Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Literature on the Synthesis of Thiazole Derivatives and their Biological Activities

Author(s): Thoraya A. Farghaly*, Ghaidaa H. Alfaifi and Sobhi M. Gomha

Volume 24, Issue 2, 2024

Published on: 01 September, 2023

Page: [196 - 251] Pages: 56

DOI: 10.2174/1389557523666230726142459

Price: $65

Abstract

The thiazole ring is naturally occurring and is primarily found in marine and microbial sources. It has been identified in various compounds such as peptides, vitamins (thiamine), alkaloids, epothilone, and chlorophyll. Thiazole-containing compounds are widely recognized for their antibacterial, antifungal, anti-inflammatory, antimalarial, antitubercular, antidiabetic, antioxidant, anticonvulsant, anticancer, and cardiovascular activities. The objective of this review is to present recent advancements in the discovery of biologically active thiazole derivatives, including their synthetic methods and biological effects. This review comprehensively discusses the synthesis methods of thiazole and its corresponding biological activities within a specific timeframe, from 2017 until the conclusion of 2022.

« Previous
Graphical Abstract

[1]
Al-Jumaili, M.H.A.; Hamad, A.A.; Hashem, H.E.; Hussein, A.D.; Muhaidi, M.J.; Ahmed, M.A.; Albanaa, A.H.A.; Siddique, F.; Bakr, E.A. Comprehensive review on the Bis–heterocyclic compounds and their anticancer efficacy. J. Mol. Struct., 2023, 1271, 133970.
[http://dx.doi.org/10.1016/j.molstruc.2022.133970]
[2]
Narasimhamurthy, K.H.; Sajith, A.M.; Joy, M.N.; Rangappa, K.S. An overview of recent developments in the synthesis of substituted thiazoles. ChemistrySelect, 2020, 5(19), 5629-5656.
[http://dx.doi.org/10.1002/slct.202001133]
[3]
Singh, I.P.; Gupta, S.; Kumar, S. Thiazole compounds as antiviral agents: An update. Med. Chem., 2020, 16(1), 4-23.
[http://dx.doi.org/10.2174/1573406415666190614101253] [PMID: 31203807]
[4]
Abolibda, T.Z.; Fathalla, M.; Farag, B.; Zaki, M.E.A.; Gomha, S.M. Synthesis and molecular docking of some novel 3-thiazolyl-coumarins as inhibitors of vegfr-2 kinase. Molecules, 2023, 28(2), 689.
[http://dx.doi.org/10.3390/molecules28020689] [PMID: 36677750]
[5]
Hosseini Nasab, N.; Azimian, F.; Shim, R.S.; Eom, Y.S.; Shah, F.H.; Kim, S.J. Synthesis, anticancer evaluation, and molecular docking studies of thiazolyl-pyrazoline derivatives. Bioorg. Med. Chem. Lett., 2023, 80, 129105.
[http://dx.doi.org/10.1016/j.bmcl.2022.129105] [PMID: 36513215]
[6]
Arshad, M.F.; Alam, A.; Alshammari, A.A.; Alhazza, M.B.; Alzimam, I.M.; Alam, M.A.; Mustafa, G.; Ansari, M.S.; Alotaibi, A.M.; Alotaibi, A.A.; Kumar, S.; Asdaq, S.M.B.; Imran, M.; Deb, P.K.; Venugopala, K.N.; Jomah, S. Thiazole: a versatile standalone moiety contributing to the development of various drugs and biologically active agents. Molecules, 2022, 27(13), 3994.
[http://dx.doi.org/10.3390/molecules27133994] [PMID: 35807236]
[7]
Chotera-Ouda, A.; Wróblewska, A.; Tokarz, P.; Stevens, C.V. Thiazoles. Comprehensive Heterocyclic Chemistry IV., 2022, 4, 530-623.
[http://dx.doi.org/10.1016/B978-0-12-818655-8.00129-3]
[8]
Shainyan, B.A.; Zhilitskaya, L.V.; Yarosh, N.O. Synthetic approaches to biologically active c-2-substituted benzothiazoles. Molecules, 2022, 27(8), 2598.
[http://dx.doi.org/10.3390/molecules27082598] [PMID: 35458794]
[9]
Kiran, V.; Joshi, R.; Pundeer, R. α,α‐Dibromoketone precursors in the synthesis of some new thiazole derivatives: thiazol‐2‐yl hydrazonobutanoates, thiazol‐2‐yl pyrazole‐4‐carboxylates and acids. J. Heterocycl. Chem., 2020, 57(5), 2173-2183.
[http://dx.doi.org/10.1002/jhet.3937]
[10]
Althagafi, I.; Abdel-Latif, E. Synthesis and antibacterial activity of new imidazo[1,2- a]pyridines festooned with pyridine, thiazole or pyrazole moiety. Polycycl. Aromat. Compd., 2022, 42(7), 4487-4500.
[http://dx.doi.org/10.1080/10406638.2021.1894185]
[11]
Yang, G.; Shi, L.; Pan, Z.; Wu, L.; Fan, L.; Wang, C.; Xu, C.; Liang, J. The synthesis of coumarin thiazoles containing a trifluoromethyl group and their antifungal activities. Arab. J. Chem., 2021, 14(1), 102880.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.027]
[12]
Raut, D.G.; Lawand, A.S.; Kadu, V.D.; Hublikar, M.G.; Patil, S.B.; Bhosale, D.G.; Bhosale, R.B. Synthesis of asymmetric thiazolyl pyrazolines as a potential antioxidant and anti-inflammatory agents. Polycycl. Aromat. Compd., 2022, 42(1), 70-79.
[http://dx.doi.org/10.1080/10406638.2020.1716028]
[13]
Bansal, K.K.; Bhardwaj, J.K.; Saraf, P.; Thakur, V.K.; Sharma, P.C. Synthesis of thiazole clubbed pyrazole derivatives as apoptosis indu-cers and antiinfective agents. Mater. Today Chem., 2020, 17, 100335.
[http://dx.doi.org/10.1016/j.mtchem.2020.100335]
[14]
Mane, S.G.; Katagi, K.S.; Kadam, N.S.; Akki, M.C.; Joshi, S.D. Design and synthesis of polycyclic acridin-(9-yl-amino)thiazol-5-yl)-2h-chromen-2-one derivatives: as antiproliferative and anti-tb pharmacophores. Polycycl. Aromat. Compd., 2022, 42(2), 371-390.
[http://dx.doi.org/10.1080/10406638.2020.1734636]
[15]
He, M.; Li, Y.J.; Shao, J.; Li, Y.S.; Cui, Z.N. Synthesis and biological evaluation of 2,5-disubstituted furan derivatives containing 1,3-thiazole moiety as potential α‐glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2023, 83, 129173.
[http://dx.doi.org/10.1016/j.bmcl.2023.129173] [PMID: 36764471]
[16]
Rizk, H.F.; El-Borai, M.A.; Ragab, A.; Ibrahim, S.A.; Sadek, M.E. A novel of azo-thiazole moiety alternative for benzidine-based pigments: design, synthesis, characterization, biological evaluation, and molecular docking study. Polycycl. Aromat. Compd., 2023, 43(1), 500-522.
[http://dx.doi.org/10.1080/10406638.2021.2015402]
[17]
Mishchenko, M.; Shtrygol, S.; Kaminskyy, D.; Lesyk, R. Thiazole-bearing 4-thiazolidinones as new anticonvulsant agents. Sci. Pharm., 2020, 88(1), 16.
[http://dx.doi.org/10.3390/scipharm88010016]
[18]
Huang, G.; Cierpicki, T.; Grembecka, J. 2-Aminobenzothiazoles in anticancer drug design and discovery. Bioorg. Chem., 2023, 135, 106477.
[http://dx.doi.org/10.1016/j.bioorg.2023.106477] [PMID: 36989736]
[19]
Raghunatha, P.; Inamdar, M.N.; Asdaq, S.M.B.; Almuqbil, M.; Alzahrani, A.R.; Alaqel, S.I.; Kamal, M.; Alsubaie, F.H.; Alsanie, W.F.; Alamri, A.S.; Rabbani, S.I.; Attimarad, M.; Mohan, S.; Alhomrani, M. New thiazole acetic acid derivatives: A study to screen cardiovascular activity using isolated rat hearts and blood vessels. Molecules, 2022, 27(19), 6138.
[http://dx.doi.org/10.3390/molecules27196138] [PMID: 36234675]
[20]
Khan, S.; Ullah, H.; Taha, M.; Rahim, F.; Sarfraz, M.; Iqbal, R.; Iqbal, N.; Hussain, R.; Ali Shah, S.A.; Ayub, K.; Albalawi, M.A.; Abdelaziz, M.A.; Alatawi, F.S.; Khan, K.M. Synthesis, DFT studies, molecular docking and biological activity evaluation of thiazolesulfonamide derivatives as potent Alzheimer’s inhibitors. Molecules, 2023, 28(2), 559.
[http://dx.doi.org/10.3390/molecules28020559] [PMID: 36677616]
[21]
Gümüş, M.; Yakan, M.; Koca, İ. Recent advances of thiazole hybrids in biological applications. Future Med. Chem., 2019, 11(15), 1979-1998.
[http://dx.doi.org/10.4155/fmc-2018-0196] [PMID: 31517529]
[22]
Sever, B.; Altıntop, M.D.; Demir, Y.; Pekdoğan, M.; Akalın Çiftçi, G.; Beydemir, Ş.; Özdemir, A. An extensive research on aldose reductase inhibitory effects of new 4H-1,2,4-triazole derivatives. J. Mol. Struct., 2021, 1224, 129446.
[http://dx.doi.org/10.1016/j.molstruc.2020.129446]
[23]
Sever, B.; Altıntop, M.D.; Demir, Y.; Türkeş, C.; Özbaş, K.; Çiftçi, G.A.; Beydemir, Ş.; Özdemir, A. A new series of 2,4-thiazolidinediones endowed with potent aldose reductase inhibitory activity. Open Chem., 2021, 19(1), 347-357.
[http://dx.doi.org/10.1515/chem-2021-0032]
[24]
Alım, Z.; Kılıç, D.; Demir, Y. Some indazoles reduced the activity of human serum paraoxonase 1, an antioxidant enzyme: in vitro inhibition and molecular modeling studies. Arch. Physiol. Biochem., 2019, 125(5), 387-395.
[http://dx.doi.org/10.1080/13813455.2018.1470646] [PMID: 29741961]
[25]
Jadhav, P.M.; Kantevari, S.; Tekale, A.B.; Bhosale, S.V.; Pawar, R.P.; Tekale, S.U. A review on biological and medicinal significance of thiazoles. Phosphorus Sulfur Silicon Relat. Elem., 2021, 196(10), 879-895.
[http://dx.doi.org/10.1080/10426507.2021.1945601]
[26]
Slimani, I.; Mansour, L.; Özdemir, I.; Gurbuz, N.; Hamdi, N. Synthesis, characterization and catalytic activity of PEPPSI-type palladium–NHC complexes. Inorganica Chimica Acta, 2021, 515, 120043.
[http://dx.doi.org/10.1016/j.ica.2020.120043]
[27]
Brahmachari, G. Epothilones a and b: the 16-membered natural macrolides as a fascinating template for antibreast cancer drug discovery. In: Discovery and Development of Anti-Breast Cancer Agents from Natural Products; Brahmachari, G., Ed.; Elsevier, 2021; pp. 7-28.
[http://dx.doi.org/10.1016/B978-0-12-821277-6.00002-7]
[28]
Khidre, R.E.; Radini, I.A.M. Design, synthesis and docking studies of novel thiazole derivatives incorporating pyridine moiety and assessment as antimicrobial agents. Sci. Rep., 2021, 11(1), 7846.
[http://dx.doi.org/10.1038/s41598-021-86424-7] [PMID: 33846389]
[29]
Farghaly, T.A.; Alsaedi, A.M.R.; Alenazi, N.A.; Harras, M.F. Anti-viral activity of thiazole derivatives: An updated patent review. Expert Opin. Ther. Pat., 2022, 32(7), 791-815.
[http://dx.doi.org/10.1080/13543776.2022.2067477] [PMID: 35427454]
[30]
Althagafi, I.; El-Metwaly, N.; Farghaly, T.A. New series of thiazole derivatives: synthesis, structural elucidation, antimicrobial activity, molecular modeling and moe docking. Molecules, 2019, 24(9), 1741.
[http://dx.doi.org/10.3390/molecules24091741] [PMID: 31060260]
[31]
Jaladanki, C.K.; Khatun, S.; Gohlke, H.; Bharatam, P.V. Reactive metabolites from thiazole-containing drugs: quantum chemical insights into biotransformation and toxicity. Chem. Res. Toxicol., 2021, 34(6), 1503-1517.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00450] [PMID: 33900062]
[32]
Abu-Melha, S.; Edrees, M.; Salem, H.; Kheder, N.; Gomha, S.; Abdelaziz, M. Synthesis and biological evaluation of some novel thiazole-based heterocycles as potential anticancer and antimicrobial agents. Molecules, 2019, 24(3), 539.
[http://dx.doi.org/10.3390/molecules24030539] [PMID: 30717217]
[33]
Aly, A.A.; El-Sheref, E.M.; Brown, A.B.; Bräse, S.; Nieger, M.; Abdelhafez, E.S.M.N. New one-pot synthesis of 2-ylidenehydrazono-thiazoles. J. Sulfur Chem., 2019, 40(6), 641-647.
[http://dx.doi.org/10.1080/17415993.2019.1635132]
[34]
Fayed, E.A.; Ammar, Y.A.; Ragab, A.; Gohar, N.A.; Mehany, A.B.M.; Farrag, A.M. In vitro cytotoxic activity of thiazole-indenoquinoxaline hybrids as apoptotic agents, design, synthesis, physicochemical and pharmacokinetic studies. Bioorg. Chem., 2020, 100, 103951.
[http://dx.doi.org/10.1016/j.bioorg.2020.103951] [PMID: 32450392]
[35]
Osmaniye, D.; Görgülü, Ş.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Kaplancıklı, Z.A. Design, synthesis, in vitro and in silico studies of some novel thiazole-dihydrofuran derivatives as aromatase inhibitors. Bioorg. Chem., 2021, 114, 105123.
[http://dx.doi.org/10.1016/j.bioorg.2021.105123] [PMID: 34214753]
[36]
Channar, P.A.; Irum, H.; Mahmood, A.; Shabir, G.; Zaib, S.; Saeed, A.; Ashraf, Z.; Larik, F.A.; Lecka, J.; Sévigny, J.; Iqbal, J. Design, synthesis and biological evaluation of trinary benzocoumarin-thiazolesazomethines derivatives as effective and selective inhibitors of alkaline phosphatase. Bioorg. Chem., 2019, 91, 103137.
[http://dx.doi.org/10.1016/j.bioorg.2019.103137] [PMID: 31400554]
[37]
Bera, P.; Aher, A.; Brandao, P.; Manna, S.K.; Mondal, G.; Jana, A.; Santra, A.; Jana, H.; Bera, P. Induced apoptosis against U937 cancer cells by Fe(II), Co(III) and Ni(II) complexes with a pyrazine-thiazole ligand: Synthesis, structure and biological evaluation. Polyhedron, 2020, 182, 114503.
[http://dx.doi.org/10.1016/j.poly.2020.114503]
[38]
Aly, A.A.; Mohamed, A.H.; Ramadan, M. Synthesis and colon anticancer activity of some novel thiazole/-2-quinolone derivatives. J. Mol. Struct., 2020, 1207, 127798.
[http://dx.doi.org/10.1016/j.molstruc.2020.127798]
[39]
Rosada, B.; Bekier, A.; Cytarska, J.; Płaziński, W.; Zavyalova, O.; Sikora, A.; Dzitko, K.; Łączkowski, K.Z. Benzo[b]thiophene-thiazoles as potent anti-toxoplasma gondii agents: design, synthesis, tyrosinase/tyrosine hydroxylase inhibitors, molecular docking study, and anti-oxidant activity. Eur. J. Med. Chem., 2019, 184, 111765.
[http://dx.doi.org/10.1016/j.ejmech.2019.111765] [PMID: 31629163]
[40]
Donarska, B.; Świtalska, M.; Płaziński, W.; Wietrzyk, J.; Łączkowski, K.Z. Effect of the dichloro-substitution on antiproliferative activity of phthalimide-thiazole derivatives. Rational design, synthesis, elastase, caspase 3/7, and EGFR tyrosine kinase activity and molecular modeling study. Bioorg. Chem., 2021, 110, 104819.
[http://dx.doi.org/10.1016/j.bioorg.2021.104819] [PMID: 33752144]
[41]
Shaaban, M.R.; Farghaly, T.A.; Alsaedi, A.M.R. Synthesis, antimicrobial and anticancer evaluations of novel thiazoles incorporated diphenyl sulfone moiety. Polycycl. Aromat. Compd., 2022, 42(5), 2521-2537.
[http://dx.doi.org/10.1080/10406638.2020.1837887]
[42]
Qazi, S.U.; Naz, A.; Hameed, A.; Osra, F.A.; Jalil, S.; Iqbal, J.; Shah, S.A.A.; Mirza, A.Z. Semicarbazones, thiosemicarbazone, thiazole and oxazole analogues as monoamine oxidase inhibitors: Synthesis, characterization, biological evaluation, molecular docking, and kinetic studies. Bioorg. Chem., 2021, 115, 105209.
[http://dx.doi.org/10.1016/j.bioorg.2021.105209] [PMID: 34364054]
[43]
Desai, N.C.; Harsora, J.P.; Monapara, J.D.; Khedkar, V.M. Synthesis, antimicrobial capability and molecular docking of heterocyclic scaffolds clubbed by 2-azetidinone, thiazole and quinoline derivatives. Polycycl. Aromat. Compd., 2022, 42(7), 3924-3938.
[http://dx.doi.org/10.1080/10406638.2021.1877747]
[44]
Sever, B.; Altıntop, M.D.; Demir, Y.; Akalın Çiftçi, G.; Beydemir, Ş.; Özdemir, A. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg. Chem., 2020, 102, 104110.
[http://dx.doi.org/10.1016/j.bioorg.2020.104110] [PMID: 32739480]
[45]
Gondru, R.; Kanugala, S.; Raj, S.; G.K., C.; M, pasupuleti; j., banothu; r., bavantula 1,2,3-triazole-thiazole hybrids: synthesis, in vitro antimicrobial activity and antibiofilm studies. Bioorg. Med. Chem. Lett., 2021, 33, 127746.
[http://dx.doi.org/10.1016/j.bmcl.2020.127746] [PMID: 33333162]
[46]
Mekky, A.E.M.; Sanad, S.M.H. Microwave‐assisted synthesis of novel bis(thiazoles) incorporating piperazine moiety. J. Heterocycl. Chem., 2019, 56(5), 1560-1566.
[http://dx.doi.org/10.1002/jhet.3531]
[47]
Abumelha, H.M.A. Synthesis and antioxidant assay of new nicotinonitrile analogues clubbed thiazole, pyrazole and/or pyridine ring systems. J. Heterocycl. Chem., 2020, 57(3), 1011-1022.
[http://dx.doi.org/10.1002/jhet.3820]
[48]
Eissa, S.I.; Farrag, A.M.; Abbas, S.Y.; El Shehry, M.F.; Ragab, A.; Fayed, E.A.; Ammar, Y.A. Novel structural hybrids of quinoline and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities with molecular modeling studies. Bioorg. Chem., 2021, 110, 104803.
[http://dx.doi.org/10.1016/j.bioorg.2021.104803] [PMID: 33761314]
[49]
Mic, M.A. Pîrna ̆u, C. G. floare, g. marc, a. h. franchini, o. oniga, l. vlase, m. bogdan. synthesis and molecular interaction study of a diphenolic hidrazinyl-thiazole compound with strong antioxidant and antiradical activity with HAS. J. Mol. Struct., 2021, 1244, 131278.
[http://dx.doi.org/10.1016/j.molstruc.2021.131278]
[50]
Althagafi, I. Molecular modeling and antioxidant evaluation of new di-2-thienyl ketones festooned with thiazole or pyridine moiety. J. Mol. Struct., 2022, 1247, 131287.
[http://dx.doi.org/10.1016/j.molstruc.2021.131287]
[51]
Haroon, M.; Khalid, M.; Akhtar, T.; Tahir, M.N.; Khan, M.U.; Muhammad, S.; Al-Sehemi, A.G.; Hameed, S. Synthesis, crystal structure, spectroscopic, electronic and nonlinear optical properties of potent thiazole based derivatives: Joint experimental and computational insight. J. Mol. Struct., 2020, 1202, 127354.
[http://dx.doi.org/10.1016/j.molstruc.2019.127354]
[52]
Kaur, R.; Kumar, R.; Dogra, N.; Yadav, A.K. Design, synthesis, biological evaluations and in silico studies of sulfonate ester derivatives of 2-(2-benzylidenehydrazono)thiazolidin-4-one as potential α-glucosidase inhibitors. J. Mol. Struct., 2022, 1247, 131266.
[http://dx.doi.org/10.1016/j.molstruc.2021.131266]
[53]
Foroughi Kaldareh, M.; Mokhtary, M.; Nikpassand, M. Deep eutectic solvent mediated one-pot synthesis of hydrazinyl-4-phenyl-1,3-thiazoles. Polycycl. Aromat. Compd., 2021, 41(5), 1012-1019.
[http://dx.doi.org/10.1080/10406638.2019.1639062]
[54]
Omar, M.A.; Masaret, G.S.; Abbas, E.M.H.; Abdel-Aziz, M.M.; Harras, M.F.; Farghaly, T.A. Novel anti-tubercular and antibacterial based benzosuberone-thiazole moieties: Synthesis, molecular docking analysis, DNA gyrase supercoiling and ATPase activity. Bioorg. Chem., 2020, 104, 104316.
[http://dx.doi.org/10.1016/j.bioorg.2020.104316] [PMID: 33022549]
[55]
Farghaly, T.A.; Abo Alnaja, A.M.; El-Ghamry, H.A.; Shaaban, M.R. Synthesis and DNA binding of novel bioactive thiazole derivatives pendent to N-phenylmorpholine moiety. Bioorg. Chem., 2020, 102, 104103.
[http://dx.doi.org/10.1016/j.bioorg.2020.104103] [PMID: 32717695]
[56]
Rahim, F.; Tariq, S.; Taha, M.; Ullah, H.; Zaman, K.; Uddin, I.; Wadood, A.; Khan, A.A.; Rehman, A.U.; Uddin, N.; Zafar, S.; Shah, S.A.A. New triazinoindole bearing thiazole/oxazole analogues: Synthesis, α-amylase inhibitory potential and molecular docking study. Bioorg. Chem., 2019, 92, 103284.
[http://dx.doi.org/10.1016/j.bioorg.2019.103284] [PMID: 31546207]
[57]
Mahmoud, H.K.; Farghaly, T.A.; Abdulwahab, H.G.; Al-Qurashi, N.T.; Shaaban, M.R. Novel 2-indolinone thiazole hybrids as sunitinib analogues: Design, synthesis, and potent VEGFR-2 inhibition with potential anti-renal cancer activity. Eur. J. Med. Chem., 2020, 208, 112752.
[http://dx.doi.org/10.1016/j.ejmech.2020.112752] [PMID: 32947227]
[58]
Oliveira, A.R.; dos Santos, F.A.; Ferreira, L.P.L.; Pitta, M.G.R.; Silva, M.V.O.; Cardoso, M.V.O.; Pinto, A.F.; Marchand, P.; de Melo Rêgo, M.J.B.; Leite, A.C.L. Synthesis, anticancer activity and mechanism of action of new phthalimido-1,3-thiazole derivatives. Chem. Biol. Interact., 2021, 347, 109597.
[http://dx.doi.org/10.1016/j.cbi.2021.109597] [PMID: 34303695]
[59]
Mahmoud, H.K.; Kassab, R.M.; Gomha, S.M. Synthesis and characterization of some novel bis‐thiazoles. J. Heterocycl. Chem., 2019, 56(11), 3157-3163.
[http://dx.doi.org/10.1002/jhet.3717]
[60]
Sayed, A.R.; Gomha, S.M.; Al-Faiyz, Y.S.; Zaki, Y.H. New convenient routes of hydrazonoyl halides for the synthesis of novel thiazoles and polythiazoles. Polycycl. Aromat. Compd., 2022, 42(6), 3318-3327.
[http://dx.doi.org/10.1080/10406638.2020.1866032]
[61]
Sanad, S.M.H.; Mekky, A.E.M.; Said, A.Y.; Elneairy, M.A.A. Pyridine-2(1H)-thiones: Versatile precursors for one-pot synthesis of new nicotinonitrile-thiazole hybrids. The Journal of Heterocyclic Chemistry, 2021, 58(7), 1461-1471.
[http://dx.doi.org/10.1002/jhet.4272]
[62]
Alshammari, M.B.; Mohamed, A.H.; Aly, A.A.; Bakht, M.A.; El-Sheref, E.M. New quinolin-3-yl- N -hydrazinecarbothioamides in the synthesis of thiazoles and thiazines. J. Sulfur Chem., 2021, 42(3), 346-357.
[http://dx.doi.org/10.1080/17415993.2021.1887190]
[63]
Bakthavatchala Reddy, N.; Zyryanov, G.V.; Mallikarjuna Reddy, G.; Balakrishna, A.; Padmaja, A.; Padmavathi, V.; Suresh Reddy, C.; Garcia, J.R.; Sravya, G. Design and synthesis of some new benzimidazole containing pyrazoles and pyrazolyl thiazoles as potential antimicrobial agents. J. Heterocycl. Chem., 2019, 56(2), 589-596.
[http://dx.doi.org/10.1002/jhet.3435]
[64]
Çevik, U.A.; Osmaniye, D.; Sağlik, B.N.; Levent, S.; Çavuşoğlu, B.K.; Özkay, Y.; Kaplancikli, Z.A. Synthesis and evaluation of new pyrazoline-thiazole derivatives as monoamine oxidase inhibitors. J. Heterocycl. Chem., 2019, 56(11), 3000-3007.
[http://dx.doi.org/10.1002/jhet.3694]
[65]
Masoud, D.M.; Azzam, R.A.; Hamdy, F.; Mekawey, A.A.I.; Abdel-Aziz, H.A. Synthesis of some novel pyrazoline‐thiazole hybrids and their antimicrobial activities. J. Heterocycl. Chem., 2019, 56(11), 3030-3041.
[http://dx.doi.org/10.1002/jhet.3698]
[66]
Eryılmaz, S.; Türk Çelikoğlu, E.; İdil, Ö.; İnkaya, E.; Kozak, Z.; Mısır, E.; Gül, M. Derivatives of pyridine and thiazole hybrid: Synthesis, DFT, biological evaluation via antimicrobial and DNA cleavage activity. Bioorg. Chem., 2020, 95, 103476.
[http://dx.doi.org/10.1016/j.bioorg.2019.103476] [PMID: 31838288]
[67]
Nofal, Z.M.; Srour, A.M.; Mansour, N.M.; El-Karim, S.S.A. Synthesis of novel heterocyclic compounds containing thiazolyl-pyrazoline moiety from chalcone derivatives. Polycycl. Aromat. Compd., 2022, 42(8), 5411-5421.
[http://dx.doi.org/10.1080/10406638.2021.1936577]
[68]
Suntsova, P.O.; Eltyshev, A.K.; Pospelova, T.A.; Slepukhin, P.A.; Benassi, E.; Belskaya, N.P. Design and synthesis of disubstituted and trisubstituted thiazoles as multifunctional fluorophores with large Stokes shifts. Dyes Pigments, 2019, 166, 60-71.
[http://dx.doi.org/10.1016/j.dyepig.2019.02.051]
[69]
Kesari, C.; Rama, K.R.; Sedighi, K.; Stenvang, J.; Björkling, F.; Kankala, S.; Thota, N. Synthesis of thiazole linked chalcones and their pyrimidine analogues as anticancer agents. Synth. Commun., 2021, 51(9), 1406-1416.
[http://dx.doi.org/10.1080/00397911.2021.1884262]
[70]
Zhang, Z.; Cao, P.; Fang, M.; Zou, T.; Han, J.; Duan, Y.; Xu, H.; Yang, X.; Li, Q.S. Design, synthesis, and SAR study of novel 4,5-dihydropyrazole-Thiazole derivatives with anti-inflammatory activities for the treatment of sepsis. Eur. J. Med. Chem., 2021, 225, 113743.
[http://dx.doi.org/10.1016/j.ejmech.2021.113743] [PMID: 34403978]
[71]
Sanad, S.M.H.; Mekky, A.E.M.; El-Idreesy, T.T. Potential bacterial biofilm, MRSA, and DHFR inhibitors based on new morpholine-linked chromene-thiazole hybrids: One-pot synthesis and in silico study. J. Mol. Struct., 2022, 1248, 131476.
[http://dx.doi.org/10.1016/j.molstruc.2021.131476]
[72]
Asma, B.; Kalluraya, B.; Manju, N.; Sharath, C.L. Synthesis and antioxidant activity study of carbothioamide and their corresponding thiazole derivatives. J. Heterocycl. Chem., 2020, 57(8), 3105-3115.
[http://dx.doi.org/10.1002/jhet.4018]
[73]
Qi, X.L.; Jo, H.; Wang, X.Y.; Ji, T.T.; Lin, H.X.; Park, C.S.; Cui, Y.M. Synthesis and BK channel-opening activity of 2-amino-1,3-thiazole derivatives. Bioorg. Med. Chem. Lett., 2021, 43, 128083.
[http://dx.doi.org/10.1016/j.bmcl.2021.128083] [PMID: 33964448]
[74]
Nuha, D.; Evren, A.E.; Yılmaz Cankılıç, M.; Yurttaş, L. Design and synthesis of novel 2,4,5-thiazole derivatives as 6-APA mimics and antimicrobial activity evaluation. Phosphorus Sulfur Silicon Relat. Elem., 2021, 196(10), 954-960.
[http://dx.doi.org/10.1080/10426507.2021.1946537]
[75]
Nagarajaiah, H.; Prasad, N.L.; Begum, N.S. Sequential one-pot synthesis of 2-aminothiazoles using corresponding ketones: insights into their structural features. Polycycl. Aromat. Compd., 2022, 42(4), 1909-1919.
[http://dx.doi.org/10.1080/10406638.2020.1821228]
[76]
Poor Heravi, M.R.; Hemmati, S.; Nami, N.; Khalilzadeh, M.A. Synthesis of novel biologically important 5-amino-2-oxo-7-aryl-3,7-dihydro-2 h -pyrano[2,3-d]thiazole-6-carbonitriles in trifluoroethanol (tfe) under ultrasound irradiation condition and their antimicrobial activity. Polycycl. Aromat. Compd., 2021, 41(10), 2263-2273.
[http://dx.doi.org/10.1080/10406638.2019.1711432]
[77]
Ankali, K.N.; Rangaswamy, J.; Shalavadi, M.; Naik, N.; Krishnamurthy, G. Synthesis and molecular docking of novel 1,3-thiazole derived 1,2,3-triazoles and in vivo biological evaluation for their anti anxiety and anti inflammatory activity. J. Mol. Struct., 2021, 1236, 130357.
[http://dx.doi.org/10.1016/j.molstruc.2021.130357]
[78]
Herrera-España, A.D.; Us-Martín, J.; Hernández-Ortega, S.; Mirón-López, G.; Quijano, L.; Villanueva-Toledo, J.R.; Mena-Rejón, G.J. Synthesis, structure analysis and activity against breast and cervix cancer cells of a triterpenoid thiazole derived from ochraceolide A. J. Mol. Struct., 2020, 1204, 127555.
[http://dx.doi.org/10.1016/j.molstruc.2019.127555]
[79]
Alsantali, R.I.; Hussein, E.M.; Obaid, R.J.; Morad, M.; Altass, H.M.; Alharbi, A.; Hameed, A.M.; Jassas, R.S.; Abourehab, M.A.S.; Asghar, B.H.; Moussa, Z.; Ahmed, S.A. Bioactive Fluorenes. Part II. Unprecedented biologically active thiazole derivatives based-2,7-dichlorofluorene as competent DHFR inhibitors: Design, synthesis, and molecular docking approaches. Arab. J. Chem., 2020, 13(5), 5451-5462.
[http://dx.doi.org/10.1016/j.arabjc.2020.03.024]
[80]
Ma, S.; Wang, L.; Ouyang, B.; Fan, M.; Qi, J.; Yao, L. Design, synthesis and biological evaluation of 4-aryl-5-aminoalkyl-thiazole-2-amines derivatives as ROCK II inhibitors. Bioorg. Med. Chem., 2020, 28(19), 115683.
[http://dx.doi.org/10.1016/j.bmc.2020.115683] [PMID: 32912437]
[81]
Cordeiro, R.; Kachroo, M. Synthesis and biological evaluation of anti-tubercular activity of schiff bases of 2-amino thiazoles. Bioorg. Med. Chem. Lett., 2020, 30(24), 127655.
[http://dx.doi.org/10.1016/j.bmcl.2020.127655] [PMID: 33130292]
[82]
Abdel-Aziz, S.A.; Taher, E.S.; Lan, P.; Asaad, G.F.; Gomaa, H.A.M.; El-Koussi, N.A.; Youssif, B.G.M. Design, synthesis, and biological evaluation of new pyrimidine-5-carbonitrile derivatives bearing 1,3-thiazole moiety as novel anti-inflammatory EGFR inhibitors with cardiac safety profile. Bioorg. Chem., 2021, 111, 104890.
[http://dx.doi.org/10.1016/j.bioorg.2021.104890] [PMID: 33872924]
[83]
Abdallah, A.E.M.; Mohareb, R.M.; Ahmed, E.A. Novel pyrano[2,3-d]thiazole and thiazolo[4,5-b]pyridine derivatives: one-pot three-component synthesis and biological evaluation as anticancer agents, c-met, and pim-1 kinase inhibitors. J. Heterocycl. Chem., 2019, 56(11), 3017-3029.
[http://dx.doi.org/10.1002/jhet.3697]
[84]
Guan, Z.R.; Liu, Z.M.; Wan, Q.; Ding, M.W. One-pot four-component synthesis of polysubstituted thiazoles via cascade Ugi/Wittig cyclization starting from odorless Isocyano(triphenylphosphoranylidene)-acetates. Tetrahedron, 2020, 76(15), 131101.
[http://dx.doi.org/10.1016/j.tet.2020.131101]
[85]
Masaret, G.S. New potential antitumor pyrimidine derivatives: synthesis and cytotoxicity evaluation. Polycycl. Aromat. Compd., 2022, 42(8), 5336-5351.
[http://dx.doi.org/10.1080/10406638.2021.1936086]
[86]
El-Sayed, A.A.; Nossier, E.S.; Almehizia, A.A.; Amr, A.E.G.E. Design, synthesis, anticancer evaluation and molecular docking study of novel 2,4-dichlorophenoxymethyl-based derivatives linked to nitrogenous heterocyclic ring systems as potential CDK-2 inhibitors. J. Mol. Struct., 2022, 1247, 131285.
[http://dx.doi.org/10.1016/j.molstruc.2021.131285]
[87]
Kaur, G.; Moudgil, R.; Shamim, M.; Gupta, V.K.; Banerjee, B. Camphor sulfonic acid catalyzed a simple, facile, and general method for the synthesis of 2-arylbenzothiazoles, 2-arylbenzimidazoles, and 3 H -spiro[benzo[ d]thiazole-2,3′-indolin]-2′-ones at room temperature. Synth. Commun., 2021, 51(7), 1100-1120.
[http://dx.doi.org/10.1080/00397911.2020.1870043]
[88]
Ghoneim, A.A.; Ali Hassan, A.G. An Efficient procedure of synthesis acyclic c -glycosides of thiazolo [4, 5- b]Pyrazine and Imidazo[4,5-d]Thiazole with Expected Anti-Cancer Activities. Polycycl. Aromat. Compd., 2022, 42(6), 3328-3338.
[http://dx.doi.org/10.1080/10406638.2020.1866035]
[89]
Bandaru, C.M.; Poojith, N.; Jadav, S.S.; Basaveswara Rao, M.V.; Babu, K.S.; Sreenivasulu, R.; Alluri, R. Design, synthesis, anticancer evaluation, and molecular docking studies of thiazole–pyrimidine linked amide derivatives. Polycycl. Aromat. Compd., 2022, 42(8), 5368-5384.
[http://dx.doi.org/10.1080/10406638.2021.1939067]
[90]
Tahmasvand, R.; Bayat, P.; Vahdaniparast, S.M.; Dehghani, S.; Kooshafar, Z.; Khaleghi, S.; Almasirad, A.; Salimi, M. Design and synthesis of novel 4-thiazolidinone derivatives with promising anti-breast cancer activity: Synthesis, characterization, in vitro and in vivo results. Bioorg. Chem., 2020, 104, 104276.
[http://dx.doi.org/10.1016/j.bioorg.2020.104276] [PMID: 32992280]
[91]
Sireesha, R.; Sreenivasulu, R.; Chandrasekhar, C.; Jadav, S.S.; Pavani, Y.; Rao, M.V.B.; Subbarao, M. Design, synthesis, anti-cancer evaluation and binding mode studies of benzimidazole/benzoxazole linked β-carboline derivatives. J. Mol. Struct., 2021, 1226, 129351.
[http://dx.doi.org/10.1016/j.molstruc.2020.129351]
[92]
Al-Ansary, G.H.; Eldehna, W.M.; Ghabbour, H.A.; Al-Rashood, S.T.A.; Al-Rashood, K.A.; Eladwy, R.A.; Al-Dhfyan, A.; Kabil, M.M.; Abdel-Aziz, H.A. Cancer stem cells cd133 inhibition and cytotoxicity of certain 3-phenylthiazolo[3,2- a]benzimidazoles: design, direct synthesis, crystal study and in vitro biological evaluation. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 986-991.
[http://dx.doi.org/10.1080/14756366.2017.1347166] [PMID: 28726519]
[93]
Narayanan, S.; Gupta, P.; Nazim, U.; Ali, M.; Karadkhelkar, N.; Ahmad, M.; Chen, Z.S. Anti-cancer effect of Indanone-based thiazolyl hydrazone derivative on colon cancer cell lines. Int. J. Biochem. Cell Biol., 2019, 110, 21-28.
[http://dx.doi.org/10.1016/j.biocel.2019.02.004] [PMID: 30794858]
[94]
Racané, L.; Ptiček, L.; Sedić, M.; Grbčić, P.; Kraljević Pavelić, S.; Bertoša, B.; Sović, I.; Karminski-Zamola, G. Eco-friendly synthesis, in vitro anti-proliferative evaluation, and 3D-QSAR analysis of a novel series of monocationic 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazole mesylates. Mol. Divers., 2018, 22(3), 723-741.
[http://dx.doi.org/10.1007/s11030-018-9827-2] [PMID: 29667008]
[95]
Mathew, B.; Hobrath, J.V.; Connelly, M.C.; Guy, R.K.; Reynolds, R.C. Oxazole and thiazole analogs of sulindac for cancer prevention. Future Med. Chem., 2018, 10(7), 743-753.
[http://dx.doi.org/10.4155/fmc-2017-0182] [PMID: 29671617]
[96]
Sigalapalli, D.K.; Pooladanda, V.; Singh, P.; Kadagathur, M.; Guggilapu, S.D.; Uppu, J.L.; Tangellamudi, N.D.; Gangireddy, P.K.; Godugu, C.; Bathini, N.B. Discovery of certain benzyl/phenethyl thiazolidinone-indole hybrids as potential anti-proliferative agents: Synthesis, molecular modeling and tubulin polymerization inhibition study. Bioorg. Chem., 2019, 92, 103188.
[http://dx.doi.org/10.1016/j.bioorg.2019.103188] [PMID: 31450167]
[97]
Amin, H.K.; El-Araby, A.M.; Eid, S.; Nasr, T.; Bondock, S.; Leheta, O.; Dawoud, M.E. A Thiazole analogue exhibits an anti-proliferative effect in different human carcinoma cell lines and its mechanism based on molecular modeling. Adv. Biol. Chem., 2017, 7(1), 76-87.
[http://dx.doi.org/10.4236/abc.2017.71005]
[98]
Ruberte, A.C.; Plano, D.; Encío, I.; Aydillo, C.; Sharma, A.K.; Sanmartín, C. Novel selenadiazole derivatives as selective antitumor and radical scavenging agents. Eur. J. Med. Chem., 2018, 157, 14-27.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.063] [PMID: 30071406]
[99]
Eldehna, W.M.; Al-Wabli, R.I.; Almutairi, M.S.; Keeton, A.B.; Piazza, G.A.; Abdel-Aziz, H.A.; Attia, M.I. Synthesis and biological evaluation of certain hydrazonoindolin-2-one derivatives as new potent anti-proliferative agents. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 867-878.
[http://dx.doi.org/10.1080/14756366.2018.1462802] [PMID: 29707975]
[100]
Ibrahim, H.M.; Behbehani, H. The first Q-Tube based high-pressure synthesis of anti-cancer active thiazolo[4,5-c]pyridazines via the [4 + 2] cyclocondensation of 3-oxo-2-arylhydrazonopropanals with 4-thiazolidinones. Sci. Rep., 2020, 10(1), 6492.
[http://dx.doi.org/10.1038/s41598-020-63453-2] [PMID: 32300148]
[101]
Barghash, R.F.; Geronikaki, A.; Abdou, W.M. Synthesis of a series of substituted thiazole derivatives: new cox‐2 enzyme inhibitors for colon cancer and inflammation treatment. ChemistrySelect, 2018, 3(47), 13329-13337.
[http://dx.doi.org/10.1002/slct.201802969]
[102]
Ewida, M.A.; Ewida, H.A.; Ahmed, M.S.; Allam, H.A.; ElBagary, R.I.; George, R.F.; Georgey, H.H.; El-Subbagh, H.I. 3-Methyl-imidazo[2,1-b]thiazole derivatives as a new class of antifolates: Synthesis, in vitro/in vivo bio-evaluation and molecular modeling simulations. Bioorg. Chem., 2021, 115, 105205.
[http://dx.doi.org/10.1016/j.bioorg.2021.105205] [PMID: 34329992]
[103]
Mamidala, S.; Peddi, S.R.; Aravilli, R.K.; Jilloju, P.C.; Manga, V.; Vedula, R.R. Microwave irradiated one pot, three component synthesis of a new series of hybrid coumarin based thiazoles: antibacterial evaluation and molecular docking studies. J. Mol. Struct., 2021, 1225, 129114.
[http://dx.doi.org/10.1016/j.molstruc.2020.129114]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy