Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Intranasal Drug Delivery of Antiviral Agents - A Revisit and Way Forward

Author(s): Jino Affrald R and Shoba Narayan*

Volume 19, Issue 2, 2024

Published on: 31 July, 2023

Page: [130 - 150] Pages: 21

DOI: 10.2174/1574885518666230727100812

Price: $65

Abstract

Even to this date, oral drug delivery in the form of tablets, capsules, and syrups is considered as the most accepted one. However, oral delivery as a methodology requires that the active molecules and their formulations are water-soluble. Nasal drug delivery is characterized by ease of permeability through the epithelial mucosa, low enzyme activity, and a wide range of immunocompetent cells. For the transfer of drugs and active molecules through the nasal route, it is often essential to resort to nanodelivery methods, such as liposomes, microspheres, nanoemulsions, and so on. The use of nanodelivery vehicles has become more important in the modern context of viral infections, including those of the respiratory tract. Nanoformulations are developed in the form of nasal gels, sprays, drops, rinses, etc. Nanoformulations of antigens, vaccine and immune adjuvants, and antivirals are now gaining importance. There are promising reports on nanoparticles of metals, metal oxides, polymers, and so on that have the potential to detect and inhibit viruses by themselves. This review looks into the nasal nanoformulations in detail and provides an insight into how their efficacy can be improved. To overcome known drawbacks, such as degradation and active mucociliary clearance by antigenpresenting cells at the site of administration, polymers, such as PEG, are incorporated in the nanoformulation. Polymeric systems also provide better tunability of physicochemical properties. The mechanism of nasal spray-based drug delivery systems is also discussed in this paper. The review, thus, provides a detailed insight into the way forward for the development of nasal formulations.

Graphical Abstract

[1]
Brodniewicz T, Grynkiewicz G. Preclinical drug development. Acta Pol Pharm 2010; 67(6): 578-85.
[PMID: 21229871]
[2]
Marwah H, Garg T, Goyal AK, Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv 2016; 23(2): 564-78.
[http://dx.doi.org/10.3109/10717544.2014.935532] [PMID: 25006687]
[3]
Kawish M, Elhissi A, Jabri T, Muhammad Iqbal K, Zahid H, Shah MR. Enhancement in oral absorption of ceftriaxone by highly functionalized magnetic iron oxide nanoparticles. Pharmaceutics 2020; 12(6): 492.
[http://dx.doi.org/10.3390/pharmaceutics12060492] [PMID: 32481715]
[4]
Cunha S, Amaral MH, Lobo JMS, Silva AC. Lipid nanoparticles for nasal/intranasal drug delivery. Crit Rev Ther Drug Carrier Syst 2017; 34(3): 257-82.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2017018693] [PMID: 28845761]
[5]
Dkhar LK, Bartley J, White D, Seyfoddin A. Intranasal drug delivery devices and interventions associated with post-operative endoscopic sinus surgery. Pharm Dev Technol 2018; 23(3): 282-94.
[http://dx.doi.org/10.1080/10837450.2017.1389956] [PMID: 28994339]
[6]
Lobaina Mato Y. Nasal route for vaccine and drug delivery: Features and current opportunities. Int J Pharm 2019; 572: 118813.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118813] [PMID: 31678521]
[7]
Bitter C, Suter-Zimmermann K, Surber C. Nasal drug delivery in humans. Curr Probl Dermatol 2011; 40: 20-35.
[http://dx.doi.org/10.1159/000321044] [PMID: 21325837]
[8]
Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 2020; 7: 193.
[http://dx.doi.org/10.3389/fmolb.2020.00193] [PMID: 32974385]
[9]
Weissig V, Guzman-Villanueva D. Nanopharmaceuticals (part 2): products in the pipeline. Int J Nanomedicine 2015; 10: 1245-57.
[http://dx.doi.org/10.2147/IJN.S65526] [PMID: 25709446]
[10]
Bidros DS, Vogelbaum MA. Novel drug delivery strategies in neuro-oncology. Neurotherapeutics 2009; 6(3): 539-46.
[http://dx.doi.org/10.1016/j.nurt.2009.04.004] [PMID: 19560743]
[11]
Soni N, Soni N, Pandey H, Maheshwari R, Kesharwani P, Tekade RK. Augmented delivery of gemcitabine in lung cancer cells exploring mannose anchored solid lipid nanoparticles. J Colloid Interface Sci 2016; 481: 107-16.
[http://dx.doi.org/10.1016/j.jcis.2016.07.020] [PMID: 27459173]
[12]
Guerrero-Cázares H, Tzeng SY, Young NP, Abutaleb AO, Quiñones-Hinojosa A, Green JJ. Biodegradable polymeric nanoparticles show high efficacy and specificity at DNA delivery to human glioblastomain vitro and in vivo. ACS Nano 2014; 8(5): 5141-53.
[http://dx.doi.org/10.1021/nn501197v] [PMID: 24766032]
[13]
Hak A, Ravasaheb Shinde V, Rengan AK. A review of advanced nanoformulations in phototherapy for cancer therapeutics. Photodiagn Photodyn Ther 2021; 33: 102205.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102205] [PMID: 33561574]
[14]
Taghipour YD, Bahramsoltani R, Marques AM, et al. A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: drug delivery and pharmacological targets. Daru 2018; 26(2): 229-39.
[http://dx.doi.org/10.1007/s40199-018-0222-4] [PMID: 30382546]
[15]
Lozach PY. Cell +ections. Cells 2020; 9(11): 2431.
[http://dx.doi.org/10.3390/cells9112431] [PMID: 33171736]
[16]
Ka-Wai Hui E. Reasons for the increase in emerging and re-emerging viral infectious diseases. Microbes Infect 2006; 8(3): 905-16.
[http://dx.doi.org/10.1016/j.micinf.2005.06.032] [PMID: 16448839]
[17]
Hsu JW, Wingard JR. Advances in the Management of Viral Infections. Springer International Publishing 2014; pp. 157-80.
[http://dx.doi.org/10.1007/978-3-319-04220-6_5]
[18]
Prabhu S, Poongulali S, Kumarasamy N. Impact of COVID-19 on people living with HIV: A review. J Virus Erad 2020; 6(4): 100019.
[http://dx.doi.org/10.1016/j.jve.2020.100019] [PMID: 33083001]
[19]
Durand LO, Glew P, Gross D, et al. Timing of influenza A(H5N1) in poultry and humans and seasonal influenza activity worldwide, 2004-2013. Emerg Infect Dis 2015; 21(2): 202-8.
[http://dx.doi.org/10.3201/eid2102.140877] [PMID: 25625302]
[20]
Haas EJ, Angulo FJ, McLaughlin JM, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet 2021; 397(10287): 1819-29.
[http://dx.doi.org/10.1016/S0140-6736(21)00947-8] [PMID: 33964222]
[21]
Kutter JS, Spronken MI, Fraaij PL, Fouchier RAM, Herfst S. Transmission routes of respiratory viruses among humans. Curr Opin Virol 2018; 28: 142-51.
[http://dx.doi.org/10.1016/j.coviro.2018.01.001] [PMID: 29452994]
[22]
Hanada S, Pirzadeh M, Carver KY, Deng JC. Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Front Immunol 2018; 9: 2640.
[http://dx.doi.org/10.3389/fimmu.2018.02640] [PMID: 30505304]
[23]
Mehta N, Mazer-Amirshahi M, Alkindi N, Pourmand A. Pharmacotherapy in COVID-19; A narrative review for emergency providers. Am J Emerg Med 2020; 38(7): 1488-93.
[http://dx.doi.org/10.1016/j.ajem.2020.04.035] [PMID: 32336586]
[24]
Ahmed SSSJ, Paramasivam P, Kamath M, Sharma A, Rome S, Murugesan R. Genetic exchange of lung-derived exosome to brain causing neuronal changes on COVID-19 infection. Mol Neurobiol 2021; 58(10): 5356-68.
[http://dx.doi.org/10.1007/s12035-021-02485-9] [PMID: 34312772]
[25]
Goldmann DA. Transmission of viral respiratory infections in the home. Pediatr Infect Dis J 2000; 19(10) (Suppl.): S97-S102.
[http://dx.doi.org/10.1097/00006454-200010001-00002] [PMID: 11052396]
[26]
dos Santos WG. Natural history of COVID-19 and current knowledge on treatment therapeutic options. Biomed Pharmacother 2020; 129: 110493.
[http://dx.doi.org/10.1016/j.biopha.2020.110493] [PMID: 32768971]
[27]
Deschamp AR, Hatch JE, Slaven JE, et al. Early respiratory viral infections in infants with cystic fibrosis. J Cyst Fibros 2019; 18(6): 844-50.
[http://dx.doi.org/10.1016/j.jcf.2019.02.004] [PMID: 30826285]
[28]
Vasil’eva TE, Litvinova NG, Shakhgil’dian VI, et al. Pulmonary diseases in patients with HIV infection. Ter Arkh 2007; 79(11): 31-5.
[PMID: 18219970]
[29]
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017; 39(5): 529-39.
[http://dx.doi.org/10.1007/s00281-017-0629-x] [PMID: 28466096]
[30]
Florin TA, Plint AC, Zorc JJ. Viral bronchiolitis. Lancet 2017; 389(10065): 211-24.
[http://dx.doi.org/10.1016/S0140-6736(16)30951-5] [PMID: 27549684]
[31]
Raut A, Huy NT. Rising incidence of mucormycosis in patients with COVID-19: another challenge for India amidst the second wave? Lancet Respir Med 2021; 9(8): e77.
[http://dx.doi.org/10.1016/S2213-2600(21)00265-4] [PMID: 34090607]
[32]
Gargouri M, Marrakchi C, Feki W, et al. Combination of amphotericin B and caspofungin in the treatment of mucormycosis. Med Mycol Case Rep 2019; 26: 32-7.
[http://dx.doi.org/10.1016/j.mmcr.2019.09.006] [PMID: 31667058]
[33]
Zhou J, Krishnan N, Jiang Y, Fang RH, Zhang L. Nanotechnology for virus treatment. Nano Today 2021; 36: 101031.
[http://dx.doi.org/10.1016/j.nantod.2020.101031] [PMID: 33519948]
[34]
Shin MD, Shukla S, Chung YH, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol 2020; 15(8): 646-55.
[http://dx.doi.org/10.1038/s41565-020-0737-y] [PMID: 32669664]
[35]
Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C, Ranasinghe P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr 2020; 14(4): 367-82.
[http://dx.doi.org/10.1016/j.dsx.2020.04.015] [PMID: 32334392]
[36]
Acosta PL, Byrne AB, Hijano DR, Talarico LB. Human type I Interferon antiviral effects in respiratory and reemerging viral infections. J Immunol Res 2020; 2020: 1-27.
[http://dx.doi.org/10.1155/2020/1372494] [PMID: 32455136]
[37]
Shim S, Yoo HS. The application of mucoadhesive chitosan nanoparticles in nasal drug delivery. Mar Drugs 2020; 18(12): 605.
[http://dx.doi.org/10.3390/md18120605] [PMID: 33260406]
[38]
Sun B, Yu S, Zhao D, Guo S, Wang X, Zhao K. Polysaccharides as vaccine adjuvants. Vaccine 2018; 36(35): 5226-34.
[http://dx.doi.org/10.1016/j.vaccine.2018.07.040] [PMID: 30057282]
[39]
Petrovsky N, Aguilar JC. Vaccine adjuvants: Current state and future trends. Immunol Cell Biol 2004; 82(5): 488-96.
[http://dx.doi.org/10.1111/j.0818-9641.2004.01272.x] [PMID: 15479434]
[40]
Mascola JR, Fauci AS. Novel vaccine technologies for the 21st century. Nat Rev Immunol 2020; 20(2): 87-8.
[http://dx.doi.org/10.1038/s41577-019-0243-3] [PMID: 31712767]
[41]
Mao L, Chen Z, Wang Y, Chen C. Design and application of nanoparticles as vaccine adjuvants against human corona virus infection. J Inorg Biochem 2021; 219: 111454.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111454] [PMID: 33878530]
[42]
Petkar KC, Patil SM, Chavhan SS, et al. An overview of nanocarrier-based adjuvants for vaccine delivery. Pharmaceutics 2021; 13(4): 455.
[http://dx.doi.org/10.3390/pharmaceutics13040455] [PMID: 33801614]
[43]
Sulczewski FB, Liszbinski RB, Romão PRT, Rodrigues LC Junior. Nanoparticle vaccines against viral infections. Arch Virol 2018; 163(9): 2313-25.
[http://dx.doi.org/10.1007/s00705-018-3856-0] [PMID: 29728911]
[44]
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016; 99: 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012]
[45]
Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 2008; 126(3): 187-204.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.017] [PMID: 18261822]
[46]
Zhu YJ, Chen F. pH-responsive drug-delivery systems. Chem Asian J 2015; 10(2): 284-305.
[http://dx.doi.org/10.1002/asia.201402715] [PMID: 25303435]
[47]
Pires A, Fortuna A, Alves G, Falcão A. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci 2009; 12(3): 288-311.
[http://dx.doi.org/10.18433/J3NC79] [PMID: 20067706]
[48]
Wang X, Liu G, Ma J, et al. In situ gel-forming system: an attractive alternative for nasal drug delivery. Crit Rev Ther Drug Carrier Syst 2013; 30(5): 411-34.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013007362] [PMID: 24099327]
[49]
Niranjan R, Koushik C, Saravanan S, Moorthi A, Vairamani M, Selvamurugan N. A novel injectable temperature-sensitive zinc doped chitosan/β-glycerophosphate hydrogel for bone tissue engineering. Int J Biol Macromol 2013; 54: 24-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.11.026] [PMID: 23201776]
[50]
Gholizadeh H, Messerotti E, Pozzoli M, et al. Application of a thermosensitive in situ gel of chitosan-based nasal spray loaded with tranexamic acid for localised treatment of nasal wounds. AAPS PharmSciTech 2019; 20(7): 299.
[http://dx.doi.org/10.1208/s12249-019-1517-6] [PMID: 31482286]
[51]
Rao M, Agrawal DK, Shirsath C. Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Dev Ind Pharm 2017; 43(1): 142-50.
[http://dx.doi.org/10.1080/03639045.2016.1225754] [PMID: 27533244]
[52]
Lv X, Yuan M, Pei Y, et al. The enhancement of antiviral activity of chloroinconazide by aglinate-based nanogel and its plant growth promotion effect. J Agric Food Chem 2021; 69(17): 4992-5002.
[http://dx.doi.org/10.1021/acs.jafc.1c00941] [PMID: 33904309]
[53]
Dey P, Bergmann T, Cuellar-Camacho JL, et al. Multivalent flexible nanogels exhibit broad-spectrum antiviral activity by blocking virus entry. ACS Nano 2018; 12(7): 6429-42.
[http://dx.doi.org/10.1021/acsnano.8b01616] [PMID: 29894156]
[54]
Macchione MA, Guerrero-Beltrán C, Rosso AP, et al. Poly(N-vinylcaprolactam) nanogels with antiviral Behavior against HIV-1 infection. Sci Rep 2019; 9(1): 5732.
[http://dx.doi.org/10.1038/s41598-019-42150-9] [PMID: 30952921]
[55]
Li BV, Jin F, Lee SL, et al. Bioequivalence for locally acting nasal spray and nasal aerosol products: standard development and generic approval. AAPS J 2013; 15(3): 875-83.
[http://dx.doi.org/10.1208/s12248-013-9494-2] [PMID: 23686396]
[56]
Masiuk T, Kadakia P, Wang Z. Development of a physiologically relevant dripping analytical method using simulated nasal mucus for nasal spray formulation analysis. J Pharm Anal 2016; 6(5): 283-91.
[http://dx.doi.org/10.1016/j.jpha.2016.05.003] [PMID: 29403994]
[57]
Tylleskar I, Skulberg AK, Nilsen T, Skarra S, Dale O. aloxone nasal spray - bioavailability and absorption pattern in a phase 1 study. Tidsskr Nor Legeforen 2019; 139: 13.
[58]
Lyseng-Williamson KA. Fentanyl Pectin Nasal Spray. CNS Drugs 2011; 25(6): 511-22.
[http://dx.doi.org/10.2165/11207470-000000000-00000] [PMID: 21649451]
[59]
Joshi RR, Maresh A. Iatrogenic Cushing’s syndrome and adrenal insufficiency in infants on intranasal dexamethasone drops for nasal obstruction – Case series and literature review. Int J Pediatr Otorhinolaryngol 2018; 105: 123-6.
[http://dx.doi.org/10.1016/j.ijporl.2017.11.007] [PMID: 29447799]
[60]
Graf P, Eccles R, Chen S. Efficacy and safety of intranasal xylometazoline and ipratropium in patients with common cold. Expert Opin Pharmacother 2009; 10(5): 889-908.
[http://dx.doi.org/10.1517/14656560902783051] [PMID: 19351236]
[61]
Wu ZF, He L, Lai Y, Li SJ, Zhang YP. Observation of the sedative effect of dexmedetomidine combined with midazolam nasal drops before a pediatric craniocerebral MRI. J Craniofac Surg 2020; 31(6): 1796-9.
[http://dx.doi.org/10.1097/SCS.0000000000006657] [PMID: 32877157]
[62]
Almenrader N, Larsson P, Passariello M, et al. Absorption pharmacokinetics of clonidine nasal drops in children. Paediatr Anaesth 2009; 19(3): 257-61.
[http://dx.doi.org/10.1111/j.1460-9592.2008.02886.x] [PMID: 19143953]
[63]
Tepper SJ. Clinical implications for breath-powered powder sumatriptan intranasal treatment. Headache 2013; 53(8): 1341-9.
[http://dx.doi.org/10.1111/head.12166] [PMID: 23809006]
[64]
Wang SH, Kirwan SM, Abraham SN, Staats HF, Hickey AJ. Stable dry powder formulation for nasal delivery of anthrax vaccine. J Pharm Sci 2012; 101(1): 31-47.
[http://dx.doi.org/10.1002/jps.22742] [PMID: 21905034]
[65]
Sherr JL, Ruedy KJ, Foster NC, et al. Glucagon nasal powder: A promising alternative to intramuscular glucagon in youth with type 1 diabetes. Diabetes Care 2016; 39(4): 555-62.
[http://dx.doi.org/10.2337/dc15-1606] [PMID: 26884472]
[66]
Garavello W, Di Berardino F, Romagnoli M, Sambataro G, Gaini RM. Nasal rinsing with hypertonic solution: an adjunctive treatment for pediatric seasonal allergic rhinoconjunctivitis. Int Arch Allergy Immunol 2005; 137(4): 310-4.
[http://dx.doi.org/10.1159/000086462] [PMID: 15970639]
[67]
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules 2019; 25(1): 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[68]
Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules 2011; 16(10): 8894-918.
[http://dx.doi.org/10.3390/molecules16108894] [PMID: 22024958]
[69]
Jelinkova P, Mazumdar A, Sur VP, et al. Nanoparticle-drug conjugates treating bacterial infections. J Control Release 2019; 307: 166-85.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.013] [PMID: 31226356]
[70]
Richman DD, Nathanson N. Antiviral Therapy. Viral Pathogenesis 2016; pp. 271-87.
[71]
Chakravarty M, Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res 2021; 11(3): 748-87.
[http://dx.doi.org/10.1007/s13346-020-00818-0] [PMID: 32748035]
[72]
Gurunathan S, Qasim M, Choi Y, et al. Antiviral Potential of Nanoparticles—Can Nanoparticles Fight Against Coronaviruses? Nanomaterials (Basel) 2020; 10(9): 1645.
[http://dx.doi.org/10.3390/nano10091645] [PMID: 32825737]
[73]
Ovais M, Khalil A, Ayaz M, Ahmad I, Nethi S, Mukherjee S. Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci 2018; 19(12): 4100.
[http://dx.doi.org/10.3390/ijms19124100] [PMID: 30567324]
[74]
Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 2014; 44: 278-84.
[http://dx.doi.org/10.1016/j.msec.2014.08.031] [PMID: 25280707]
[75]
Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology 2011; 9(1): 30.
[http://dx.doi.org/10.1186/1477-3155-9-30] [PMID: 21812950]
[76]
Sarkar PK, Das Mukhopadhyay C. Ayurvedic metal nanoparticles could be novel antiviral agents against SARS-CoV-2. Int Nano Lett 2021; 11(3): 197-203.
[http://dx.doi.org/10.1007/s40089-020-00323-9] [PMID: 33425283]
[77]
Raghunath A, Perumal E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents 2017; 49(2): 137-52.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.11.011] [PMID: 28089172]
[78]
Kumar R, Nayak M, Sahoo GC, et al. Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. J Infect Chemother 2019; 25(5): 325-9.
[http://dx.doi.org/10.1016/j.jiac.2018.12.006] [PMID: 30770182]
[79]
Ghaffari H, Tavakoli A, Moradi A, et al. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine. J Biomed Sci 2019; 26(1): 70.
[http://dx.doi.org/10.1186/s12929-019-0563-4] [PMID: 31500628]
[80]
Nikolova MP, Chavali MS. Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics (Basel) 2020; 5(2): 27.
[http://dx.doi.org/10.3390/biomimetics5020027] [PMID: 32521669]
[81]
Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020; 25(16): 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[82]
Pedroso-Santana S, Lamazares Arcia E, Fleitas-Salazar N, et al. Polymeric nanoencapsulation of alpha interferon increases drug bioavailability and induces a sustained antiviral response in vivo. Mater Sci Eng C 2020; 116: 111260.
[http://dx.doi.org/10.1016/j.msec.2020.111260] [PMID: 32806331]
[83]
Roner MR, Carraher CE Jr, Shahi K, Barot G. Antiviral activity of metal-containing polymers—organotin and cisplatin-like polymers. Materials (Basel) 2011; 4(6): 991-1012.
[http://dx.doi.org/10.3390/ma4060991] [PMID: 28879963]
[84]
Taylor M, Tomlins P, Sahota T. Thermoresponsive Gels. Gels 2017; 3(1): 4.
[http://dx.doi.org/10.3390/gels3010004] [PMID: 30920501]
[85]
Wang Q, Zuo Z, Cheung CKC, Leung SSY. Updates on thermosensitive hydrogel for nasal, ocular and cutaneous delivery. Int J Pharm 2019; 559: 86-101.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.030] [PMID: 30677480]
[86]
Vanaja K, Zare M, Basavaraju B, Salwa S, Murthy SN, Shivakumar HN. Thermosensitive in situ liposomal gels loaded with antimicrobial agent for oral care in critically ill patients. Ther Deliv 2020; 11(4): 231-43.
[http://dx.doi.org/10.4155/tde-2019-0092] [PMID: 32345143]
[87]
Mura P, Mennini N, Nativi C, Richichi B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur J Pharm Biopharm 2018; 122: 54-61.
[http://dx.doi.org/10.1016/j.ejpb.2017.10.008] [PMID: 29032194]
[88]
Tian W, Han S, Huang X, et al. RETRACTED ARTICLE: LDH hybrid thermosensitive hydrogel for intravaginal delivery of anti-HIV drugs. Artif Cells Nanomed Biotechnol 2019; 47(1): 1234-40.
[http://dx.doi.org/10.1080/21691401.2019.1596935] [PMID: 30966834]
[89]
Yang TT, Cheng YZ, Qin M, et al. Thermosensitive Chitosan Hydrogels Containing Polymeric Microspheres for Vaginal Drug Delivery. BioMed Res Int 2017; 2017: 1-12.
[http://dx.doi.org/10.1155/2017/3564060] [PMID: 29209627]
[90]
Nazar H, Fatouros DG, van der Merwe SM, et al. Thermosensitive hydrogels for nasal drug delivery: The formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm 2011; 77(2): 225-32.
[http://dx.doi.org/10.1016/j.ejpb.2010.11.022] [PMID: 21130876]
[91]
Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front Mol Biosci 2020; 7(319): 587997.
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]
[92]
Hassan H, Bello RO, Adam SK, et al. Acyclovir-loaded solid lipid nanoparticles: Optimization, characterization and evaluation of its pharmacokinetic profile. Nanomaterials (Basel) 2020; 10(9): 1785.
[http://dx.doi.org/10.3390/nano10091785] [PMID: 32916823]
[93]
Touitou E, Illum L. Nasal drug delivery. Drug Deliv Transl Res 2013; 3(1): 1-3.
[http://dx.doi.org/10.1007/s13346-012-0111-1] [PMID: 25787862]
[94]
Quadir M, Zia H, Needham TE. Development and evaluation of nasal formulations of ketorolac. Drug Deliv 2000; 7(4): 223-9.
[http://dx.doi.org/10.1080/107175400455155] [PMID: 11195429]
[95]
Davis SS, Illum L. Absorption enhancers for nasal drug delivery. Clin Pharmacokinet 2003; 42(13): 1107-28.
[http://dx.doi.org/10.2165/00003088-200342130-00003] [PMID: 14531723]
[96]
Gizurarson S. Animal models for intranasal drug delivery studies. A review article. Acta Pharm Nord 1990; 2(2): 105-22.
[PMID: 2191690]
[97]
Salade L, Wauthoz N, Goole J, Amighi K. How to characterize a nasal product. The state of the art of in vitro and ex vivo specific methods. Int J Pharm 2019; 561: 47-65.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.026] [PMID: 30822505]
[98]
Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Milani MA, Jelvehgari M. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery. Arch Pharm Res 2016; 39(9): 1181-92.
[http://dx.doi.org/10.1007/s12272-016-0782-0] [PMID: 27352214]
[99]
Pathak K. Mucoadhesion; A prerequisite or a constraint in nasal drug delivery? Int J Pharm Investig 2011; 1(2): 62-3.
[http://dx.doi.org/10.4103/2230-973X.82383] [PMID: 23071923]
[100]
Kang ML, Cho CS, Yoo HS. Application of chitosan microspheres for nasal delivery of vaccines. Biotechnol Adv 2009; 27(6): 857-65.
[http://dx.doi.org/10.1016/j.biotechadv.2009.06.007] [PMID: 19583998]
[101]
Osmałek T, Froelich A, Tasarek S. Application of gellan gum in pharmacy and medicine. Int J Pharm 2014; 466(1-2): 328-40.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.038] [PMID: 24657577]
[102]
Salunke SR, Patil SB. Ion activated in situ gel of gellan gum containing salbutamol sulphate for nasal administration. Int J Biol Macromol 2016; 87: 41-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.044] [PMID: 26899173]
[103]
Ubaidulla U, Reddy MVS, Ruckmani K, Ahmad FJ, Khar RK. Transdermal therapeutic system of carvedilol: Effect of hydrophilic and hydrophobic matrix on in vitro and in vivo characteristics. AAPS PharmSciTech 2007; 8(1): E13-20.
[http://dx.doi.org/10.1208/pt0801002] [PMID: 17408218]
[104]
Hussein N, Omer H, Ismael A, Albed Alhnan M, Elhissi A, Ahmed W. Spray-dried alginate microparticles for potential intranasal delivery of ropinirole hydrochloride: development, characterization and histopathological evaluation. Pharm Dev Technol 2020; 25(3): 290-9.
[http://dx.doi.org/10.1080/10837450.2019.1567762] [PMID: 30626225]
[105]
Martins ALL, de Oliveira AC, do Nascimento CMOL, et al. Mucoadhesive Properties of Thiolated Pectin-Based Pellets Prepared by Extrusion-Spheronization Technique. J Pharm Sci 2017; 106(5): 1363-70.
[http://dx.doi.org/10.1016/j.xphs.2017.01.028] [PMID: 28159639]
[106]
Bahadur S, Pathak K. Physicochemical and physiological considerations for efficient nose-to-brain targeting. Expert Opin Drug Deliv 2012; 9(1): 19-31.
[http://dx.doi.org/10.1517/17425247.2012.636801] [PMID: 22171740]
[107]
Wingertzahn MA, Derebery MJ, Nelson HS. Optimization of intranasal corticosteroid formulations for the treatment of allergic rhinitis. Allergy Asthma Proc 2007; 28(3) (Suppl. 1): 18-24.
[http://dx.doi.org/10.2500/aap.2007.28.2993] [PMID: 18307840]
[108]
Sosnowski TR, Rapiejko P, Sova J, Dobrowolska K. Impact of physicochemical properties of nasal spray products on drug deposition and transport in the pediatric nasal cavity model. Int J Pharm 2020; 574: 118911.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118911] [PMID: 31809854]
[109]
Shin Y, Kokate R, Desai V, Bhushan A, Kaushal G. D-cycloserine nasal formulation development for anxiety disorders by using polymeric gels. Drug Discov Ther 2018; 12(3): 142-53.
[http://dx.doi.org/10.5582/ddt.2018.01017] [PMID: 29998995]
[110]
Alshweiat A, Csóka II, Tömösi F, et al. Nasal delivery of nanosuspension-based mucoadhesive formulation with improved bioavailability of loratadine: Preparation, characterization, and in vivo evaluation. Int J Pharm 2020; 579: 119166.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119166] [PMID: 32084574]
[111]
Harris AS, Svensson E, Wagner ZG, Lethagen S, Nilsson IM. Effect of viscosity on particle size, deposition, and clearance of nasal delivery systems containing desmopressin. J Pharm Sci 1988; 77(5): 405-8.
[http://dx.doi.org/10.1002/jps.2600770510] [PMID: 3411462]
[112]
Qi XJ, Liu XY, Tang LMY, Li PF, Qiu F, Yang AH. Anti-depressant effect of curcumin-loaded guanidine-chitosan thermo-sensitive hydrogel by nasal delivery. Pharm Dev Technol 2020; 25(3): 316-25.
[http://dx.doi.org/10.1080/10837450.2019.1686524] [PMID: 31661648]
[113]
Pardeshi CV, Belgamwar VS. Controlled synthesis of N,N,N-trimethyl chitosan for modulated bioadhesion and nasal membrane permeability. Int J Biol Macromol 2016; 82: 933-44.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.012] [PMID: 26562548]
[114]
N.; Ramnarayanan, C.; Al-Dhubiab, B.E.; Nair, A.B.; Hiremath, J.G.; Venugopala, K.N.;. Mucoadhesive Particles: A Novel, Prolonged- Release Nanocarrier of Sitagliptin for the Treatment of Diabetics. BioMed Res Int 2019; 2019: 3950942.
[115]
Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. Drug Deliv Transl Res 2013; 3(1): 42-62.
[http://dx.doi.org/10.1007/s13346-012-0108-9] [PMID: 23316447]
[116]
Li Y, Fan X, Li W, et al. Metoclopramide nasal spray in vitro evaluation and in vivo pharmacokinetic studies in dogs. Pharm Dev Technol 2018; 23(3): 275-81.
[http://dx.doi.org/10.1080/10837450.2017.1316734] [PMID: 28379057]
[117]
Ho CY, Wu MC, Lan MY, Tan CT, Yang AH. In vitro effects of preservatives in nasal sprays on human nasal epithelial cells. Am J Rhinol 2008; 22(2): 125-9.
[http://dx.doi.org/10.2500/ajr.2008.22.3154] [PMID: 18416966]
[118]
Graf P. Benzalkonium chloride as a preservative in nasal solutions: re-examining the data. Respir Med 2001; 95(9): 728-33.
[http://dx.doi.org/10.1053/rmed.2001.1127] [PMID: 11575893]
[119]
Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res 2022; 12(4): 735-57.
[http://dx.doi.org/10.1007/s13346-020-00891-5] [PMID: 33491126]
[120]
Cegolon L, Javanbakht M, Mastrangelo G. Nasal disinfection for the prevention and control of COVID-19: A scoping review on potential chemo-preventive agents. Int J Hyg Environ Health 2020; 230: 113605.
[http://dx.doi.org/10.1016/j.ijheh.2020.113605] [PMID: 32898838]
[121]
Go CC, Pandav K, Sanchez-Gonzalez MA, Ferrer G. Potential role of xylitol plus grapefruit seed extract nasal spray solution in COVID-19: Case series. Cureus 2020; 12(11): e11315.
[http://dx.doi.org/10.7759/cureus.11315] [PMID: 33173650]
[122]
Islam SU, Shehzad A, Ahmed MB, Lee YS. Intranasal delivery of nanoformulations: A potential way of treatment for neurological disorders. Molecules 2020; 25(8): 1929.
[http://dx.doi.org/10.3390/molecules25081929] [PMID: 32326318]
[123]
Wang Z, Xiong G, Tsang WC, Schätzlein AG, Uchegbu IF. Nose-to-brain delivery. J Pharmacol Exp Ther 2019; 370(3): 593-601.
[http://dx.doi.org/10.1124/jpet.119.258152] [PMID: 31126978]
[124]
Giunchedi P, Gavini E, Bonferoni MC. Nose-to-brain delivery. Pharmaceutics 2020; 12(2): 138.
[http://dx.doi.org/10.3390/pharmaceutics12020138] [PMID: 32041344]
[125]
Veronesi MC, Alhamami M, Miedema SB, Yun Y, Ruiz-Cardozo M, Vannier MW. Imaging of intranasal drug delivery to the brain. Am J Nucl Med Mol Imaging 2020; 10(1): 1-31.
[PMID: 32211216]
[126]
Alexander A, Agrawal M, Bhupal Chougule M, Saraf S, Saraf S. Chapter 9 - Nose-to-brain drug delivery: an alternative approach for effective brain drug targeting.Nanopharmaceuticals. Shegokar, R, Ed. Elsevier 2020; pp. 175-200.
[127]
Dutta R, Spence B, Wei X, Dhapare S, Hindle M, Longest PW. CFD Guided optimization of nose-to-lung aerosol delivery in adults: Effects of inhalation waveforms and synchronized aerosol delivery. Pharm Res 2020; 37(10): 199.
[http://dx.doi.org/10.1007/s11095-020-02923-8] [PMID: 32968848]
[128]
Bass K, Boc S, Hindle M, Dodson K, Longest W. High-efficiency nose-to-lung aerosol delivery in an infant- Development of a validated computational fluid dynamics method. J Aerosol Med Pulm Drug Deliv 2019; 32(3): 132-48.
[http://dx.doi.org/10.1089/jamp.2018.1490] [PMID: 30556777]
[129]
Bahmanpour AH, Ghaffari M, Ashraf S, Mozafari M. Nanotechnology for pulmonary and nasal drug deliveryNanoengineered Biomaterials for Advanced Drug Delivery Mozafari M, ED. Elsevier 2020; pp. 561-79.
[http://dx.doi.org/10.1016/B978-0-08-102985-5.00023-1]
[130]
Itani R, Tobaiqy M, Al Faraj A. Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Theranostics 2020; 10(13): 5932-42.
[http://dx.doi.org/10.7150/thno.46691] [PMID: 32483428]
[131]
Barik S. Intranasal Delivery of Antiviral siRNAAntiviral RNAi: Concepts, Methods, and Applications. Totowa, NJ: Humana Press 2011; pp. 333-8.
[http://dx.doi.org/10.1007/978-1-61779-037-9_20]
[132]
Shah B, Khunt D, Bhatt H, Misra M, Padh H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters. Eur J Pharm Sci 2015; 78: 54-66.
[http://dx.doi.org/10.1016/j.ejps.2015.07.002] [PMID: 26143262]
[133]
Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal Piperine-Loaded Chitosan Nanoparticles as Brain-Targeted Therapy in Alzheimer’s Disease: Optimization, Biological Efficacy, and Potential Toxicity. J Pharm Sci 2015; 104(10): 3544-56.
[http://dx.doi.org/10.1002/jps.24557]
[134]
Dhakal S, Hiremath J, Bondra K, et al. Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs. J Control Release 2017; 247: 194-205.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.039] [PMID: 28057521]
[135]
Liu Q, Zheng X, Zhang C, et al. Conjugating influenza a (H1N1) antigen to n-trimethylaminoethylmethacrylate chitosan nanoparticles improves the immunogenicity of the antigen after nasal administration. J Med Virol 2015; 87(11): 1807-15.
[http://dx.doi.org/10.1002/jmv.24253] [PMID: 25959372]
[136]
Alkie TN, Yitbarek A, Taha-Abdelaziz K, Astill J, Sharif S. Characterization of immunogenicity of avian influenza antigens encapsulated in PLGA nanoparticles following mucosal and subcutaneous delivery in chickens. PLoS One 2018; 13(11): e0206324.
[http://dx.doi.org/10.1371/journal.pone.0206324] [PMID: 30383798]
[137]
Qi M, Zhang XE, Sun X, et al. Intranasal nanovaccine confers homo- and hetero-subtypic influenza protection. Small 2018; 14(13): 1703207.
[http://dx.doi.org/10.1002/smll.201703207] [PMID: 29430819]
[138]
Zhang S, Jiang H, Huang S, Li P, Wang F. Curdlan sulfate/O-linked quaternized chitosan nanoparticles acting as potential adjuvants promote multiple arms of immune responses. Carbohydr Polym 2019; 213: 100-11.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.093] [PMID: 30879649]
[139]
Dacoba TG, Omange RW, Li H, Crecente-Campo J, Luo M, Alonso MJ. Polysaccharide nanoparticles can efficiently modulate the immune response against an HIV peptide antigen. ACS Nano 2019; 13(5): 4947-59.
[http://dx.doi.org/10.1021/acsnano.8b07662] [PMID: 30964270]
[140]
Zhang Z, Li D, Ma X, et al. Carboxylated nanodiamond-mediated NH2-PLGA nanoparticle-encapsulated fig polysaccharides for strongly enhanced immune responses in vitro and in vivo. Int J Biol Macromol 2020; 16(Pt A): 1331-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.010] [PMID: 33045302]
[141]
Wang X, Uto T, Akagi T, Akashi M, Baba M. Poly(γ-glutamic acid) nanoparticles as an efficient antigen delivery and adjuvant system: Potential for an AIDS vaccine. J Med Virol 2008; 80(1): 11-9.
[http://dx.doi.org/10.1002/jmv.21029] [PMID: 18041033]
[142]
Jia J, Zhang W, Liu Q, Yang T, Wang L, Ma G. Adjuvanticity Regulation by Biodegradable Polymeric Nano/microparticle Size. Mol Pharm 2017; 14(1): 14-22.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00434] [PMID: 28043126]
[143]
Park S, Ko YS, Lee SJ, Lee C, Woo K, Ko G. Inactivation of influenza A virus via exposure to silver nanoparticle-decorated silica hybrid composites. Environ Sci Pollut Res Int 2018; 25(27): 27021-30.
[http://dx.doi.org/10.1007/s11356-018-2620-z] [PMID: 30014367]
[144]
Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology 2010; 8(1): 1.
[http://dx.doi.org/10.1186/1477-3155-8-1] [PMID: 20145735]
[145]
Kiseleva IV, Farroukh MA, Skomorokhova EA, et al. Anti-Influenza Effect of Nanosilver in a Mouse Model. Vaccines (Basel) 2020; 8(4): 679.
[http://dx.doi.org/10.3390/vaccines8040679] [PMID: 33202939]
[146]
Zacheo A, Hodek J, Witt D, et al. Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus. Sci Rep 2020; 10(1): 9052.
[http://dx.doi.org/10.1038/s41598-020-65892-3] [PMID: 32494059]
[147]
Cui WY, Yoo HJ, Li YG, Baek C, Min J. Electrospun nanofibers embedded with copper oxide nanoparticles to improve antiviral function. J Nanosci Nanotechnol 2021; 21(8): 4174-8.
[http://dx.doi.org/10.1166/jnn.2021.19379] [PMID: 33714299]
[148]
Hang X, Peng H, Song H, Qi Z, Miao X, Xu W. Antiviral activity of cuprous oxide nanoparticles against Hepatitis C Virus in vitro. J Virol Methods 2015; 222: 150-7.
[http://dx.doi.org/10.1016/j.jviromet.2015.06.010] [PMID: 26116793]
[149]
Abo-zeid Y, Ismail NSM, McLean GR, Hamdy NM. A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. Eur J Pharm Sci 2020; 153: 105465.
[http://dx.doi.org/10.1016/j.ejps.2020.105465] [PMID: 32668312]
[150]
Nakano R, Ishiguro H, Yao Y, et al. Photocatalytic inactivation of influenza virus by titanium dioxide thin film. Photochem Photobiol Sci 2012; 11(8): 1293-8.
[http://dx.doi.org/10.1039/c2pp05414k] [PMID: 22580561]
[151]
Trigilio J, Antoine TE, Paulowicz I, Mishra YK, Adelung R, Shukla D. Tin oxide nanowires suppress herpes simplex virus-1 entry and cell-to-cell membrane fusion. PLoS One 2012; 7(10): e48147.
[http://dx.doi.org/10.1371/journal.pone.0048147] [PMID: 23110193]
[152]
He X, Xing R, Liu S, et al. The improved antiviral activities of amino-modified chitosan derivatives on Newcastle virus. Drug Chem Toxicol 2021; 44(4): 335-40.
[http://dx.doi.org/10.1080/01480545.2019.1620264] [PMID: 31179762]
[153]
Seremeta KP, Chiappetta DA, Sosnik A. Poly(ɛ-caprolactone), Eudragit® RS 100 and poly(ɛ-caprolactone)/Eudragit® RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. Colloids Surf B Biointerfaces 2013; 102: 441-9.
[http://dx.doi.org/10.1016/j.colsurfb.2012.06.038] [PMID: 23010128]
[154]
Al-Ghananeem AM, Saeed H, Florence R, Yokel RA, Malkawi AH. Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by aids viruses. J Drug Target 2010; 18(5): 381-8.
[http://dx.doi.org/10.3109/10611860903483396] [PMID: 20001275]
[155]
Mahajan HS, Mahajan MS, Nerkar PP, Agrawal A. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv 2014; 21(2): 148-54.
[http://dx.doi.org/10.3109/10717544.2013.838014] [PMID: 24128122]
[156]
Dalpiaz A, Fogagnolo M, Ferraro L, et al. Bile salt-coating modulates the macrophage uptake of nanocores constituted by a zidovudine prodrug and enhances its nose-to-brain delivery. Eur J Pharm Biopharm 2019; 144: 91-100.
[http://dx.doi.org/10.1016/j.ejpb.2019.09.008] [PMID: 31521715]
[157]
Chung EP, Cotter JD, Prakapenka AV, Cook RL, DiPerna DM, Sirianni RW. Targeting Small Molecule Delivery to the Brain and Spinal Cord via Intranasal Administration of Rabies Virus Glycoprotein (RVG29)-Modified PLGA Nanoparticles. Pharmaceutics 2020; 12(2): 93.
[http://dx.doi.org/10.3390/pharmaceutics12020093] [PMID: 31991664]
[158]
Belgamwar A, Khan S, Yeole P. Intranasal chitosan-g-HPβCD nanoparticles of efavirenz for the CNS targeting. Artif Cells Nanomed Biotechnol 2018; 46(2): 374-86.
[http://dx.doi.org/10.1080/21691401.2017.1313266] [PMID: 28423949]
[159]
Zhao K, Rong G, Hao Y, et al. IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles. Sci Rep 2016; 6(1): 25720.
[http://dx.doi.org/10.1038/srep25720] [PMID: 27170532]
[160]
Mainardes RM, Khalil NM, Gremião MPD. Intranasal delivery of zidovudine by PLA and PLA–PEG blend nanoparticles. Int J Pharm 2010; 395(1-2): 266-71.
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.020] [PMID: 20580792]
[161]
Raghunandan R, Lu H, Zhou B, et al. An insect cell derived respiratory syncytial virus (RSV) F nanoparticle vaccine induces antigenic site II antibodies and protects against RSV challenge in cotton rats by active and passive immunization. Vaccine 2014; 32(48): 6485-92.
[http://dx.doi.org/10.1016/j.vaccine.2014.09.030] [PMID: 25269094]
[162]
Tao W, Hurst BL, Shakya AK, et al. Consensus M2e peptide conjugated to gold nanoparticles confers protection against H1N1, H3N2 and H5N1 influenza A viruses. Antiviral Res 2017; 141: 62-72.
[http://dx.doi.org/10.1016/j.antiviral.2017.01.021] [PMID: 28161578]
[163]
Saraswathi N, Girigoswami K, Divya KC, Kumar SG, Girigoswami A. Degree of gelatination on Ag-nanoparticles to inactivate multi-drug resistant bacterial biofilm isolated from sewage treatment plant. Curr Drug Deliv 2023; 20(5): 566-74.
[http://dx.doi.org/10.2174/1567201819666220509160432] [PMID: 35579148]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy