Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Recent Advances in Selective C-H Bonds Functionalization through Aryl Radical- Mediated Hydrogen Atom Transfer Strategy

Author(s): Linlin Xing and Yong Zhang*

Volume 27, Issue 9, 2023

Published on: 16 August, 2023

Page: [747 - 758] Pages: 12

DOI: 10.2174/1385272825666230727092717

Price: $65

Abstract

Selective C-H bond functionalization of organic molecules has developed as an increasingly versatile platform that found wide applications in the synthesis of naturally occurring compounds, functional group modification, material sciences, and chemical and pharmaceutical industries. Apart from transition metal catalysis, which traditionally underwent a two-electron mechanism, a recent renascence of radical chemistry based on the hydrogen atom transfer (HAT) strategy has resulted in the rapid development of C-H bond functionalization. While many methodologies involving heteroatom-based HAT have been widely studied during the last decade, areas employing their carbon analogs were still challenging for chemists and remained less explored. Recent progress has been made to generate aryl radical species under relatively mild conditions, which can be utilized in the HAT step conveniently, and as a result, motivated the advancements of remote C(sp3)-H functionalization of various organic compounds, including amines, alcohols, amides and so on. This review will discuss the recent progresses in the functionalization of C-H bonds characterized by a key aryl HAT process, and, at the same time, some emphases have been laid on selective C-H functionalization catalyzed by photoredox chemistry.

Graphical Abstract

[1]
Yamaguchi, J.; Yamaguchi, A.D.; Itami, K. C-H bond functionalization: Emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed., 2012, 51(36), 8960-9009.
[http://dx.doi.org/10.1002/anie.201201666] [PMID: 22887739]
[2]
Wencel-Delord, J.; Glorius, F. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem., 2013, 5(5), 369-375.
[http://dx.doi.org/10.1038/nchem.1607] [PMID: 23609086]
[3]
Chen, D.Y.K.; Youn, S.W. C-H activation: A complementary tool in the total synthesis of complex natural products. Chemistry, 2012, 18(31), 9452-9474.
[http://dx.doi.org/10.1002/chem.201201329] [PMID: 22736530]
[4]
Cernak, T.; Dykstra, K.D.; Tyagarajan, S.; Vachal, P.; Krska, S.W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev., 2016, 45(3), 546-576.
[http://dx.doi.org/10.1039/C5CS00628G] [PMID: 26507237]
[5]
Sinha, S.K.; Guin, S.; Maiti, S.; Biswas, J.P.; Porey, S.; Maiti, D. Toolbox for distal C-H bond functionalizations in organic molecules. Chem. Rev., 2022, 122(6), 5682-5841.
[http://dx.doi.org/10.1021/acs.chemrev.1c00220] [PMID: 34662117]
[6]
Bergman, R.G. C-H activation. Nature, 2007, 446(7134), 391-393.
[http://dx.doi.org/10.1038/446391a] [PMID: 17377575]
[7]
White, M.C. Chemistry. Adding aliphatic C-H bond oxidations to synthesis. Science, 2012, 335(6070), 807-809.
[http://dx.doi.org/10.1126/science.1207661] [PMID: 22344434]
[8]
Labinger, J.A.; Bercaw, J.E. Understanding and exploiting C-H bond activation. Nature, 2002, 417(6888), 507-514.
[http://dx.doi.org/10.1038/417507a] [PMID: 12037558]
[9]
Dalton, T.; Faber, T.; Glorius, F. C-H activation: Toward sustainability and applications. ACS Cent. Sci., 2021, 7(2), 245-261.
[http://dx.doi.org/10.1021/acscentsci.0c01413] [PMID: 33655064]
[10]
Abrams, D.J.; Provencher, P.A.; Sorensen, E.J. Recent applications of C-H functionalization in complex natural product synthesis. Chem. Soc. Rev., 2018, 47(23), 8925-8967.
[http://dx.doi.org/10.1039/C8CS00716K] [PMID: 30426998]
[11]
Sinha, S.K.; Zanoni, G.; Maiti, D. Natural product synthesis by C−H activation. Asian J. Org. Chem., 2018, 7(7), 1178-1192.
[http://dx.doi.org/10.1002/ajoc.201800203]
[12]
Gao, H.; Lin, S.; Zhang, S.; Chen, W.; Liu, X.; Yang, G.; Lerner, R.A.; Xu, H.; Zhou, Z.; Yi, W. gem -difluoromethylene alkyne-enabled diverse C-H functionalization and application to the on-DNA synthesis of difluorinated isocoumarins. Angew. Chem. Int. Ed., 2021, 60(4), 1959-1966.
[http://dx.doi.org/10.1002/anie.202013052] [PMID: 33022872]
[13]
Hao, G.; Yiwen, Y.; Chunxiang, K. Drug synthesis via C-H bond functionalization. Prog. Chem., 2014, 26, 592-608.
[14]
Stepek, I.A.; Itami, K. Recent advances in C-H activation for the synthesis of π-extended materials. ACS Materials Lett., 2020, 2(8), 951-974.
[http://dx.doi.org/10.1021/acsmaterialslett.0c00206]
[15]
Li, B.; Ali, A.I.M.; Ge, H. Recent advances in using transition-metal-catalyzed C-H functionalization to build fluorescent materials. Chem, 2020, 6(10), 2591-2657.
[http://dx.doi.org/10.1016/j.chempr.2020.08.017]
[16]
Liu, B.; Yang, L.; Li, P.; Wang, F.; Li, X. Recent advances in transition metal-catalyzed olefinic C-H functionalization. Org. Chem. Front., 2021, 8(5), 1085-1101.
[http://dx.doi.org/10.1039/D0QO01159B]
[17]
Zhang, J.; Kang, L.; Parker, T.; Blakey, S.; Luscombe, C.; Marder, S. Recent developments in C-H activation for materials science in the center for selective C-H activation. Molecules, 2018, 23(4), 922-935.
[http://dx.doi.org/10.3390/molecules23040922] [PMID: 29659537]
[18]
McMurray, L.; O’Hara, F.; Gaunt, M.J. Recent developments in natural product synthesis using metal-catalysed C-H bond functionalisation. Chem. Soc. Rev., 2011, 40(4), 1885-1898.
[http://dx.doi.org/10.1039/c1cs15013h] [PMID: 21390391]
[19]
Davies, H.M.L.; Manning, J.R. Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature, 2008, 451(7177), 417-424.
[http://dx.doi.org/10.1038/nature06485] [PMID: 18216847]
[20]
Giri, R.; Shi, B.F.; Engle, K.M.; Maugel, N.; Yu, J.Q. Transition metal-catalyzed C-H activation reactions: Diastereoselectivity and enantioselectivity. Chem. Soc. Rev., 2009, 38(11), 3242-3272.
[http://dx.doi.org/10.1039/b816707a] [PMID: 19847354]
[21]
Lyons, T.W.; Sanford, M.S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev., 2010, 110(2), 1147-1169.
[http://dx.doi.org/10.1021/cr900184e] [PMID: 20078038]
[22]
Mkhalid, I.A.I.; Barnard, J.H.; Marder, T.B.; Murphy, J.M.; Hartwig, J.F. C-H activation for the construction of C-B bonds. Chem. Rev., 2010, 110(2), 890-931.
[http://dx.doi.org/10.1021/cr900206p] [PMID: 20028025]
[23]
Roizen, J.L.; Harvey, M.E.; Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C-H bonds. Acc. Chem. Res., 2012, 45(6), 911-922.
[http://dx.doi.org/10.1021/ar200318q] [PMID: 22546004]
[24]
Kakiuchi, F.; Chatani, N. Catalytic methods for C-H bond functionalization: Application in organic synthesis. Adv. Synth. Catal., 2003, 345(910), 1077-1101.
[http://dx.doi.org/10.1002/adsc.200303094]
[25]
Cheng, J.T.; Xiao, L.J.; Qian, S.Q.; Zhuang, Z.; Liu, A.; Yu, J.Q. Palladium(II)-catalyzed selective arylation of tertiary C−H bonds of cyclobutylmethyl ketones using transient directing groups. Angew. Chem. Int. Ed., 2022, 61(18)e202117233
[http://dx.doi.org/10.1002/anie.202117233] [PMID: 35112447]
[26]
He, J.; Wasa, M.; Chan, K.S.L.; Shao, Q.; Yu, J.Q. Palladium-catalyzed transformations of Alkyl C-H bonds. Chem. Rev., 2017, 117(13), 8754-8786.
[http://dx.doi.org/10.1021/acs.chemrev.6b00622] [PMID: 28697604]
[27]
Gillingham, D.; Fei, N. Catalytic X-H insertion reactions based on carbenoids. Chem. Soc. Rev., 2013, 42(12), 4918-4931.
[http://dx.doi.org/10.1039/c3cs35496b] [PMID: 23407887]
[28]
Mayer, J.M. Understanding hydrogen atom transfer: From bond strengths to Marcus theory. Acc. Chem. Res., 2011, 44(1), 36-46.
[http://dx.doi.org/10.1021/ar100093z] [PMID: 20977224]
[29]
Salamone, M.; Bietti, M. Tuning reactivity and selectivity in hydrogen atom transfer from aliphatic C-H bonds to alkoxyl radicals: Role of structural and medium effects. Acc. Chem. Res., 2015, 48(11), 2895-2903.
[http://dx.doi.org/10.1021/acs.accounts.5b00348] [PMID: 26545103]
[30]
Green, S.A.; Crossley, S.W.M.; Matos, J.L.M.; Vásquez-Céspedes, S.; Shevick, S.L.; Shenvi, R.A. The high chemofidelity of metal-catalyzed hydrogen atom transfer. Acc. Chem. Res., 2018, 51(11), 2628-2640.
[http://dx.doi.org/10.1021/acs.accounts.8b00337] [PMID: 30406655]
[31]
Milan, M.; Salamone, M.; Costas, M.; Bietti, M. The quest for selectivity in hydrogen atom transfer based aliphatic C-H bond oxygenation. Acc. Chem. Res., 2018, 51(9), 1984-1995.
[http://dx.doi.org/10.1021/acs.accounts.8b00231] [PMID: 30080039]
[32]
Guo, W.; Wang, Q.; Zhu, J. Visible light photoredox-catalysed remote C-H functionalisation enabled by 1,5-hydrogen atom transfer (1,5-HAT). Chem. Soc. Rev., 2021, 50(13), 7359-7377.
[http://dx.doi.org/10.1039/D0CS00774A] [PMID: 34013927]
[33]
Nagib, D.; Stateman, L.; Nakafuku, K. Remote C-H functionalization via selective hydrogen atom transfer. Synthesis, 2018, 50(8), 1569-1586.
[http://dx.doi.org/10.1055/s-0036-1591930] [PMID: 29755145]
[34]
Hu, X.Q.; Qi, X.; Chen, J.R.; Zhao, Q.Q.; Wei, Q.; Lan, Y.; Xiao, W.J. Catalytic N-radical cascade reaction of hydrazones by oxidative deprotonation electron transfer and TEMPO mediation. Nat. Commun., 2016, 7(1), 11188.
[http://dx.doi.org/10.1038/ncomms11188] [PMID: 27048886]
[35]
Bellotti, P.; Huang, H.M.; Faber, T.; Glorius, F. Photocatalytic late-stage C-H functionalization. Chem. Rev., 2023, 123(8), 4237-4352.
[http://dx.doi.org/10.1021/acs.chemrev.2c00478] [PMID: 36692361]
[36]
Singh, P.P.; Singh, P.K.; Srivastava, V. Visible light metallaphotoredox catalysis in the late-stage functionalization of pharmaceutically potent compounds. Org. Chem. Front., 2022, 10(1), 216-236.
[http://dx.doi.org/10.1039/D2QO01582J]
[37]
Singla, D.; Luxami, V.; Paul, K. Eosin Y mediated photo-catalytic C-H functionalization: C-C and C-S bond formation. Org. Chem. Front., 2022, 10(1), 237-266.
[http://dx.doi.org/10.1039/D2QO01534J]
[38]
Ohmatsu, K.; Ooi, T. Catalytic acceptorless dehydrogenative coupling mediated by photoinduced hydrogen-atom transfer. Nature Synth., 2023, 2, 209-216.
[http://dx.doi.org/10.1038/s44160-022-00195-1]
[39]
Chu, J.C.K.; Rovis, T. Complementary strategies for directed C(sp3)−H functionalization: A comparison of transition-metal-catalyzed activation, hydrogen atom transfer, and carbene/nitrene transfer. Angew. Chem. Int. Ed., 2018, 57(1), 62-101.
[http://dx.doi.org/10.1002/anie.201703743] [PMID: 29206316]
[40]
Löffler, K.; Freytag, C. On a new formation of N-alkylated pyrrolidines. Ber. Dtsch. Chem. Ges., 1909, 42(3), 3427-3431.
[41]
Barton, D.H.R.; Beaton, J.M.; Geller, L.E.; Pechet, M.M. A new photochemical reaction. J. Am. Chem. Soc., 1961, 83(19), 4076-4083.
[http://dx.doi.org/10.1021/ja01480a030]
[42]
Hofmann, A.W. On the action of bromine in alkaline solution on amines. Ber. Dtsch. Chem. Ges., 1883, 16(1), 558-560.
[http://dx.doi.org/10.1002/cber.188301601120]
[43]
Robertson, J.; Pillai, J.; Lush, R.K. Radical translocation reactions in synthesis. Chem. Soc. Rev., 2001, 30(2), 94-103.
[http://dx.doi.org/10.1039/b000705f]
[44]
Kuivila, H.G.; Menapace, L.W. Reduction of alkyl halides by organotin hydrides1,2. J. Org. Chem., 1963, 28(9), 2165-2167.
[http://dx.doi.org/10.1021/jo01044a001]
[45]
Giese, B. Syntheses with radicals-C-C bond formation via organotin and organomercury compounds. Angew. Chem. Int. Ed. Engl., 1985, 24, 553-565.
[http://dx.doi.org/10.1002/anie.198505531]
[46]
Curran, D.P.; Kim, D.; Liu, H.T.; Shen, W. Translocation of radical sites by intramolecular 1,5-hydrogen atom transfer. J. Am. Chem. Soc., 1988, 110(17), 5900-5902.
[http://dx.doi.org/10.1021/ja00225a052]
[47]
Lathbury, D.C.; Parsons, P.J.; Pinto, I. A route to the pyrrolizidine ring system using a novel radical cyclisation. J. Chem. Soc. Chem. Commun., 1988, (2), 81-82.
[http://dx.doi.org/10.1039/c39880000081]
[48]
Leibler, I.N.M.; Tekle-Smith, M.A.; Doyle, A.G. A general strategy for C(sp3)-H functionalization with nucleophiles using methyl radical as a hydrogen atom abstractor. Nat. Commun., 2021, 12(1), 6950.
[http://dx.doi.org/10.1038/s41467-021-27165-z] [PMID: 34845207]
[49]
Yue, B.; Wu, X.; Zhu, C. Recent advances in vinyl radical-mediated hydrogen atom transfer. Chin. J. Org. Chem., 2022, 42(2), 458-470.
[http://dx.doi.org/10.6023/cjoc202108027]
[50]
von Zuben, T.W.; Cariello Silva, G.; Salles, A.G. Visible light-driven metal-free synthesis of highly substituted pyrroles through C-H functionalisation. Green Chem., 2021, 23(17), 6361-6365.
[http://dx.doi.org/10.1039/D1GC02177J]
[51]
Cao, Z.; Li, J.; Sun, Y.; Zhang, H.; Mo, X.; Cao, X.; Zhang, G. Photo-induced copper-catalyzed alkynylation and amination of remote unactivated C(sp3)-H bonds. Chem. Sci., 2021, 12(13), 4836-4840.
[http://dx.doi.org/10.1039/D0SC05883A] [PMID: 34163735]
[52]
Huang, C.Y.; Li, J.; Li, C.J. Photocatalytic C(sp3) radical generation via C-H, C-C, and C-X bond cleavage. Chem. Sci., 2022, 13(19), 5465-5504.
[http://dx.doi.org/10.1039/D2SC00202G] [PMID: 35694342]
[53]
White, M.C.; Zhao, J. Aliphatic C-H Oxidations for late-stage functionalization. J. Am. Chem. Soc., 2018, 140(43), 13988-14009.
[http://dx.doi.org/10.1021/jacs.8b05195] [PMID: 30185033]
[54]
Héberger, K.; Lopata, A. Assessment of nucleophilicity and electrophilicity of radicals, and of polar and enthalpy effects on radical addition reactions. J. Org. Chem., 1998, 63(24), 8646-8653.
[http://dx.doi.org/10.1021/jo971284h]
[55]
De Vleeschouwer, F.; Van Speybroeck, V.; Waroquier, M.; Geerlings, P.; De Proft, F. Electrophilicity and nucleophilicity index for radicals. Org. Lett., 2007, 9(14), 2721-2724.
[http://dx.doi.org/10.1021/ol071038k] [PMID: 17559221]
[56]
Jing, L.; Nash, J.J.; Kenttämaa, H.I. Correlation of hydrogen-atom abstraction reaction efficiencies for aryl radicals with their vertical electron affinities and the vertical ionization energies of the hydrogen-atom donors. J. Am. Chem. Soc., 2008, 130(52), 17697-17709.
[http://dx.doi.org/10.1021/ja801707p] [PMID: 19061320]
[57]
Vleeschouwer, F.D.; Speybroeck, V.V.; Waroquier, M.; Geerlings, P.; Proft, F.D. An intrinsic radical stability scale from the perspective of bond dissociation enthalpies: A companion to radical electrophilicities. J. Org. Chem., 2008, 73(22), 9109-9120.
[http://dx.doi.org/10.1021/jo802018b] [PMID: 18937409]
[58]
Domingo, L.R.; Pérez, P. Global and local reactivity indices for electrophilic/nucleophilic free radicals. Org. Biomol. Chem., 2013, 11(26), 4350-4358.
[http://dx.doi.org/10.1039/c3ob40337h] [PMID: 23685829]
[59]
Grissom, J.W.; Klingberg, D.; Meyenburg, S.; Stallman, B.L. Enediyne- and tributyltin hydride-mediated aryl radical additions onto various radical acceptors. J. Org. Chem., 1994, 59(25), 7876-7888.
[http://dx.doi.org/10.1021/jo00104a053]
[60]
Curran, D.P.; Xu, J. o -Bromo- p -methoxyphenyl Ethers. Protecting/radical translocating (PRT) groups that generate radicals from C−H bonds β to oxygen atoms. J. Am. Chem. Soc., 1996, 118(13), 3142-3147.
[http://dx.doi.org/10.1021/ja954150z]
[61]
Beckwith, A.L.J.; Gara, W.B. Some intramolecular reactions of ortho-substituted aryl radicals. J. Chem. Soc., Perkin Trans. 2, 1975, (6), 593-600.
[http://dx.doi.org/10.1039/p29750000593]
[62]
Snieckus, V.; Cuevas, J.C.; Sloan, C.P.; Liu, H.; Curran, D.P. Intramolecular. alpha.-amidoyl-to-aryl 1,5-hydrogen atom transfer reactions. Heteroannulation and. alpha.-nitrogen functionalization by radical translocation. J. Am. Chem. Soc., 1990, 112(2), 896-898.
[http://dx.doi.org/10.1021/ja00158a075]
[63]
Wertjes, W.C.; Wolfe, L.C.; Waller, P.J.; Kalyani, D. Nickel or phenanthroline mediated intramolecular arylation of sp3 C-H bonds using aryl halides. Org. Lett., 2013, 15(23), 5986-5989.
[http://dx.doi.org/10.1021/ol402869h] [PMID: 24256509]
[64]
Bhakuni, B.S.; Yadav, A.; Kumar, S.; Patel, S.; Sharma, S.; Kumar, S. KO(t)Bu-mediated synthesis of dimethylisoindolin-1-ones and dimethyl-5-phenylisoindolin-1-ones: Selective C-C coupling of an unreactive tertiary sp3 C-H bond. J. Org. Chem., 2014, 79(7), 2944-2954.
[http://dx.doi.org/10.1021/jo402776u] [PMID: 24597670]
[65]
Huang, F.Q.; Dong, X.; Qi, L.W.; Zhang, B. Visible-light photocatalytic α-amino C(sp3)-H activation through radical translocation: A novel and metal-free approach to α-alkoxybenzamides. Tetrahedron Lett., 2016, 57(14), 1600-1604.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.108]
[66]
Parasram, M.; Chuentragool, P.; Sarkar, D.; Gevorgyan, V. Photoinduced formation of hybrid aryl pd-radical species capable of 1,5-HAT: Selective catalytic oxidation of silyl ethers into silyl enol ethers. J. Am. Chem. Soc., 2016, 138(20), 6340-6343.
[http://dx.doi.org/10.1021/jacs.6b01628] [PMID: 27149524]
[67]
Liu, P.; Tang, J.; Zeng, X. Site-selective silylation of aliphatic C-H bonds mediated by [1,5]-hydrogen transfer: Synthesis of α-sila benzamides. Org. Lett., 2016, 18(21), 5536-5539.
[http://dx.doi.org/10.1021/acs.orglett.6b02784] [PMID: 27774791]
[68]
Patel, D.M.; Patel, P.J.; Patel, H.M. Catalytic stereoselective multicomponent reactions for the synthesis of spiro derivatives: Recent progress. Eur. J. Org. Chem., 2022, 2022(46), 70-94.
[http://dx.doi.org/10.1002/ejoc.202201119]
[69]
Patel, D.M.; Patel, H.J.; Padrón, J.M.; Patel, H.M. A novel substrate directed multicomponent reaction for the syntheses of tetrahydro-spiro[pyrazolo[4,3-f]quinoline]-8,5′-pyrimidines and tetrahydro-pyrazolo[4,3-f]pyrimido[4,5-b]quinolines via selective multiple C-C bond formation under metal-free conditions. RSC Advances, 2020, 10(33), 19600-19609.
[http://dx.doi.org/10.1039/D0RA02990D] [PMID: 35515429]
[70]
Patel, D.M.; Patel, H.M. Trimethylglycine-betaine-based-catalyst-promoted novel and ecocompatible pseudo-four-component reaction for regioselective synthesis of functionalized 6,8-dihydro-1′H, 5H-spiro[[1,3]dioxolo[4,5-g]quinoline-7,5′-pyrimidine]-2′4′6′(3′H)-trione derivatives. ACS Sustain. Chem.& Eng., 2019, 7(22), 18667-18676.
[http://dx.doi.org/10.1021/acssuschemeng.9b05184]
[71]
Chen, J.Q.; Wei, Y.L.; Xu, G.Q.; Liang, Y.M.; Xu, P.F. Intramolecular 1,5-H transfer reaction of aryl iodides through visible-light photoredox catalysis: A concise method for the synthesis of natural product scaffolds. Chem. Commun., 2016, 52(38), 6455-6458.
[http://dx.doi.org/10.1039/C6CC02007K] [PMID: 27100267]
[72]
Ratushnyy, M.; Kvasovs, N.; Sarkar, S.; Gevorgyan, V. Visible-light-induced palladium-catalyzed generation of aryl radicals from aryl triflates. Angew. Chem. Int. Ed., 2020, 59(26), 10316-10320.
[http://dx.doi.org/10.1002/anie.201915962] [PMID: 32155303]
[73]
Guo, R.; Xiao, H.; Li, S.; Luo, Y.; Bai, J.; Zhang, M.; Guo, Y.; Qi, X.; Zhang, G. Photoinduced copper-catalyzed asymmetric C(sp3)−H alkynylation of cyclic amines by intramolecular 1,5-hydrogen atom transfer. Angew. Chem. Int. Ed., 2022, 61(34)e202208232
[http://dx.doi.org/10.1002/anie.202208232] [PMID: 35751507]
[74]
Sarkar, S.; Wagulde, S.; Jia, X.; Gevorgyan, V. General and selective metal-free radical α-C-H borylation of aliphatic amines. Chem, 2022, 8(11), 3096-3108.
[http://dx.doi.org/10.1016/j.chempr.2022.07.022] [PMID: 36571075]
[75]
Tian, H.; Yang, H.; Zhu, C.; Fu, H. Transition metal-free intramolecular regioselective couplings of aliphatic and aromatic C-H bonds. Sci. Rep., 2016, 6(1), 19931.
[http://dx.doi.org/10.1038/srep19931] [PMID: 26822836]
[76]
Du, S.; Kimball, E.A.; Ragains, J.R. Visible-light-promoted remote C-H functionalization of o-diazoniaphenyl alkyl sulfones. Org. Lett., 2017, 19(20), 5553-5556.
[http://dx.doi.org/10.1021/acs.orglett.7b02650] [PMID: 28956928]
[77]
Voica, A.F.; Mendoza, A.; Gutekunst, W.R.; Fraga, J.O.; Baran, P.S. Guided desaturation of unactivated aliphatics. Nat. Chem., 2012, 4(8), 629-635.
[http://dx.doi.org/10.1038/nchem.1385] [PMID: 22824894]
[78]
Hollister, K.A.; Conner, E.S.; Spell, M.L.; Deveaux, K.; Maneval, L.; Beal, M.W.; Ragains, J.R. Remote hydroxylation through radical translocation and polar crossover. Angew. Chem. Int. Ed., 2015, 54(27), 7837-7841.
[http://dx.doi.org/10.1002/anie.201500880] [PMID: 26014758]
[79]
Chuentragool, P.; Parasram, M.; Shi, Y.; Gevorgyan, V. General, mild, and selective method for desaturation of aliphatic amines. J. Am. Chem. Soc., 2018, 140(7), 2465-2468.
[http://dx.doi.org/10.1021/jacs.8b00488] [PMID: 29400959]
[80]
Friese, F.W.; Mück-Lichtenfeld, C.; Studer, A. Remote C−H functionalization using radical translocating arylating groups. Nat. Commun., 2018, 9(1), 2808.
[http://dx.doi.org/10.1038/s41467-018-05193-6] [PMID: 30022072]
[81]
Ye, B.; Zhao, J.; Zhao, K.; McKenna, J.M.; Toste, F.D. Chiral diaryliodonium phosphate enables light driven diastereoselective α-C(sp3)-H Acetalization. J. Am. Chem. Soc., 2018, 140(26), 8350-8356.
[http://dx.doi.org/10.1021/jacs.8b05962] [PMID: 29939024]
[82]
Liu, Z.; Li, M.; Deng, G.; Wei, W.; Feng, P.; Zi, Q.; Li, T.; Zhang, H.; Yang, X.; Walsh, P.J. Transition-metal-free C(sp3)-H/C(sp3)-H dehydrogenative coupling of saturated heterocycles with N -benzyl imines. Chem. Sci., 2020, 11(29), 7619-7625.
[http://dx.doi.org/10.1039/D0SC00031K] [PMID: 34094139]
[83]
Pak Shing Cheung, K.; Fang, J.; Mukherjee, K.; Mihranyan, A.; Gevorgyan, V. Asymmetric intermolecular allylic C-H amination of alkenes with aliphatic amines. Science, 2022, 378(6625), 1207-1213.
[http://dx.doi.org/10.1126/science.abq1274] [PMID: 36520916]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy