Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Four Decades of the Comet Assay: pH Optimum of Lysis Buffer Still Needs to be Elucidated

Author(s): Petr Heneberg*

Volume 23, Issue 17, 2023

Published on: 07 August, 2023

Page: [1910 - 1915] Pages: 6

DOI: 10.2174/1871520623666230726114903

Price: $65

Abstract

The proper course and reproducibility of diagnostic techniques depend on narrowly defined reaction conditions, including the reaction pH. Nevertheless, numerous assays are affected by an inaccurately defined reaction pH. Buffers are sometimes suggested for use outside their useful pH ranges, which complicates the reproducibility of results because the buffering capacity is insufficient to retain the disclosed pH. Here, we focus on the comet assay lysis buffer. Comet assay is broadly used for quantifying DNA breaks in eukaryotic cells. The most widespread comet assay protocols employ lysis of the cells before electrophoresis in a buffer containing Triton X-100, a high concentration of NaCl, sodium sarcosinate, EDTA, and Tris, with some modifications. However, nearly all researchers report that they use Tris buffer at pH 10, and some report the pH of the Tris additive alone. Alternatively, others report the pH of the final lysis buffer. However, the lysis solution used in the comet assay is buffered at a pH outside the useful range of Tris. Tris-based buffers have a useful pH range of 7.0 - 9.0. The buffer composed of 10 mM Tris has pKa 8.10 at 25°C and 8.69 at 4°C. The cell lysis conditions used in nearly all modifications of comet assay protocols remain imprecise and uncritically employed. Despite the pH of the lysis buffer likely has negligible effect on the detection of DNA breaks, precise lysis conditions are highly important for the use of comet assay in the detection of base modifications, which are often unstable and sensitive to pH.

Graphical Abstract

[1]
Stoll, V.S.; Blanchard, J.S. Buffers. Methods Enzymol., 2009, 463, 43-56.
[http://dx.doi.org/10.1016/S0076-6879(09)63006-8] [PMID: 19892166]
[2]
Šimčíková, D.; Heneberg, P. Identification of alkaline pH optimum of human glucokinase because of ATP-mediated bias correction in outcomes of enzyme assays. Sci. Rep., 2019, 9(1), 11422.
[http://dx.doi.org/10.1038/s41598-019-47883-1] [PMID: 31388064]
[3]
Salas, J.; Salas, M.; Viñuela, E.; Sols, A. Glucokinase of rabbit liver. J. Biol. Chem., 1965, 240(3), 1014-1018.
[http://dx.doi.org/10.1016/S0021-9258(18)97530-7] [PMID: 14284695]
[4]
Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 1988, 175(1), 184-191.
[http://dx.doi.org/10.1016/0014-4827(88)90265-0] [PMID: 3345800]
[5]
Rydberg, B.; Johanson, K.J. Estimation of DNA strand breaks in single mammalian cells. DNA Repair Mechanisms; Hanawalt, P.C.; Friedberg, E.C; Fox, C.F., Ed.; Academic Press: New York, 1978, pp. 465-468.
[http://dx.doi.org/10.1016/B978-0-12-322650-1.50090-4]
[6]
Östling, O.; Johanson, K.J. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun., 1984, 123(1), 291-298.
[http://dx.doi.org/10.1016/0006-291X(84)90411-X] [PMID: 6477583]
[7]
Olive, P.L.; Banáth, J.P.; Durand, R.E.; Banath, J.P. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay. Radiat. Res., 1990, 122(1), 86-94.
[http://dx.doi.org/10.2307/3577587] [PMID: 2320728]
[8]
Collins, A.R.; Dusinská, M. Oxidation of cellular DNA measured with the comet assay. Methods Mol. Biol., 2002, 186, 147-160.
[http://dx.doi.org/10.1385/1-59259-173-6:147] [PMID: 12013763]
[9]
Fairbairn, D.W.; Olive, P.L.; O’Neill, K.L. The comet assay: A comprehensive review. Mutat. Res. Rev. Genet. Toxicol., 1995, 339(1), 37-59.
[http://dx.doi.org/10.1016/0165-1110(94)00013-3] [PMID: 7877644]
[10]
Tice, R.R.; Andrews, P.W.; Hirai, O.; Singh, N.P. The single cell gel (SCG) assay: An electrophoretic technique for the detection of DNA damage in individual cells. Adv. Exp. Med. Biol., 1991, 283, 157-164.
[http://dx.doi.org/10.1007/978-1-4684-5877-0_17] [PMID: 2068983]
[11]
Rathke, C.; Baarends, W.M.; Awe, S.; Renkawitz-Pohl, R. Chromatin dynamics during spermiogenesis. Biochim. Biophys. Acta. Gene Regul. Mech., 2014, 1839(3), 155-168.
[http://dx.doi.org/10.1016/j.bbagrm.2013.08.004] [PMID: 24091090]
[12]
Bao, J.; Bedford, M.T. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction, 2016, 151(5), R55-R70.
[http://dx.doi.org/10.1530/REP-15-0562] [PMID: 26850883]
[13]
Møller, P.; Azqueta, A.; Boutet-Robinet, E.; Koppen, G.; Bonassi, S.; Milić, M.; Gajski, G.; Costa, S.; Teixeira, J.P.; Costa Pereira, C.; Dusinska, M.; Godschalk, R.; Brunborg, G.; Gutzkow, K.B.; Giovannelli, L.; Cooke, M.S.; Richling, E.; Laffon, B.; Valdiglesias, V.; Basaran, N.; Del Bo’, C.; Zegura, B.; Novak, M.; Stopper, H.; Vodicka, P.; Vodenkova, S.; de Andrade, V.M.; Sramkova, M.; Gabelova, A.; Collins, A.; Langie, S.A.S. Minimum information for reporting on the comet assay (MIRCA): Recommendations for describing comet assay procedures and results. Nat. Protoc., 2020, 15(12), 3817-3826.
[http://dx.doi.org/10.1038/s41596-020-0398-1] [PMID: 33106678]
[14]
Collins, A.R. Measuring oxidative damage to DNA and its repair with the comet assay. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(2), 794-800.
[http://dx.doi.org/10.1016/j.bbagen.2013.04.022] [PMID: 23618695]
[15]
Mikloš, M.; Gajski, G.; Garaj-Vrhovac, V. Usage of the standard and modified comet assay in assessment of DNA damage in human lymphocytes after exposure to ionizing radiation. Radiol. Oncol., 2009, 43(2), 97-107.
[http://dx.doi.org/10.2478/v10019-009-0015-y]
[16]
Muruzabal, D.; Collins, A.; Azqueta, A. The enzyme-modified comet assay: Past, present and future. Food Chem. Toxicol., 2021, 147, 111865.
[http://dx.doi.org/10.1016/j.fct.2020.111865] [PMID: 33217526]
[17]
Collins, A.R.; Duthie, S.J.; Dobson, V.L. Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis, 1993, 14(9), 1733-1735.
[http://dx.doi.org/10.1093/carcin/14.9.1733] [PMID: 8403192]
[18]
Lewies, A.; Van Dyk, E.; Wentzel, J.F.; Pretorius, P.J. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells. Front. Genet., 2014, 5, 215.
[http://dx.doi.org/10.3389/fgene.2014.00215] [PMID: 25071840]
[19]
Ramos, A.A.; Pedro, D.F.N.; Lima, C.F.; Collins, A.R.; Pereira-Wilson, C. Development of a new application of the comet assay to assess levels of O6-methylguanine in genomic DNA (CoMeth). Free Radic. Biol. Med., 2013, 60, 41-48.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.028] [PMID: 23391575]
[20]
Townsend, T.A.; Parrish, M.C.; Engelward, B.P.; Manjanatha, M.G. The development and validation of EpiComet-Chip, a modified high-throughput comet assay for the assessment of DNA methylation status. Environ. Mol. Mutagen., 2017, 58(7), 508-521.
[http://dx.doi.org/10.1002/em.22101] [PMID: 28755435]
[21]
Wentzel, J.F.; Gouws, C.; Huysamen, C.; Dyk, E.; Koekemoer, G.; Pretorius, P.J. Assessing the DNA methylation status of single cells with the comet assay. Anal. Biochem., 2010, 400(2), 190-194.
[http://dx.doi.org/10.1016/j.ab.2010.02.008] [PMID: 20156416]
[22]
Wu, J.H.; Jones, N.J. Assessment of DNA interstrand crosslinks using the modified alkaline comet assay. Methods Mol. Biol., 2012, 817, 165-181.
[http://dx.doi.org/10.1007/978-1-61779-421-6_9] [PMID: 22147573]
[23]
Spanswick, V.J.; Hartley, J.M.; Hartley, J.A. Measurement of DNA interstrand crosslinking in individual cells using the Single Cell Gel Electrophoresis (Comet) assay. Methods Mol. Biol., 2010, 613, 267-282.
[http://dx.doi.org/10.1007/978-1-60327-418-0_17] [PMID: 19997890]
[24]
Collins, A.; Møller, P.; Gajski, G.; Vodenková, S.; Abdulwahed, A.; Anderson, D.; Bankoglu, E.E.; Bonassi, S.; Boutet-Robinet, E.; Brun-borg, G.; Chao, C.; Cooke, M.S.; Costa, C.; Costa, S.; Dhawan, A.; de Lapuente, J.; Bo’, C.D.; Dubus, J.; Dusinska, M.; Duthie, S.J.; Yamani, N.E.; Engelward, B.; Gaivão, I.; Giovannelli, L.; Godschalk, R.; Guilherme, S.; Gutzkow, K.B.; Habas, K.; Hernández, A.; Herrero, O.; Isidori, M.; Jha, A.N.; Knasmüller, S.; Kooter, I.M.; Koppen, G.; Kruszewski, M.; Ladeira, C.; Laffon, B.; Larramendy, M.; Hégarat, L.L.; Lewies, A.; Lewinska, A.; Liwszyc, G.E.; de Cerain, A.L.; Manjanatha, M.; Marcos, R.; Milić, M.; de Andrade, V.M.; Moretti, M.; Muruzabal, D.; Novak, M.; Oliveira, R.; Olsen, A.K.; Owiti, N.; Pacheco, M.; Pandey, A.K.; Pfuhler, S.; Pourrut, B.; Reisinger, K.; Rojas, E.; Rundén-Pran, E.; Sanz-Serrano, J.; Shaposhnikov, S.; Sipinen, V.; Smeets, K.; Stopper, H.; Teixeira, J.P.; Valdiglesias, V.; Valverde, M.; van Acker, F.; van Schooten, F.J.; Vasquez, M.; Wentzel, J.F.; Wnuk, M.; Wouters, A.; Žegura, B.; Zikmund, T.; Langie, S.A.S.; Azqueta, A. Measuring DNA modifications with the comet assay: A compendium of protocols. Nat. Protoc., 2023, 18(3), 929-989.
[http://dx.doi.org/10.1038/s41596-022-00754-y] [PMID: 36707722]
[25]
McKelvey-Martin, V.J.; Green, M.H.L.; Schmezer, P.; Pool-Zobel, B.L.; De Méo, M.P.; Collins, A. The single cell gel electrophoresis assay (comet assay): A European review. Mutat. Res., 1993, 288(1), 47-63.
[http://dx.doi.org/10.1016/0027-5107(93)90207-V] [PMID: 7686265]
[26]
Singh, N.P.; Danner, D.B.; Tice, R.R.; McCoy, M.T.; Collins, G.D.; Schneider, E.L. Abundant alkali-sensitive sites in DNA of human and mouse sperm. Exp. Cell Res., 1989, 184(2), 461-470.
[http://dx.doi.org/10.1016/0014-4827(89)90344-3] [PMID: 2806399]
[27]
Olive, P.L.; Banáth, J.P.; Durand, R.E. Detection of etoposide resistance by measuring DNA damage in individual Chinese hamster cells. J. Natl. Cancer Inst., 1990, 82(9), 779-783.
[http://dx.doi.org/10.1093/jnci/82.9.779] [PMID: 2325148]
[28]
Olive, P.L.; Banáth, J.P.; Evans, H.H. Cell killing and DNA damage by etoposide in Chinese hamster V79 monolayers and spheroids: Influence of growth kinetics, growth environment and DNA packaging. Br. J. Cancer, 1993, 67(3), 522-530.
[http://dx.doi.org/10.1038/bjc.1993.97] [PMID: 8382510]
[29]
Olive, P.L.; Durand, R.E.; Banáth, J.P.; Evans, H.H. Etoposide sensitivity and topoisomerase II activity in Chinese hamster V79 monolayers and small spheroids. Int. J. Radiat. Biol., 1991, 60(3), 453-466.
[http://dx.doi.org/10.1080/09553009114552311] [PMID: 1679086]
[30]
Higami, Y.; Shimokawa, I.; Okimoto, T.; Ikeda, T. An age-related increase in the basal level of DNA damage and DNA vulnerability to oxygen radicals in the individual hepatocytes of male F344 rats. Mutation Research/DNAging, 1994, 316(2), 59-67.
[http://dx.doi.org/10.1016/0921-8734(94)90008-6] [PMID: 7521003]
[31]
Fairbairn, D.W.; Reyes, W.A.; Van Grigsby, R.; O’Neill, K.L. Laser scanning microscopic analysis of DNA damage in frozen tissues. Cancer Lett., 1994, 76(2-3), 127-132.
[http://dx.doi.org/10.1016/0304-3835(94)90388-3] [PMID: 8149341]
[32]
Ward, A.J.; Olive, P.L.; Burr, A.H.; Rosin, M.P. A sensitivity to oxidative stress is linked to chromosome 11 but is not due to a difference in single strand DNA breakage or repair. Mutat. Res. DNA Repair, 1993, 294(3), 299-308.
[http://dx.doi.org/10.1016/0921-8777(93)90012-6] [PMID: 7692269]
[33]
Vijayalaxmi; Tice, RR; Strauss, GH Assessment of radiation-induced DNA damage in human blood lymphocytes using the single-cell electrophoresis technique. Mutat. Res., 1992, 271, 243-252.
[http://dx.doi.org/10.1016/0165-1161(92)90019-I] [PMID: 1378197]
[34]
Vijayalaxmi, G.H.; Tice, R.R. An analysis of γ-ray-induced DNA damage in human blood leukocytes, lymphocytes and granulocytes. Mutat. Res. Envir. Mutag. Relat. Subj., 1993, 292(2), 123-128.
[http://dx.doi.org/10.1016/0165-1161(93)90139-Q] [PMID: 7692248]
[35]
Tice, R.R.; Strauss, G.H.S.; Peters, W.P. High-dose combination alkylating agents with autologous bone-marrow support in patients with breast cancer: Preliminary assessment of DNA damage in individual peripheral blood lymphocytes using the single cell gel electrophoresis assay. Mutat. Res. Envir. Mutag. Relat. Subj., 1992, 271(2), 101-113.
[http://dx.doi.org/10.1016/0165-1161(92)91083-4] [PMID: 1372680]
[36]
Singh, N.P.; Tice, R.R.; Stephens, R.E.; Schneider, E.L. A microgel electrophoresis technique for the direct quantitation of DNA damage and repair in individual fibroblasts cultured on microscope slides. Mutat. Res. Envir. Mutag. Relat. Subj., 1991, 252(3), 289-296.
[http://dx.doi.org/10.1016/0165-1161(91)90008-V] [PMID: 2052008]
[37]
Véras, J.H.; Do Vale, C.R.; Luiz, C.B. E.F.; Dos Anjos, M.M.; Cardoso, C.G.; de Oliveira, M.G.; de Paula, J.R.; de Oliveira, G.R.; Silva, C.R.E.; Chen-Chen, L. Protective effects and DNA repair induction of a coumarin-chalcone hybrid against genotoxicity induced by mutagens. J. Toxicol. Environ. Health A, 2022, 85(22), 937-951.
[http://dx.doi.org/10.1080/15287394.2022.2120585] [PMID: 36068785]
[38]
Vodenkova, S.; Azqueta, A.; Collins, A.; Dusinska, M.; Gaivão, I.; Møller, P.; Opattova, A.; Vodicka, P.; Godschalk, R.W.L.; Langie, S.A.S. An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity. Nat. Protoc., 2020, 15(12), 3844-3878.
[http://dx.doi.org/10.1038/s41596-020-0401-x] [PMID: 33199871]
[39]
Lima, D.C.S.; Vale, C.R.; Véras, J.H.; Bernardes, A.; Pérez, C.N.; Chen-Chen, L. Absence of genotoxic effects of the chalcone (E)-1-(2-hydroxyphenyl)-3-(4-methylphenyl)-prop-2-en-1-one) and its potential chemoprevention against DNA damage using in vitro and in vivo assays. PLoS One, 2017, 12(2), e0171224.
[http://dx.doi.org/10.1371/journal.pone.0171224] [PMID: 28207781]
[40]
Vasquez, M.; Frötschl, R. The in vivo comet assay test.Genetic Toxicology Testing. A Laboratory Manual; Proudlock, R., Ed.; Elsevier: London, 2016, pp. 345-382.
[http://dx.doi.org/10.1016/B978-0-12-800764-8.00010-0]
[41]
Carneiro, C.C.; da Costa Santos, S.; de Souza Lino, R., Jr; Bara, M.T.F.; Chaibub, B.A.; de Melo Reis, P.R.; Chaves, D.A.; da Silva, A.J.R.; Silva, L.S. de Melo e Silva, D.; Chen-Chen, L. Chemopreventive effect and angiogenic activity of punicalagin isolated from leaves of Lafoensia pacari A. St.-Hil. Toxicol. Appl. Pharmacol., 2016, 310, 1-8.
[http://dx.doi.org/10.1016/j.taap.2016.08.015] [PMID: 27546523]
[42]
Grigsby, R.; Fairbairn, D.; O’Neill, K.L. Differential DNA damage detected in hybridomas. Hybridoma, 1993, 12(6), 755-761.
[http://dx.doi.org/10.1089/hyb.1993.12.755] [PMID: 8288274]
[43]
Fairbairn, D.; O’Neill, K.L.; Standing, M.D. Application of confocal laser scanning microscopy to analysis of H2O2-induced DNA damage in human cells. Scanning, 1993, 15(3), 136-139.
[http://dx.doi.org/10.1002/sca.4950150305] [PMID: 8275279]
[44]
O’Neill, K.L.; Fairbairn, D.W.; Standing, M.D. Analysis of single-cell gel electrophoresis using laser-scanning microscopy. Mutat. Res. Genet. Toxicol. Test., 1993, 319(2), 129-134.
[http://dx.doi.org/10.1016/0165-1218(93)90071-K] [PMID: 7692288]
[45]
Delaney, C.A.; Green, M.H.L.; Lowe, J.E.; Green, I.C. Endogenous nitric oxide induced by interleukin-1β in rat islets of Langerhans and HIT-T15 cells causes significant DNA damage as measured by the ‘comet’ assay. FEBS Lett., 1993, 333(3), 291-295.
[http://dx.doi.org/10.1016/0014-5793(93)80673-I] [PMID: 8224196]
[46]
Betti, C.; Davini, T.; Giannessi, L.; Loprieno, N.; Barale, R. Microgel electrophoresis assay (comet test) and SCE analysis in human lym-phocytes from 100 normal subjects. Mutat. Res., 1994, 307(1), 323-333.
[http://dx.doi.org/10.1016/0027-5107(94)90306-9] [PMID: 7513812]
[47]
Enciso, J.M.; Sánchez, O.; López de Cerain, A.; Azqueta, A. Does the duration of lysis affect the sensitivity of the in vitro alkaline comet assay? Mutagenesis, 2015, 30(1), 21-28.
[http://dx.doi.org/10.1093/mutage/geu047] [PMID: 25527724]
[48]
Enciso, J.M.; Gutzkow, K.B.; Brunborg, G.; Olsen, A.K.; López de Cerain, A.; Azqueta, A. Standardisation of the in vitro comet assay: Influence of lysis time and lysis solution composition on the detection of DNA damage induced by X-rays. Mutagenesis, 2018, 33(1), 25-30.
[http://dx.doi.org/10.1093/mutage/gex039] [PMID: 29329446]
[49]
Karbaschi, M.; Ji, Y.; Abdulwahed, A.M.S.; Alohaly, A.; Bedoya, J.F.; Burke, S.L.; Boulos, T.M.; Tempest, H.G.; Cooke, M.S. Evaluation of the major steps in the conventional protocol for the alkaline comet assay. Int. J. Mol. Sci., 2019, 20(23), 6072.
[http://dx.doi.org/10.3390/ijms20236072] [PMID: 31810189]
[50]
Hansen, S.H.; Pawlowicz, A.J.; Kronberg, L.; Gützkow, K.B.; Olsen, A.K.; Brunborg, G. Using the comet assay and lysis conditions to characterize DNA lesions from the acrylamide metabolite glycidamide. Mutagenesis, 2018, 33(1), 31-39.
[http://dx.doi.org/10.1093/mutage/gex036] [PMID: 29240951]
[51]
Muruzabal, D.; Sanz-Serrano, J.; Sauvaigo, S.; Gützkow, K.B.; López de Cerain, A.; Vettorazzi, A.; Azqueta, A. Novel approach for the detection of alkylated bases using the enzyme-modified comet assay. Toxicol. Lett., 2020, 330, 108-117.
[http://dx.doi.org/10.1016/j.toxlet.2020.04.021] [PMID: 32380118]
[52]
Gates, K.S.; Nooner, T.; Dutta, S. Biologically relevant chemical reactions of N7-alkylguanine residues in DNA. Chem. Res. Toxicol., 2004, 17(7), 839-856.
[http://dx.doi.org/10.1021/tx049965c] [PMID: 15257608]
[53]
Lau, A.Y.; Schärer, O.D.; Samson, L.; Verdine, G.L.; Ellenberger, T. Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: Mechanisms for nucleotide flipping and base excision. Cell, 1998, 95(2), 249-258.
[http://dx.doi.org/10.1016/S0092-8674(00)81755-9] [PMID: 9790531]
[54]
Bradley, M.O.; Kohn, K.W. X-ray induced DNA double strand break production and repair in mammalian cells as measured by neutral filter elution. Nucleic Acids Res., 1979, 7(3), 793-804.
[http://dx.doi.org/10.1093/nar/7.3.793] [PMID: 92010]
[55]
Collins, A.R. The comet assay for DNA damage and repair: Principles, applications, and limitations. Mol. Biotechnol., 2004, 26(3), 249-261.
[http://dx.doi.org/10.1385/MB:26:3:249] [PMID: 15004294]
[56]
Collins, A.R.; Dobson, V.L.; Dušinská, M.; Kennedy, G.; Štětina, R. The comet assay: What can it really tell us? Mutat. Res., 1997, 375(2), 183-193.
[http://dx.doi.org/10.1016/S0027-5107(97)00013-4] [PMID: 9202728]
[57]
Tice, R.R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J.C.; Sasaki, Y.F. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen., 2000, 35(3), 206-221.
[http://dx.doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J] [PMID: 10737956]
[58]
Gedik, C.M.; Ewen, S.W.B.; Collins, A.R. Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells. Int. J. Radiat. Biol., 1992, 62(3), 313-320.
[http://dx.doi.org/10.1080/09553009214552161] [PMID: 1356133]
[59]
Collins, A.R.; Dusinská, M.; Gedik, C.M.; Stĕtina, R. Oxidative damage to DNA: Do we have a reliable biomarker? Environ. Health Perspect., 1996, 104(Suppl. 3), 465-469.
[http://dx.doi.org/10.1289/ehp.96104s3465] [PMID: 8781365]
[60]
Sauvaigo, S.; Serres, C.; Signorini, N.; Emonet, N.; Richard, M.J.; Cadet, J. Use of the single-cell gel electrophoresis assay for the immuno-fluorescent detection of specific DNA damage. Anal. Biochem., 1998, 259(1), 1-7.
[http://dx.doi.org/10.1006/abio.1998.2628] [PMID: 9606136]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy