. Curr Biol 2004; 14(18): R797-805.
[http://dx.doi.org/10.1016/j.cub.2004.09.021] [PMID: 15380094]
[19]
Keen N, Taylor S. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 2004; 4(12): 927-36.
[http://dx.doi.org/10.1038/nrc1502] [PMID: 15573114]
[20]
Strebhardt K, Ullrich A. Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 2006; 6(4): 321-30.
[http://dx.doi.org/10.1038/nrc1841] [PMID: 16557283]
[21]
Raghav D, Sebastian J, Rathinasamy K. Biochemical and Biophysical characterization of curcumin binding to human mitotic kinesin Eg5: Insights into the inhibitory mechanism of curcumin on Eg5. Int J Biol Macromol 2018; 109: 1189-208.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.115] [PMID: 29162464]
[22]
Sebastian J, Rathinasamy K. Benserazide perturbs Kif15-kinesin binding protein interaction with prolonged metaphase and defects in chromosomal congression: A study based on in silico modeling and cell culture. Mol Inform 2020; 39(3): 1900035.
[http://dx.doi.org/10.1002/minf.201900035] [PMID: 31347789]
[23]
de Forges H, Bouissou A, Perez F. Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol 2012; 44(2): 266-74.
[http://dx.doi.org/10.1016/j.biocel.2011.11.009] [PMID: 22108200]
[24]
Ranvier L. Recherches sur les elements du sang. Arch Physiol 1875; 2: 1-15.
[25]
Jolly J. Hematies des Tylopodes. C R Soc Biol 1920; 93: 125-7.
[26]
Dent EW, Baas PW. Microtubules in neurons as information carriers. J Neurochem 2014; 129(2): 235-9.
[http://dx.doi.org/10.1111/jnc.12621] [PMID: 24266899]
[27]
Owa M, Uchihashi T, Yanagisawa H, et al. Inner lumen proteins stabilize doublet microtubules in cilia and flagella. Nat Commun 2019; 10(1): 1143.
[http://dx.doi.org/10.1038/s41467-019-09051-x] [PMID: 30850601]
[28]
Winey M, O’Toole E. Centriole structure. Philos Trans R Soc Lond B Biol Sci 2014; 369(1650): 20130457.
[http://dx.doi.org/10.1098/rstb.2013.0457] [PMID: 25047611]
[29]
Schatten H. The mammalian centrosome and its functional significance. Histochem Cell Biol 2008; 129(6): 667-86.
[http://dx.doi.org/10.1007/s00418-008-0427-6] [PMID: 18437411]
[30]
Mazia D, Mitchison JM, Medina H, Harris P. The direct isolation of the mitotic apparatus. J Cell Biol 1961; 10(4): 467-74.
[http://dx.doi.org/10.1083/jcb.10.4.467] [PMID: 13768661]
[31]
Turk E, Wills AA, Kwon T, Sedzinski J, Wallingford JB, Stearns T. Zeta-tubulin is a member of a conserved tubulin module and is a component of the centriolar basal foot in multiciliated cells. Curr Biol 2015; 25(16): 2177-83.
[http://dx.doi.org/10.1016/j.cub.2015.06.063] [PMID: 26234217]
[32]
Gombos L, Neuner A, Berynskyy M, et al. GTP regulates the microtubule nucleation activity of γ-tubulin. Nat Cell Biol 2013; 15(11): 1317-27.
[http://dx.doi.org/10.1038/ncb2863] [PMID: 24161932]
[33]
Sulimenko V, Hájková Z, Klebanovych A, Dráber P. Regulation of microtubule nucleation mediated by γ-tubulin complexes. Protoplasma 2017; 254(3): 1187-99.
[http://dx.doi.org/10.1007/s00709-016-1070-z] [PMID: 28074286]
[34]
Würtz M, Zupa E, Atorino ES, et al. Modular assembly of the principal microtubule nucleator γ-TuRC. Nat Commun 2022; 13(1): 473.
[http://dx.doi.org/10.1038/s41467-022-28079-0] [PMID: 35078983]
[35]
Wang JT, Kong D, Hoerner CR, Loncarek J, Stearns T. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells. eLife 2017; 6: e29061.
[http://dx.doi.org/10.7554/eLife.29061] [PMID: 28906251]
[36]
Burns RG. ? -? -, and? -tubulins: Sequence comparisons and structural constraints. Cell Motil Cytoskeleton 1991; 20(3): 181-9.
[http://dx.doi.org/10.1002/cm.970200302] [PMID: 1773446]
[37]
Wade RH, Garcia-Saez I, Kozielski F. Structural variations in protein superfamilies: actin and tubulin. Mol Biotechnol 2009; 42(1): 49-60.
[http://dx.doi.org/10.1007/s12033-008-9128-6] [PMID: 19130318]
[38]
Miller LM, Xiao H, Burd B, Horwitz SB, Angeletti RH, Verdier-Pinard P. Methods in tubulin proteomics. Methods Cell Biol 2010; 95: 105-26.
[http://dx.doi.org/10.1016/S0091-679X(10)95007-3] [PMID: 20466132]
[39]
Nogales E, Wolf SG, Downing KH. Structure of the αβ tubulin dimer by electron crystallography. Nature 1998; 391(6663): 199-203.
[http://dx.doi.org/10.1038/34465] [PMID: 9428769]
[40]
Dorléans A, Gigant B, Ravelli RBG, Mailliet P, Mikol V, Knossow M. Variations in the colchicine-binding domain provide insight into the structural switch of tubulin. Proc Natl Acad Sci USA 2009; 106(33): 13775-9.
[http://dx.doi.org/10.1073/pnas.0904223106] [PMID: 19666559]
[41]
Field JJ, Díaz JF, Miller JH. The binding sites of microtubule-stabilizing agents. Chem Biol 2013; 20(3): 301-15.
[http://dx.doi.org/10.1016/j.chembiol.2013.01.014] [PMID: 23521789]
[42]
Shemesh A, Ghareeb H, Dharan R, et al. Effect of tubulin self-association on GTP hydrolysis and nucleotide exchange reactions. Biochim Biophys Acta Proteins Proteomics 2023; 1871(2): 140869.
[http://dx.doi.org/10.1016/j.bbapap.2022.140869] [PMID: 36400388]
[43]
Song Y, Brady ST. Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol 2015; 25(3): 125-36.
[http://dx.doi.org/10.1016/j.tcb.2014.10.004] [PMID: 25468068]
[44]
Ludueña RF. Are tubulin isotypes functionally significant. Mol Biol Cell 1993; 4(5): 445-57.
[http://dx.doi.org/10.1091/mbc.4.5.445] [PMID: 8334301]
[45]
Bhandare VV, Kumbhar BV, Kunwar A. Differential binding affinity of tau repeat region R2 with neuronal-specific β-tubulin isotypes. Sci Rep 2019; 9(1): 10795.
[http://dx.doi.org/10.1038/s41598-019-47249-7] [PMID: 31346240]
[46]
Kumbhar BV, Panda D, Kunwar A. Interaction of microtubule depolymerizing agent indanocine with different human αβ tubulin isotypes. PLoS One 2018; 13(3): e0194934.
[http://dx.doi.org/10.1371/journal.pone.0194934] [PMID: 29584771]
[47]
Ludueña RF, Banerjee A. The isotypes of tubulin. In: Fojo T, Ed. The role of microtubules in cell biology, neurobiology, and oncology. New Jersey: Humana Press 2008.
[http://dx.doi.org/10.1007/978-1-59745-336-3_6]
[48]
Leandro-García LJ, Leskelä S, Landa I, et al. Tumoral and tissue-specific expression of the major human β-tubulin isotypes. Cytoskeleton 2010; 67(4): 214-23.
[http://dx.doi.org/10.1002/cm.20436] [PMID: 20191564]
[49]
Chakraborti S, Natarajan K, Curiel J, Janke C, Liu J. The emerging role of the tubulin code: From the tubulin molecule to neuronal function and disease. Cytoskeleton 2016; 73(10): 521-50.
[http://dx.doi.org/10.1002/cm.21290] [PMID: 26934450]
[50]
Bär J, Popp Y, Bucher M, Mikhaylova M. Direct and indirect effects of tubulin post-translational modifications on microtubule stability: Insights and regulations. Biochim Biophys Acta Mol Cell Res 2022; 1869(6): 119241.
[http://dx.doi.org/10.1016/j.bbamcr.2022.119241] [PMID: 35181405]
[51]
Wang Z, Sheetz MP. The C-terminus of tubulin increases cytoplasmic dynein and kinesin processivity. Biophys J 2000; 78(4): 1955-64.
[http://dx.doi.org/10.1016/S0006-3495(00)76743-9] [PMID: 10733974]
[52]
Westermann S, Weber K. Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 2003; 4(12): 938-48.
[http://dx.doi.org/10.1038/nrm1260] [PMID: 14685172]
[53]
Sirajuddin M, Rice LM, Vale RD. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol 2014; 16(4): 335-44.
[http://dx.doi.org/10.1038/ncb2920] [PMID: 24633327]
[54]
Janke C, Chloë Bulinski J. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 2011; 12(12): 773-86.
[http://dx.doi.org/10.1038/nrm3227] [PMID: 22086369]
[55]
Soppina V, Herbstman JF, Skiniotis G, Verhey KJ. Luminal localization of α-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules. PLoS One 2012; 7(10): e48204.
[http://dx.doi.org/10.1371/journal.pone.0048204] [PMID: 23110214]
[56]
Peris L, Wagenbach M, Lafanechère L, et al. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 2009; 185(7): 1159-66.
[http://dx.doi.org/10.1083/jcb.200902142] [PMID: 19564401]
[57]
Lacroix B, van Dijk J, Gold ND, et al. Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J Cell Biol 2010; 189(6): 945-54.
[http://dx.doi.org/10.1083/jcb.201001024] [PMID: 20530212]
[58]
Xia L, Hai B, Gao Y, et al. Polyglycylation of tubulin is essential and affects cell motility and division in Tetrahymena thermophila. J Cell Biol 2000; 149(5): 1097-106.
[http://dx.doi.org/10.1083/jcb.149.5.1097] [PMID: 10831613]
[59]
Magiera MM, Singh P, Gadadhar S, Janke C. Tubulin posttranslational modifications and emerging links to human disease. Cell 2018; 173(6): 1323-7.
[http://dx.doi.org/10.1016/j.cell.2018.05.018] [PMID: 29856952]
[60]
Zhu T, Wang SH, Li D, et al. Progress of tubulin polymerization activity detection methods. Bioorg Med Chem Lett 2021; 37: 127698.
[http://dx.doi.org/10.1016/j.bmcl.2020.127698] [PMID: 33468346]
[61]
Katsuki M, Drummond DR, Cross RA. Ectopic A-lattice seams destabilize microtubules. Nat Commun 2014; 5(1): 3094.
[http://dx.doi.org/10.1038/ncomms4094] [PMID: 24463734]
[62]
Pierson GB, Burton PR, Himes RH. Alterations in number of protofilaments in microtubules assembled in vitro. J Cell Biol 1978; 76(1): 223-8.
[http://dx.doi.org/10.1083/jcb.76.1.223] [PMID: 618894]
[63]
Chaaban S, Brouhard GJ. A microtubule bestiary: Structural diversity in tubulin polymers. Mol Biol Cell 2017; 28(22): 2924-31.
[http://dx.doi.org/10.1091/mbc.e16-05-0271] [PMID: 29084910]
[64]
Cleary JM, Hancock WO. Molecular mechanisms underlying microtubule growth dynamics. Curr Biol 2021; 31(10): R560-73.
[http://dx.doi.org/10.1016/j.cub.2021.02.035] [PMID: 34033790]
[65]
Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature 1984; 312(5991): 237-42.
[http://dx.doi.org/10.1038/312237a0] [PMID: 6504138]
[66]
Zhai Y, Kronebusch PJ, Borisy GG. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Biol 1995; 131(3): 721-34.
[http://dx.doi.org/10.1083/jcb.131.3.721] [PMID: 7593192]
[67]
Gudimchuk NB, McIntosh JR. Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol 2021; 22(12): 777-95.
[http://dx.doi.org/10.1038/s41580-021-00399-x] [PMID: 34408299]
[68]
Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997; 13(1): 83-117.
[http://dx.doi.org/10.1146/annurev.cellbio.13.1.83] [PMID: 9442869]
[69]
David-Pfeuty T, Erickson HP, Pantaloni D. Guanosinetriphosphatase activity of tubulin associated with microtubule assembly. Proc Natl Acad Sci 1977; 74(12): 5372-6.
[http://dx.doi.org/10.1073/pnas.74.12.5372] [PMID: 202954]
[70]
Wordeman L. GTP-tubulin loves microtubule plus ends but marries the minus ends. J Cell Biol 2019; 218(9): 2822-3.
[http://dx.doi.org/10.1083/jcb.201908039] [PMID: 31427370]
[71]
Downing KH, Nogales E. New insights into microtubule structure and function from the atomic model of tubulin. Eur Biophys J 1998; 27(5): 431-6.
[http://dx.doi.org/10.1007/s002490050153] [PMID: 9760724]
[72]
Wang HW, Nogales E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 2005; 435(7044): 911-5.
[http://dx.doi.org/10.1038/nature03606] [PMID: 15959508]
[73]
Carlier MF, Didry D, Pantaloni D. Microtubule elongation and guanosine 5′-triphosphate hydrolysis. Role of guanine nucleotides in microtubule dynamics. Biochemistry 1987; 26(14): 4428-37.
[http://dx.doi.org/10.1021/bi00388a036] [PMID: 3663597]
[74]
Alushin GM, Lander GC, Kellogg EH, Zhang R, Baker D, Nogales E. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell 2014; 157(5): 1117-29.
[http://dx.doi.org/10.1016/j.cell.2014.03.053] [PMID: 24855948]
[75]
Jordan MA, Wilson L. Microtubule dynamics: Mechanisms and regulation by microtubule-associated proteins and drugs in vitro and in cells. In: Fojo T, Ed. The role of microtubules in cell biology, neurobiology, and oncology. New Jersey: Humana Press 2008.
[http://dx.doi.org/10.1007/978-1-59745-336-3_3]
[76]
Horio T, Murata T. The role of dynamic instability in microtubule organization. Front Plant Sci 2014; 5: 511.
[http://dx.doi.org/10.3389/fpls.2014.00511] [PMID: 25339962]
[77]
Dimitrov A, Quesnoit M, Moutel S, Cantaloube I, Poüs C, Perez F. Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 2008; 322(5906): 1353-6.
[http://dx.doi.org/10.1126/science.1165401] [PMID: 18927356]
[78]
Bowne-Anderson H, Zanic M, Kauer M, Howard J. Microtubule dynamic instability: A new model with coupled GTP hydrolysis and multistep catastrophe. BioEssays 2013; 35(5): 452-61.
[http://dx.doi.org/10.1002/bies.201200131] [PMID: 23532586]
[79]
Rusan NM, Fagerstrom CJ, Yvon AMC, Wadsworth P. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Mol Biol Cell 2001; 12(4): 971-80.
[http://dx.doi.org/10.1091/mbc.12.4.971] [PMID: 11294900]
[80]
Gudimchuk NB, Ulyanov EV, O’Toole E, et al. Mechanisms of microtubule dynamics and force generation examined with computational modeling and electron cryotomography. Nat Commun 2020; 11(1): 3765.
[http://dx.doi.org/10.1038/s41467-020-17553-2] [PMID: 32724196]
[81]
Forth S, Kapoor TM. The mechanics of microtubule networks in cell division. J Cell Biol 2017; 216(6): 1525-31.
[http://dx.doi.org/10.1083/jcb.201612064] [PMID: 28490474]
[82]
Panda D, Miller HP, Wilson L. Rapid treadmilling of MAP-free brain microtubules in vitro and its suppression by tau. Proc Natl Acad Sci 1999; 96: 12459-64.
[http://dx.doi.org/10.1073/pnas.96.22.12459] [PMID: 10535944]
[83]
Chen W, Zhang D. Kinetochore fibre dynamics outside the context of the spindle during anaphase. Nat Cell Biol 2004; 6(3): 227-31.
[http://dx.doi.org/10.1038/ncb1104] [PMID: 15039774]
[84]
Nogales E, Whittaker M, Milligan RA, Downing KH. High-resolution model of the microtubule. Cell 1999; 96(1): 79-88.
[http://dx.doi.org/10.1016/S0092-8674(00)80961-7] [PMID: 9989499]
[85]
Rodionov VI, Gyoeva FK, Tanaka E, Bershadsky AD, Vasiliev JM, Gelfand VI. Microtubule-dependent control of cell shape and pseudopodial activity is inhibited by the antibody to kinesin motor domain. J Cell Biol 1993; 123(6): 1811-20.
[http://dx.doi.org/10.1083/jcb.123.6.1811] [PMID: 8276899]
[86]
Barlan K, Gelfand VI. Microtubule-based transport and the distribution, tethering, and organization of organelles. Cold Spring Harb Perspect Biol 2017; 9(5): a025817.
[http://dx.doi.org/10.1101/cshperspect.a025817] [PMID: 28461574]
[87]
Welte MA. Bidirectional transport along microtubules. Curr Biol 2004; 14(13): R525-37.
[http://dx.doi.org/10.1016/j.cub.2004.06.045] [PMID: 15242636]
[88]
Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: Transport mechanisms and roles in brain function, development, and disease. Neuron 2010; 68(4): 610-38.
[http://dx.doi.org/10.1016/j.neuron.2010.09.039] [PMID: 21092854]
[89]
Schneider I, Lénárt P. Chromosome segregation: Is the spindle all about microtubules? Curr Biol 2017; 27(21): R1168-70.
[http://dx.doi.org/10.1016/j.cub.2017.09.022] [PMID: 29112871]
[90]
McIntosh JR. Mitosis. Cold Spring Harb Perspect Biol 2016; 8(9): a023218.
[http://dx.doi.org/10.1101/cshperspect.a023218] [PMID: 27587616]
[91]
Maller JL. Mitogenic signalling and protein phosphorylation in Xenopus oocytes. J Cyclic Nucleotide Protein Phosphor Res 1986-1987; 11(7): 543-55.
[PMID: 2831261]
[92]
Park JA, Kim AJ, Kang Y, Jung YJ, Kim HK, Kim KC. Deacetylation and methylation at histone H3 lysine 9 (H3K9) coordinate chromosome condensation during cell cycle progression. Mol Cells 2011; 31(4): 343-9.
[http://dx.doi.org/10.1007/s10059-011-0044-4] [PMID: 21359677]
[93]
Tanenbaum ME, Medema RH. Mechanisms of centrosome separation and bipolar spindle assembly. Dev Cell 2010; 19(6): 797-806.
[http://dx.doi.org/10.1016/j.devcel.2010.11.011] [PMID: 21145497]
[94]
Hayden JH, Bowser SS, Rieder CL. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: Direct visualization in live newt lung cells. J Cell Biol 1990; 111(3): 1039-45.
[http://dx.doi.org/10.1083/jcb.111.3.1039] [PMID: 2391359]
[95]
Inoué S, Salmon ED. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell 1995; 6(12): 1619-40.
[http://dx.doi.org/10.1091/mbc.6.12.1619] [PMID: 8590794]
[96]
O’Toole E, Morphew M, McIntosh JR. Electron tomography reveals aspects of spindle structure important for mechanical stability at metaphase. Mol Biol Cell 2020; 31(3): 184-95.
[http://dx.doi.org/10.1091/mbc.E19-07-0405] [PMID: 31825721]
[97]
Maiato H, Gomes A, Sousa F, Barisic M. Mechanisms of chromosome congression during mitosis. Biology 2017; 6(4): 13.
[http://dx.doi.org/10.3390/biology6010013] [PMID: 28218637]
[98]
Maddox P, Desai A, Oegema K, Mitchison TJ, Salmon ED. Poleward microtubule flux is a major component of spindle dynamics and anaphase a in mitotic Drosophila embryos. Curr Biol 2002; 12(19): 1670-4.
[http://dx.doi.org/10.1016/S0960-9822(02)01183-1] [PMID: 12361570]
[99]
Lara-Gonzalez P, Westhorpe FG, Taylor SS. The spindle assembly checkpoint. Curr Biol 2012; 22(22): R966-80.
[http://dx.doi.org/10.1016/j.cub.2012.10.006] [PMID: 23174302]
[100]
Hoyt MA. A new view of the spindle checkpoint. J Cell Biol 2001; 154(5): 909-12.
[http://dx.doi.org/10.1083/jcb.200108010] [PMID: 11535614]
[101]
Nasmyth K, Haering CH. Cohesin: Its roles and mechanisms. Annu Rev Genet 2009; 43(1): 525-58.
[http://dx.doi.org/10.1146/annurev-genet-102108-134233] [PMID: 19886810]
[102]
Rieder CL, Cole RW, Khodjakov A, Sluder G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 1995; 130(4): 941-8.
[http://dx.doi.org/10.1083/jcb.130.4.941] [PMID: 7642709]
[103]
Brust-Mascher I, Scholey JM. Mitotic motors and chromosome segregation: The mechanism of anaphase B. Biochem Soc Trans 2011; 39(5): 1149-53.
[http://dx.doi.org/10.1042/BST0391149] [PMID: 21936780]
[104]
Stamatiou K, Vagnarelli P. Chromosome clustering in mitosis by the nuclear protein Ki-67. Biochem Soc Trans 2021; 49(6): 2767-76.
[http://dx.doi.org/10.1042/BST20210717] [PMID: 34783345]
[105]
Etienne-Manneville S. Microtubules in cell migration. Annu Rev Cell Dev Biol 2013; 29(1): 471-99.
[http://dx.doi.org/10.1146/annurev-cellbio-101011-155711] [PMID: 23875648]
[106]
Watanabe T, Noritake J, Kaibuchi K. Regulation of microtubules in cell migration. Trends Cell Biol 2005; 15(2): 76-83.
[http://dx.doi.org/10.1016/j.tcb.2004.12.006] [PMID: 15695094]
[107]
Waterman-Storer CM, Worthylake RA, Liu BP, Burridge K, Salmon ED. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat Cell Biol 1999; 1(1): 45-50.
[http://dx.doi.org/10.1038/9018] [PMID: 10559863]
[108]
Schober JM, Cain JM, Komarova YA, Borisy GG. Migration and actin protrusion in melanoma cells are regulated by EB1 protein. Cancer Lett 2009; 284(1): 30-6.
[http://dx.doi.org/10.1016/j.canlet.2009.04.007] [PMID: 19427113]
[109]
Huttenlocher A, Sandborg RR, Horwitz AF. Adhesion in cell migration. Curr Opin Cell Biol 1995; 7(5): 697-706.
[http://dx.doi.org/10.1016/0955-0674(95)80112-X] [PMID: 8573345]
[110]
Wolfenson H, Henis YI, Geiger B, Bershadsky AD. The heel and toe of the cell’s foot: A multifaceted approach for understanding the structure and dynamics of focal adhesions. Cell Motil Cytoskeleton 2009; 66(11): 1017-29.
[http://dx.doi.org/10.1002/cm.20410] [PMID: 19598236]
[111]
Wordeman L, Vicente JJ. Microtubule targeting agents in disease: Classic drugs, novel roles. Cancers (Basel) 2021; 13(22): 5650.
[http://dx.doi.org/10.3390/cancers13225650] [PMID: 34830812]
[112]
Mikhailov A, Gundersen GG. Relationship between microtubule dynamics and lamellipodium formation revealed by direct imaging of microtubules in cells treated with nocodazole or taxol. Cell Motil Cytoskeleton 1998; 41(4): 325-40.
[http://dx.doi.org/10.1002/(SICI)1097-0169(1998)41:4<325::AID-CM5>3.0.CO;2-D] [PMID: 9858157]
[113]
Ramkumar A, Jong BY, Ori-McKenney KM. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn 2018; 247(1): 138-55.
[http://dx.doi.org/10.1002/dvdy.24599] [PMID: 28980356]
[114]
Murphy DB, Borisy GG. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci 1975; 72(7): 2696-700.
[http://dx.doi.org/10.1073/pnas.72.7.2696] [PMID: 1058484]
[115]
Melková K, Zapletal V, Narasimhan S, et al. Structure and functions of microtubule associated proteins tau and MAP2c: similarities and differences. Biomolecules 2019; 9(3): 105.
[http://dx.doi.org/10.3390/biom9030105] [PMID: 30884818]
[116]
Roll-Mecak A. Intrinsically disordered tubulin tails: Complex tuners of microtubule functions? Semin Cell Dev Biol 2015; 37: 11-9.
[http://dx.doi.org/10.1016/j.semcdb.2014.09.026] [PMID: 25307498]
[117]
Drewes G, Ebneth A, Mandelkow EM. MAPs, MARKs and microtubule dynamics. Trends Biochem Sci 1998; 23(8): 307-11.
[http://dx.doi.org/10.1016/S0968-0004(98)01245-6] [PMID: 9757832]
[118]
Kuznetsov SA, Rodionov VI, Gelfand VI, Rosenblat VA. Purification of high- Mr microtubule proteins MAP1 and MAP2. FEBS Lett 1981; 135(2): 237-40.
[http://dx.doi.org/10.1016/0014-5793(81)80790-9] [PMID: 7319049]
[119]
Halpain S, Dehmelt L. The MAP1 family of microtubule-associated proteins. Genome Biol 2006; 7(6): 224.
[http://dx.doi.org/10.1186/gb-2006-7-6-224] [PMID: 16938900]
[120]
Hernández MA, Avila J, Andreu JM. Physicochemical characterization of the heat-stable microtubule-associated protein MAP2. Eur J Biochem 1986; 154(1): 41-8.
[http://dx.doi.org/10.1111/j.1432-1033.1986.tb09356.x] [PMID: 3943524]
[121]
Chen J, Kanai Y, Cowan NJ, Hirokawa N. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 1992; 360(6405): 674-7.
[http://dx.doi.org/10.1038/360674a0] [PMID: 1465130]
[122]
Duan AR, Jonasson EM, Alberico EO, et al. Interactions between tau and different conformations of tubulin: Implications for tau function and mechanism. J Mol Biol 2017; 429(9): 1424-38.
[http://dx.doi.org/10.1016/j.jmb.2017.03.018] [PMID: 28322917]
[123]
Bulinski JC, Borisy GG. Microtubule-associated proteins from cultured HeLa cells. Analysis of molecular properties and effects on microtubule polymerization. J Biol Chem 1980; 255(23): 11570-6.
[http://dx.doi.org/10.1016/S0021-9258(19)70328-7] [PMID: 7440558]
[124]
Murofushi H, Kotani S, Aizawa H, Hisanaga S, Hirokawa N, Sakai H. Purification and characterization of a 190-kD microtubule-associated protein from bovine adrenal cortex. J Cell Biol 1986; 103(5): 1911-9.
[http://dx.doi.org/10.1083/jcb.103.5.1911] [PMID: 3782289]
[125]
Delphin C, Bouvier D, Seggio M, et al. MAP6-F is a temperature sensor that directly binds to and protects microtubules from cold-induced depolymerization. J Biol Chem 2012; 287(42): 35127-38.
[http://dx.doi.org/10.1074/jbc.M112.398339] [PMID: 22904321]
[126]
Monroy BY, Sawyer DL, Ackermann BE, Borden MM, Tan TC, Ori-McKenney KM. Competition between microtubule-associated proteins directs motor transport. Nat Commun 2018; 9(1): 1487.
[http://dx.doi.org/10.1038/s41467-018-03909-2] [PMID: 29662074]
[127]
Huber G, Alaimo-Beuret D, Matus A. MAP3: Characterization of a novel microtubule-associated protein. J Cell Biol 1985; 100(2): 496-507.
[http://dx.doi.org/10.1083/jcb.100.2.496] [PMID: 3968174]
[128]
Riederer B, Cohen R, Matush A. MAP5: A novel brain microtubule-associated protein under strong developmental regulation. J Neurocytol 1986; 15(6): 763-75.
[http://dx.doi.org/10.1007/BF01625193] [PMID: 3819779]
[129]
Kavallaris M, Tait AS, Walsh BJ, et al. Multiple microtubule alterations are associated with Vinca alkaloid resistance in human leukemia cells. Cancer Res 2001; 61(15): 5803-9.
[PMID: 11479219]
[130]
Goodson HV, Jonasson EM. Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol 2018; 10(6): a022608.
[http://dx.doi.org/10.1101/cshperspect.a022608] [PMID: 29858272]
[131]
Brunet S, Vernos I. Chromosome motors on the move. EMBO Rep 2001; 2(8): 669-73.
[http://dx.doi.org/10.1093/emb0-reports/kve158] [PMID: 11493594]
[132]
Ilan Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J Cell Physiol 2019; 234(6): 7923-37.
[http://dx.doi.org/10.1002/jcp.27978] [PMID: 30536951]
[133]
Vale RD. The molecular motor toolbox for intracellular transport. Cell 2003; 112(4): 467-80.
[http://dx.doi.org/10.1016/S0092-8674(03)00111-9] [PMID: 12600311]
[134]
Shang Z, Zhou K, Xu C, Csencsits R, Cochran JC, Sindelar CV. High-resolution structures of kinesin on microtubules provide a basis for nucleotide-gated force-generation. eLife 2014; 3: e04686.
[http://dx.doi.org/10.7554/eLife.04686] [PMID: 25415053]
[135]
Mizuno N, Narita A, Kon T, Sutoh K, Kikkawa M. Three-dimensional structure of cytoplasmic dynein bound to microtubules. Proc Natl Acad Sci 2007; 104(52): 20832-7.
[http://dx.doi.org/10.1073/pnas.0710406105] [PMID: 18093913]
[136]
Hirose K, Akimaru E, Akiba T, Endow SA, Amos LA. Large conformational changes in a kinesin motor catalyzed by interaction with microtubules. Mol Cell 2006; 23(6): 913-23.
[http://dx.doi.org/10.1016/j.molcel.2006.07.020] [PMID: 16973442]
[137]
Manna RN, Dutta M, Jana B. Mechanistic study of the ATP hydrolysis reaction in dynein motor protein. Phys Chem Chem Phys 2020; 22(3): 1534-42.
[http://dx.doi.org/10.1039/C9CP02194A] [PMID: 31872818]
[138]
Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 1998; 279(5350): 519-26.
[http://dx.doi.org/10.1126/science.279.5350.519] [PMID: 9438838]
[139]
Scholey JM, Rogers GC, Sharp DJ. Mitosis, microtubules, and the matrix. J Cell Biol 2001; 154(2): 261-6.
[http://dx.doi.org/10.1083/jcb.200101097] [PMID: 11470815]
[140]
Sharp DJ, Rogers GC, Scholey JM. Microtubule motors in mitosis. Nature 2000; 407(6800): 41-7.
[http://dx.doi.org/10.1038/35024000] [PMID: 10993066]
[141]
Dujardin DL, Vallee RB. Dynein at the cortex. Curr Opin Cell Biol 2002; 14(1): 44-9.
[http://dx.doi.org/10.1016/S0955-0674(01)00292-7] [PMID: 11792543]
[142]
Varma D, Monzo P, Stehman SA, Vallee RB. Direct role of dynein motor in stable kinetochore-microtubule attachment, orientation, and alignment. J Cell Biol 2008; 182(6): 1045-54.
[http://dx.doi.org/10.1083/jcb.200710106] [PMID: 18809721]
[143]
Ali I, Yang WC. The functions of kinesin and kinesin-related proteins in eukaryotes. Cell Adhes Migr 2020; 14(1): 139-52.
[http://dx.doi.org/10.1080/19336918.2020.1810939] [PMID: 32842864]
[144]
Myers SM, Collins I. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy. Future Med Chem 2016; 8(4): 463-89.
[http://dx.doi.org/10.4155/fmc.16.5] [PMID: 26976726]
[145]
Sebastian J, Raghav D, Rathinasamy K. MD simulation-based screening approach identified tolvaptan as a potential inhibitor of Eg5. Mol Divers 2022; 27(3): 1203-21.
[http://dx.doi.org/10.1007/s11030-022-10482-w] [PMID: 35789974]
[146]
Ferenz NP, Gable A, Wadsworth P. Mitotic functions of kinesin-5. Semin Cell Dev Biol 2010; 21(3): 255-9.
[http://dx.doi.org/10.1016/j.semcdb.2010.01.019] [PMID: 20109572]
[147]
Tanenbaum ME, Macůrek L, Janssen A, Geers EF, Alvarez-Fernández M, Medema RH. Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr Biol 2009; 19(20): 1703-11.
[http://dx.doi.org/10.1016/j.cub.2009.08.027] [PMID: 19818618]
[148]
Sebastian J. Dihydropyrazole and dihydropyrrole structures based design of Kif15 inhibitors as novel therapeutic agents for cancer. Comput Biol Chem 2017; 68: 164-74.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.03.006] [PMID: 28355588]
[149]
Ke K, Cheng J, Hunt AJ. The distribution of polar ejection forces determines the amplitude of chromosome directional instability. Curr Biol 2009; 19(10): 807-15.
[http://dx.doi.org/10.1016/j.cub.2009.04.036] [PMID: 19446456]
[150]
Wood KW, Sakowicz R, Goldstein LSB, Cleveland DW. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 1997; 91(3): 357-66.
[http://dx.doi.org/10.1016/S0092-8674(00)80419-5] [PMID: 9363944]
[151]
Wandke C, Barisic M, Sigl R, et al. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis. J Cell Biol 2012; 198(5): 847-63.
[http://dx.doi.org/10.1083/jcb.201110060] [PMID: 22945934]
[152]
Stanton RA, Gernert KM, Nettles JH, Aneja R. Drugs that target dynamic microtubules: A new molecular perspective. Med Res Rev 2011; 31(3): 443-81.
[http://dx.doi.org/10.1002/med.20242] [PMID: 21381049]
[153]
Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004; 4(4): 253-65.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[154]
Panda D, Jordan MA, Chu KC, Wilson L. Differential effects of vinblastine on polymerization and dynamics at opposite microtubule ends. J Biol Chem 1996; 271(47): 29807-12.
[http://dx.doi.org/10.1074/jbc.271.47.29807] [PMID: 8939919]
[155]
Lange U, Schumann C, Schmidt KL. Current aspects of colchicine therapy -- classical indications and new therapeutic uses. Eur J Med Res 2001; 6(4): 150-60.
[PMID: 11309227]
[156]
Yurdakul S, Mat C, Tüzün Y, et al. A double-blind trial of colchicine in Behçet’s syndrome. Arthritis Rheum 2001; 44(11): 2686-92.
[http://dx.doi.org/10.1002/1529-0131(200111)44:11<2686::AID-ART448>3.0.CO;2-H] [PMID: 11710724]
[157]
Peng LX, Hsu MT, Bonomi M, Agard DA, Jacobson MP. The free energy profile of tubulin straight-bent conformational changes, with implications for microtubule assembly and drug discovery. PLOS Comput Biol 2014; 10(2): e1003464.
[http://dx.doi.org/10.1371/journal.pcbi.1003464] [PMID: 24516374]
[158]
McLoughlin EC, O’Boyle NM. Colchicine-binding site inhibitors from chemistry to clinic: a review. Pharmaceuticals 2020; 13(1): 8.
[http://dx.doi.org/10.3390/ph13010008] [PMID: 31947889]
[159]
Rai SS, Wolff J. Localization of the vinblastine-binding site on β-tubulin. J Biol Chem 1996; 271(25): 14707-11.
[http://dx.doi.org/10.1074/jbc.271.25.14707] [PMID: 8663038]
[160]
Gigant B, Wang C, Ravelli RBG, et al. Structural basis for the regulation of tubulin by vinblastine. Nature 2005; 435(7041): 519-22.
[http://dx.doi.org/10.1038/nature03566] [PMID: 15917812]
[161]
Jordan M. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anticancer Agents 2012; 2(1): 1-17.
[http://dx.doi.org/10.2174/1568011023354290] [PMID: 12678749]
[162]
Singer WD, Jordan MA, Wilson L, Himes RH. Binding of vinblastine to stabilized microtubules. Mol Pharmacol 1989; 36(3): 366-70.
[PMID: 2571072]
[163]
Gupta S, Bhattacharyya B. Antimicrotubular drugs binding to vinca domain of tubulin. Mol Cell Biochem 2003; 253(1/2): 41-7.
[http://dx.doi.org/10.1023/A:1026045100219] [PMID: 14619954]
[164]
Freedman H, Huzil JT, Luchko T, Ludueña RF, Tuszynski JA. Identification and characterization of an intermediate taxol binding site within microtubule nanopores and a mechanism for tubulin isotype binding selectivity. J Chem Inf Model 2009; 49(2): 424-36.
[http://dx.doi.org/10.1021/ci8003336] [PMID: 19434843]
[165]
Nogales E, Grayer Wolf S, Khan IA, Ludueña RF, Downing KH. Structure of tubulin at 6.5 Å and location of the taxol-binding site. Nature 1995; 375(6530): 424-7.
[http://dx.doi.org/10.1038/375424a0] [PMID: 7760939]
[166]
Amos LA, Löwe J. How Taxol® stabilises microtubule structure. Chem Biol 1999; 6(3): R65-9.
[http://dx.doi.org/10.1016/S1074-5521(99)89002-4] [PMID: 10074470]
[167]
Evangelio JA, Abal M, Barasoain I, et al. Fluorescent taxoids as probes of the microtubule cytoskeleton. Cell Motil Cytoskeleton 1998; 39(1): 73-90.
[http://dx.doi.org/10.1002/(SICI)1097-0169(1998)39:1<73::AID-CM7>3.0.CO;2-H] [PMID: 9453715]
[168]
Lu Y, Chen J, Xiao M, Li W, Miller DD. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res 2012; 29(11): 2943-71.
[http://dx.doi.org/10.1007/s11095-012-0828-z] [PMID: 22814904]
[169]
Naaz F, Haider MR, Shafi S, Yar MS. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur J Med Chem 2019; 171: 310-31.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.025] [PMID: 30953881]
[170]
Canel C, Moraes RM, Dayan FE, Ferreira D. Podophyllotoxin. Phytochemistry 2000; 54(2): 115-20.
[http://dx.doi.org/10.1016/S0031-9422(00)00094-7] [PMID: 10872202]
[171]
Duca M, Guianvarc’h D, Meresse P, et al. Synthesis and biological study of a new series of 4′-demethylepipodophyllotoxin derivatives. J Med Chem 2005; 48(2): 593-603.
[http://dx.doi.org/10.1021/jm0495733] [PMID: 15658872]
[172]
Matei D, Schilder J, Sutton G, et al. Activity of 2 methoxyestradiol (Panzem ® NCD) in advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis: A Hoosier Oncology Group trial. Gynecol Oncol 2009; 115(1): 90-6.
[http://dx.doi.org/10.1016/j.ygyno.2009.05.042] [PMID: 19577796]
[173]
D’Amato RJ, Lin CM, Flynn E, Folkman J, Hamel E. 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc Natl Acad Sci 1994; 91(9): 3964-8.
[http://dx.doi.org/10.1073/pnas.91.9.3964] [PMID: 8171020]
[174]
Mabjeesh NJ, Escuin D, LaVallee TM, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 2003; 3(4): 363-75.
[http://dx.doi.org/10.1016/S1535-6108(03)00077-1] [PMID: 12726862]
[175]
Pasquier E, Sinnappan S, Munoz MA, Kavallaris M. ENMD-1198, a new analogue of 2-methoxyestradiol, displays both antiangiogenic and vascular-disrupting properties. Mol Cancer Ther 2010; 9(5): 1408-18.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0894] [PMID: 20442304]
[176]
Karatoprak GŞ, Küpeli Akkol E, Genç Y, Bardakcı H, Yücel Ç, Sobarzo-Sánchez E. Combretastatins: An overview of structure, probable mechanisms of action and potential applications. Molecules 2020; 25(11): 2560.
[http://dx.doi.org/10.3390/molecules25112560] [PMID: 32486408]
[177]
Siemann DW, Chaplin DJ, Horsman MR. Vascular-targeting therapies for treatment of malignant disease. Cancer 2004; 100(12): 2491-9.
[http://dx.doi.org/10.1002/cncr.20299] [PMID: 15197790]
[178]
Granata R, Locati LD, Licitra L. Fosbretabulin for the treatment of anaplastic thyroid cancer. Future Oncol 2014; 10(13): 2015-21.
[http://dx.doi.org/10.2217/fon.14.154] [PMID: 25396774]
[179]
Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[180]
Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging 2016; 8(4): 603-19.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[181]
Lawen A. Apoptosis?an introduction. BioEssays 2003; 25(9): 888-96.
[http://dx.doi.org/10.1002/bies.10329] [PMID: 12938178]
[182]
Shi J, Mitchison TJ. Cell death response to anti-mitotic drug treatment in cell culture, mouse tumor model and the clinic. Endocr Relat Cancer 2017; 24(9): T83-96.
[http://dx.doi.org/10.1530/ERC-17-0003] [PMID: 28249963]
[183]
Bates D, Eastman A. Microtubule destabilising agents: far more than just antimitotic anticancer drugs. Br J Clin Pharmacol 2017; 83(2): 255-68.
[http://dx.doi.org/10.1111/bcp.13126] [PMID: 27620987]
[184]
Sinha D, Duijf PHG, Khanna KK. Mitotic slippage: An old tale with a new twist. Cell Cycle 2019; 18(1): 7-15.
[http://dx.doi.org/10.1080/15384101.2018.1559557] [PMID: 30601084]
[185]
Blagosklonny MV, Giannakakou P, el-Deiry WS, et al. Raf-1/bcl-2 phosphorylation: A step from microtubule damage to cell death. Cancer Res 1997; 57(1): 130-5.
[PMID: 8988053]
[186]
Salah-eldin A, Inoue S, Tsukamoto S, Aoi H, Tsuda M. An association of Bcl-2 phosphorylation and Bax localization with their functions after hyperthermia and paclitaxel treatment. Int J Cancer 2003; 103(1): 53-60.
[http://dx.doi.org/10.1002/ijc.10782] [PMID: 12455053]
[187]
Oyaizu H, Adachi Y, Taketani S, Tokunaga R, Fukuhara S, Ikehara S. A crucial role of caspase 3 and caspase 8 in paclitaxel-induced apoptosis. Mol Cell Biol Res Commun 1999; 2(1): 36-41.
[http://dx.doi.org/10.1006/mcbr.1999.0146] [PMID: 10527889]
[188]
Di Rorà AGL, Martinelli G, Simonetti G. The balance between mitotic death and mitotic slippage in acute leukaemia: A new therapeutic window? J Hematol Oncol 2019; 12: 1-16.
[189]
Cheng B, Crasta K. Consequences of mitotic slippage for antimicrotubule drug therapy. Endocr Relat Cancer 2017; 24(9): T97-T106.
[http://dx.doi.org/10.1530/ERC-17-0147] [PMID: 28684541]
[190]
Aneja R, Ghaleb AM, Zhou J, Yang VW, Joshi HC. p53 and p21 determine the sensitivity of noscapine-induced apoptosis in colon cancer cells. Cancer Res 2007; 67(8): 3862-70.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4282] [PMID: 17440101]
[191]
Chipuk JE, Green DR. Dissecting p53-dependent apoptosis. Cell Death Differ 2006; 13(6): 994-1002.
[http://dx.doi.org/10.1038/sj.cdd.4401908] [PMID: 16543937]
[192]
Hait WN, Yang JM. The individualization of cancer therapy: the unexpected role of p53. Trans Am Clin Climatol Assoc 2006; 117: 85-101.
[PMID: 18528466]
[193]
Mukhtar E, Adhami VM, Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 2014; 13(2): 275-84.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791] [PMID: 24435445]
[194]
Banyal A, Tiwari S, Sharma A, et al. Vinca alkaloids as a potential cancer therapeutics: Recent update and future challenges. 3 Biotech 2023; 13: 1-17.
[195]
Martino E, Casamassima G, Castiglione S, et al. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg Med Chem Lett 2018; 28(17): 2816-26.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.044] [PMID: 30122223]
[196]
Bellmunt J, Théodore C, Demkov T, et al. Phase III trial of vinflunine plus best supportive care compared with best supportive care alone after a platinum-containing regimen in patients with advanced transitional cell carcinoma of the urothelial tract. J Clin Oncol 2009; 27(27): 4454-61.
[http://dx.doi.org/10.1200/JCO.2008.20.5534] [PMID: 19687335]
[197]
Bonfil RD, Russo DM, Binda MM, Delgado FM, Vincenti M. Higher antitumor activity of vinflunine than vinorelbine against an orthotopic murine model of transitional cell carcinoma of the bladder. Urol Oncol 2002; 7(4): 159-66.
[http://dx.doi.org/10.1016/S1078-1439(02)00184-9] [PMID: 12474532]
[198]
Yared JA, Tkaczuk KH. Update on taxane development: New analogs and new formulations. Drug Des Devel Ther 2012; 6: 371-84.
[PMID: 23251087]
[199]
Di Lorenzo G, Buonerba C, Autorino R, De Placido S, Sternberg CN. Castration-resistant prostate cancer: Current and emerging treatment strategies. Drugs 2010; 70(8): 983-1000.
[http://dx.doi.org/10.2165/10898600-000000000-00000] [PMID: 20481655]
[200]
Vahdat LT, Pruitt B, Fabian CJ, et al. Phase II study of eribulin mesylate, a halichondrin B analog, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol 2009; 27(18): 2954-61.
[http://dx.doi.org/10.1200/JCO.2008.17.7618] [PMID: 19349550]
[201]
Frye DK. Advances in breast cancer treatment: The emerging role of ixabepilone. Expert Rev Anticancer Ther 2010; 10(1): 23-32.
[http://dx.doi.org/10.1586/era.09.158] [PMID: 20014882]
[202]
Siemann DW, Chaplin DJ, Walicke PA. A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expert Opin Investig Drugs 2009; 18(2): 189-97.
[http://dx.doi.org/10.1517/13543780802691068] [PMID: 19236265]
[203]
Lee D, Sartor O, Jain VK. Activity of epothilone B analogues ixabepilone and patupilone in hormone-refractory prostate cancer. Clin Prostate Cancer 2004; 3(2): 80-2.
[http://dx.doi.org/10.1016/S1540-0352(11)70066-X] [PMID: 15479489]
[204]
Galmarini CM. Sagopilone, a microtubule stabilizer for the potential treatment of cancer. Curr Opin Investig Drugs 2009; 10(12): 1359-71.
[PMID: 19943207]
[205]
Kapoor S, Srivastava S, Panda D. Indibulin dampens microtubule dynamics and produces synergistic antiproliferative effect with vinblastine in MCF-7 cells: Implications in cancer chemotherapy. Sci Rep 2018; 8(1): 12363.
[http://dx.doi.org/10.1038/s41598-018-30376-y] [PMID: 30120268]
[206]
Michels J, Ellard SL, Le L, et al. A phase IB study of ABT-751 in combination with docetaxel in patients with advanced castration-resistant prostate cancer. Ann Oncol 2010; 21(2): 305-11.
[http://dx.doi.org/10.1093/annonc/mdp311] [PMID: 19633045]
[207]
Ramanathan RK, Picus J, Raftopoulos H, et al. A phase II study of milataxel: a novel taxane analogue in previously treated patients with advanced colorectal cancer. Cancer Chemother Pharmacol 2008; 61(3): 453-8.
[http://dx.doi.org/10.1007/s00280-007-0489-5] [PMID: 17516069]
[208]
Karahalil B, Yardım-Akaydin S, Nacak Baytas S. An overview of microtubule targeting agents for cancer therapy. Arch Ind Hyg Toxicol 2019; 70(3): 160-72.
[PMID: 32597128]
[209]
Florian S, Mitchison TJ. Anti-microtubule drugs. In: Chang P, Ohi R, Eds. The Mitotic Spindle Methods in Molecular Biology. New Jersey: Humana Press 2016.
[http://dx.doi.org/10.1007/978-1-4939-3542-0_25]
[210]
Al-Mahayri ZN, AlAhmad MM, Ali BR. Current opinion on the pharmacogenomics of paclitaxel-induced toxicity. Expert Opin Drug Metab Toxicol 2021; 17(7): 785-801.
[http://dx.doi.org/10.1080/17425255.2021.1943358] [PMID: 34128748]
[211]
Tonra JR, Lloyd GK, Mohanlal R, Huang L. Plinabulin ameliorates neutropenia induced by multiple chemotherapies through a mechanism distinct from G-CSF therapies. Cancer Chemother Pharmacol 2020; 85(2): 461-8.
[http://dx.doi.org/10.1007/s00280-019-03998-w] [PMID: 31811421]
[212]
Boussios S, Pentheroudakis G, Katsanos K, Pavlidis N. Systemic treatment-induced gastrointestinal toxicity: Incidence, clinical presentation and management. Ann Gastroenterol 2012; 25(2): 106-18.
[PMID: 24713845]
[213]
Zhou J, Giannakakou P. Targeting microtubules for cancer chemotherapy. Curr Med Chem Anticancer Agents 2005; 5(1): 65-71.
[http://dx.doi.org/10.2174/1568011053352569] [PMID: 15720262]
[214]
Chen E, Abu-Sbeih H, Thirumurthi S, et al. Clinical characteristics of colitis induced by taxane-based chemotherapy. Ann Gastroenterol 2020; 33(1): 59-67.
[PMID: 31892799]
[215]
Ballout F, Habli Z, Monzer A, Rahal ON, Fatfat M, Gali-Muhtasib H. Anticancer alkaloids: Molecular mechanisms and clinical manifestations. In: Sharma AK, Ed. Bioactive Natural Products for the Management of Cancer: from Bench to Bedside. Singapore: Springer 2019; pp. 1-35.
[http://dx.doi.org/10.1007/978-981-13-7607-8_1]
[216]
Li G, Hu Y, Li D, et al. Vincristine-induced peripheral neuropathy: A mini-review. Neurotoxicology 2020; 81: 161-71.
[http://dx.doi.org/10.1016/j.neuro.2020.10.004] [PMID: 33053366]
[217]
Longley RE. Discodermolide: Past, present, and future. In: Koehn F, Ed. Natural products and cancer drug discovery. New Jersey: Humana Press 2013.
[http://dx.doi.org/10.1007/978-1-4614-4654-5_3]
[218]
Hunter FW, Barker HR, Lipert B, et al. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br J Cancer 2020; 122(5): 603-12.
[http://dx.doi.org/10.1038/s41416-019-0635-y] [PMID: 31839676]
[219]
Teneriello MG, Tseng PC, Crozier M, et al. Phase II evaluation of nanoparticle albumin-bound paclitaxel in platinum-sensitive patients with recurrent ovarian, peritoneal, or fallopian tube cancer. J Clin Oncol 2009; 27(9): 1426-31.
[http://dx.doi.org/10.1200/JCO.2008.18.9548] [PMID: 19224848]
[220]
Douer D. Efficacy and safety of vincristine sulfate liposome injection in the treatment of adult acute lymphocytic leukaemia. Oncologist 2016; 21(7): 840-7.
[http://dx.doi.org/10.1634/theoncologist.2015-0391] [PMID: 27328933]
[221]
Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002; 53(1): 615-27.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[222]
Nabekura T, Kawasaki T, Jimura M, Mizuno K, Uwai Y. Microtubule-targeting anticancer drug eribulin induces drug efflux transporter P-glycoprotein. Biochem Biophys Rep 2020; 21: 100727.
[http://dx.doi.org/10.1016/j.bbrep.2020.100727] [PMID: 31993509]
[223]
Muthiah D, Henshaw GK, DeBono AJ, Capuano B, Scammells PJ, Callaghan R. Overcoming P-glycoprotein–mediated drug resistance with noscapine derivatives. Drug Metab Dispos 2019; 47(2): 164-72.
[http://dx.doi.org/10.1124/dmd.118.083188] [PMID: 30478158]
[224]
Zhang H, Xu H, Ashby CR Jr, Assaraf YG, Chen ZS, Liu HM. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med Res Rev 2021; 41(1): 525-55.
[http://dx.doi.org/10.1002/med.21739] [PMID: 33047304]
[225]
Sève P, Dumontet C. Is class III β-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol 2008; 9(2): 168-75.
[http://dx.doi.org/10.1016/S1470-2045(08)70029-9] [PMID: 18237851]
[226]
Dumontet C, Isaac S, Souquet PJ, et al. Expression of class III β tubulin in non-small cell lung cancer is correlated with resistance to taxane chemotherapy. Bull Cancer 2005; 92(2): E25-30.
[PMID: 15749640]
[227]
Mozzetti S, Ferlini C, Concolino P, et al. Class III β-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res 2005; 11(1): 298-305.
[http://dx.doi.org/10.1158/1078-0432.298.11.1] [PMID: 15671559]
[228]
Borys F, Joachimiak E, Krawczyk H, Fabczak H. Intrinsic and extrinsic factors affecting microtubule dynamics in normal and cancer cells. Molecules 2020; 25(16): 3705.
[http://dx.doi.org/10.3390/molecules25163705] [PMID: 32823874]
[229]
Rouzier R, Rajan R, Wagner P, et al. Microtubule-associated protein tau: A marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci USA 2005; 102(23): 8315-20.
[http://dx.doi.org/10.1073/pnas.0408974102] [PMID: 15914550]
[230]
Alli E, Bash-Babula J, Yang JM, Hait WN. Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer. Cancer Res 2002; 62(23): 6864-9.
[PMID: 12460900]
[231]
Huang Y, Ibrado AM, Reed JC, et al. Co-expression of several molecular mechanisms of multidrug resistance and their significance for paclitaxel cytotoxicity in human AML HL-60 cells. Leukemia 1997; 11(2): 253-7.
[http://dx.doi.org/10.1038/sj.leu.2400557] [PMID: 9009089]
[232]
Tang C, Willingham MC, Reed JC, et al. High levels of p26BCL-2 oncoprotein retard taxol-induced apoptosis in human pre-B leukemia cells. Leukemia 1994; 8(11): 1960-9.
[PMID: 7526093]
[233]
Sebastian J, Rathinasamy K. Sertaconazole induced toxicity in HeLa cells through mitotic arrest and inhibition of microtubule assembly. Naunyn Schmiedebergs Arch Pharmacol 2021; 394(6): 1231-49.
[http://dx.doi.org/10.1007/s00210-021-02059-5] [PMID: 33620548]
[234]
Sebastian J, Rathinasamy K. Cytotoxic mechanism of tioconazole involves cell cycle arrest at mitosis through inhibition of microtubule assembly. Cytotechnology 2022; 74(1): 141-62.
[http://dx.doi.org/10.1007/s10616-021-00516-w] [PMID: 35185291]
[235]
Qin SY, Cheng YJ, Lei Q, Zhang AQ, Zhang XZ. Combinational strategy for high-performance cancer chemotherapy. Biomaterials 2018; 171: 178-97.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.027] [PMID: 29698868]
[236]
Chou TC, Talalay P. Analysis of combined drug effects: A new look at a very old problem. Trends Pharmacol Sci 1983; 4: 450-4.
[http://dx.doi.org/10.1016/0165-6147(83)90490-X]
[237]
Clément MJ, Rathinasamy K, Adjadj E, Toma F, Curmi PA, Panda D. Benomyl and colchicine synergistically inhibit cell proliferation and mitosis: Evidence of distinct binding sites for these agents in tubulin. Biochemistry 2008; 47(49): 13016-25.
[http://dx.doi.org/10.1021/bi801136q] [PMID: 19049291]
[238]
Mohan L, Raghav D, Ashraf SM, Sebastian J, Rathinasamy K. Indirubin, a bis-indole alkaloid binds to tubulin and exhibits antimitotic activity against HeLa cells in synergism with vinblastine. Biomed Pharmacother 2018; 105: 506-17.
[http://dx.doi.org/10.1016/j.biopha.2018.05.127] [PMID: 29883946]
[239]
Ashraf SM, Sebastian J, Rathinasamy K. Zerumbone, a cyclic sesquiterpene, exerts antimitotic activity in HeLa cells through tubulin binding and exhibits synergistic activity with vinblastine and paclitaxel. Cell Prolif 2019; 52(2): e12558.
[http://dx.doi.org/10.1111/cpr.12558] [PMID: 30525278]
[240]
DiJoseph JF, Dougher MM, Evans DY, Zhou BB, Damle NK. Preclinical anti-tumor activity of antibody-targeted chemotherapy with CMC-544 (inotuzumab ozogamicin), a CD22-specific immunoconjugate of calicheamicin, compared with non-targeted combination chemotherapy with CVP or CHOP. Cancer Chemother Pharmacol 2011; 67(4): 741-9.
[http://dx.doi.org/10.1007/s00280-010-1342-9] [PMID: 20521053]
[241]
Ohguri T, Imada H, Narisada H, et al. Systemic chemotherapy using paclitaxel and carboplatin plus regional hyperthermia and hyperbaric oxygen treatment for non-small cell lung cancer with multiple pulmonary metastases: Preliminary results. Int J Hyperthermia 2009; 25(2): 160-7.
[http://dx.doi.org/10.1080/02656730802610357] [PMID: 19337916]
[242]
Watanabe R, Takiguchi Y, Moriya T, et al. Feasibility of combination chemotherapy with cisplatin and etoposide for haemodialysis patients with lung cancer. Br J Cancer 2003; 88(1): 25-30.
[http://dx.doi.org/10.1038/sj.bjc.6600687] [PMID: 12556954]
[243]
Rodgers M, Soares M, Epstein D, Yang H, Fox D, Eastwood A. Bevacizumab in combination with a taxane for the first-line treatment of HER2-negative metastatic breast cancer. Health Technol Assess 2011; 15 (Suppl. 1): 1-12.
[http://dx.doi.org/10.3310/hta15suppl1-01] [PMID: 21609648]
[244]
Thomas ES, Gomez HL, Li RK, et al. Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J Clin Oncol 2007; 25(33): 5210-7.
[http://dx.doi.org/10.1200/JCO.2007.12.6557] [PMID: 17968020]
[245]
Pellegrino B, Cavanna L, Boggiani D, et al. Phase II study of eribulin in combination with gemcitabine for the treatment of patients with locally advanced or metastatic triple negative breast cancer (ERIGE trial). Clinical and pharmacogenetic results on behalf of the Gruppo Oncologico Italiano di Ricerca Clinica (GOIRC). ESMO Open 2021; 6(1): 100019.
[http://dx.doi.org/10.1016/j.esmoop.2020.100019] [PMID: 33399082]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy