Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Interaction of Brain-derived Neurotrophic Factor, Exercise, and Fear Extinction: Implications for Post-traumatic Stress Disorder

Author(s): Emily J. Antolasic, Emily J. Jaehne and Maarten van den Buuse*

Volume 22, Issue 4, 2024

Published on: 04 August, 2023

Page: [543 - 556] Pages: 14

DOI: 10.2174/1570159X21666230724101321

Price: $65

Abstract

Brain-Derived Neurotrophic Factor (BDNF) plays an important role in brain development, neural plasticity, and learning and memory. The Val66Met single-nucleotide polymorphism is a common genetic variant that results in deficient activity-dependent release of BDNF. This polymorphism and its impact on fear conditioning and extinction, as well as on symptoms of post-traumatic stress disorder (PTSD), have been of increasing research interest over the last two decades. More recently, it has been demonstrated that regular physical activity may ameliorate impairments in fear extinction and alleviate symptoms in individuals with PTSD via an action on BDNF levels and that there are differential responses to exercise between the Val66Met genotypes. This narrative literature review first describes the theoretical underpinnings of the development and persistence of intrusive and hypervigilance symptoms commonly seen in PTSD and their treatment. It then discusses recent literature on the involvement of BDNF and the Val66Met polymorphism in fear conditioning and extinction and its involvement in PTSD diagnosis and severity. Finally, it investigates research on the impact of physical activity on BDNF secretion, the differences between the Val66Met genotypes, and the effect on fear extinction learning and memory and symptoms of PTSD.

Graphical Abstract

[1]
Koenen, K.C.; Ratanatharathorn, A.; Ng, L.; McLaughlin, K.A.; Bromet, E.J.; Stein, D.J.; Karam, E.G.; Meron Ruscio, A.; Benjet, C.; Scott, K.; Atwoli, L.; Petukhova, M.; Lim, C.C.W.; Aguilar-Gaxiola, S.; Al-Hamzawi, A.; Alonso, J.; Bunting, B.; Ciutan, M.; de Girolamo, G.; Degenhardt, L.; Gureje, O.; Haro, J.M.; Huang, Y.; Kawakami, N.; Lee, S.; Navarro-Mateu, F.; Pennell, B.E.; Piazza, M.; Sampson, N.; ten Have, M.; Torres, Y.; Viana, M.C.; Williams, D.; Xavier, M.; Kessler, R.C. Posttraumatic stress disorder in the world mental health surveys. Psychol. Med., 2017, 47(13), 2260-2274.
[http://dx.doi.org/10.1017/S0033291717000708] [PMID: 28385165]
[2]
Lewis, S.J.; Arseneault, L.; Caspi, A.; Fisher, H.L.; Matthews, T.; Moffitt, T.E.; Odgers, C.L.; Stahl, D.; Teng, J.Y.; Danese, A. The epidemiology of trauma and post-traumatic stress disorder in a representative cohort of young people in England and Wales. Lancet Psychiatry, 2019, 6(3), 247-256.
[http://dx.doi.org/10.1016/S2215-0366(19)30031-8] [PMID: 30798897]
[3]
Salehi, M.; Amanat, M.; Mohammadi, M.; Salmanian, M.; Rezaei, N.; Saghazadeh, A.; Garakani, A. The prevalence of post-traumatic stress disorder related symptoms in Coronavirus outbreaks: A systematic-review and meta-analysis. J. Affect. Disord., 2021, 282, 527-538.
[http://dx.doi.org/10.1016/j.jad.2020.12.188] [PMID: 33433382]
[4]
Woolgar, F.; Garfield, H.; Dalgleish, T.; Meiser-Stedman, R. Systematic review and meta-analysis: prevalence of posttraumatic stress disorder in trauma-exposed preschool-aged children. J. Am. Acad. Child Adolesc. Psychiatry, 2022, 61(3), 366-377.
[5]
Olff, M. Sex and gender differences in post-traumatic stress disorder: An update. Eur. J. Psychotraumatol., 2017, 8(sup4), 1351204.
[http://dx.doi.org/10.1080/20008198.2017.1351204]
[6]
Diagnostic and statistical manual of mental disorders (DSM-5), 5th ed; American Psychiatric Association: Arlington, VA, 2013.
[7]
Hayes, J.P.; LaBar, K.S.; McCarthy, G.; Selgrade, E.; Nasser, J.; Dolcos, F.; Morey, R.A. Reduced hippocampal and amygdala activity predicts memory distortions for trauma reminders in combat-related PTSD. J. Psychiatr. Res., 2011, 45(5), 660-669.
[8]
Li, H.; Penzo, M.A.; Taniguchi, H.; Kopec, C.D.; Huang, Z.J.; Li, B. Experience-dependent modification of a central amygdala fear circuit. Nat. Neurosci., 2013, 16(3), 332-339.
[http://dx.doi.org/10.1038/nn.3322] [PMID: 23354330]
[9]
Nievergelt, C.M.; Maihofer, A.X.; Klengel, T.; Atkinson, E.G.; Chen, C.Y.; Choi, K.W.; Coleman, J.R.I.; Dalvie, S.; Duncan, L.E.; Gelernter, J.; Levey, D.F.; Logue, M.W.; Polimanti, R.; Provost, A.C.; Ratanatharathorn, A.; Stein, M.B.; Torres, K.; Aiello, A.E.; Almli, L.M.; Amstadter, A.B.; Andersen, S.B.; Andreassen, O.A.; Arbisi, P.A.; Ashley-Koch, A.E.; Austin, S.B.; Avdibegovic, E.; Babić, D.; Bækvad-Hansen, M.; Baker, D.G.; Beckham, J.C.; Bierut, L.J.; Bisson, J.I.; Boks, M.P.; Bolger, E.A.; Børglum, A.D.; Bradley, B.; Brashear, M.; Breen, G.; Bryant, R.A.; Bustamante, A.C.; Bybjerg-Grauholm, J.; Calabrese, J.R. Caldas- de- Almeida, J.M.; Dale, A.M.; Daly, M.J.; Daskalakis, N.P.; Deckert, J.; Delahanty, D.L.; Dennis, M.F.; Disner, S.G.; Domschke, K.; Dzubur-Kulenovic, A.; Erbes, C.R.; Evans, A.; Farrer, L.A.; Feeny, N.C.; Flory, J.D.; Forbes, D.; Franz, C.E.; Galea, S.; Garrett, M.E.; Gelaye, B.; Geuze, E.; Gillespie, C.; Uka, A.G.; Gordon, S.D.; Guffanti, G.; Hammamieh, R.; Harnal, S.; Hauser, M.A.; Heath, A.C.; Hemmings, S.M.J.; Hougaard, D.M.; Jakovljevic, M.; Jett, M.; Johnson, E.O.; Jones, I.; Jovanovic, T.; Qin, X.J.; Junglen, A.G.; Karstoft, K.I.; Kaufman, M.L.; Kessler, R.C.; Khan, A.; Kimbrel, N.A.; King, A.P.; Koen, N.; Kranzler, H.R.; Kremen, W.S.; Lawford, B.R.; Lebois, L.A.M.; Lewis, C.E.; Linnstaedt, S.D.; Lori, A.; Lugonja, B.; Luykx, J.J.; Lyons, M.J.; Maples-Keller, J.; Marmar, C.; Martin, A.R.; Martin, N.G.; Maurer, D.; Mavissakalian, M.R.; McFarlane, A.; McGlinchey, R.E.; McLaughlin, K.A.; McLean, S.A.; McLeay, S.; Mehta, D.; Milberg, W.P.; Miller, M.W.; Morey, R.A.; Morris, C.P.; Mors, O.; Mortensen, P.B.; Neale, B.M.; Nelson, E.C.; Nordentoft, M.; Norman, S.B.; O’Donnell, M.; Orcutt, H.K.; Panizzon, M.S.; Peters, E.S.; Peterson, A.L.; Peverill, M.; Pietrzak, R.H.; Polusny, M.A.; Rice, J.P.; Ripke, S.; Risbrough, V.B.; Roberts, A.L.; Rothbaum, A.O.; Rothbaum, B.O.; Roy-Byrne, P.; Ruggiero, K.; Rung, A.; Rutten, B.P.F.; Saccone, N.L.; Sanchez, S.E.; Schijven, D.; Seedat, S.; Seligowski, A.V.; Seng, J.S.; Sheerin, C.M.; Silove, D.; Smith, A.K.; Smoller, J.W.; Sponheim, S.R.; Stein, D.J.; Stevens, J.S.; Sumner, J.A.; Teicher, M.H.; Thompson, W.K.; Trapido, E.; Uddin, M.; Ursano, R.J.; van den Heuvel, L.L.; Van Hooff, M.; Vermetten, E.; Vinkers, C.H.; Voisey, J.; Wang, Y.; Wang, Z.; Werge, T.; Williams, M.A.; Williamson, D.E.; Winternitz, S.; Wolf, C.; Wolf, E.J.; Wolff, J.D.; Yehuda, R.; Young, R.M.; Young, K.A.; Zhao, H.; Zoellner, L.A.; Liberzon, I.; Ressler, K.J.; Haas, M.; Koenen, K.C. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat. Commun., 2019, 10(1), 4558.
[http://dx.doi.org/10.1038/s41467-019-12576-w] [PMID: 31594949]
[10]
Friedman, M.J.; Keane, T.M.; Resick, P.A.; Amaya-Jackson, L.M. Handbook of PTSD: Science and practice, 2nd ed; Guilford Press: New York, 2014.
[11]
Lancaster, C.; Teeters, J.; Gros, D.; Back, S. Posttraumatic Stress Disorder: Overview of evidence-based assessment and treatment. J. Clin. Med., 2016, 5(11), 105.
[http://dx.doi.org/10.3390/jcm5110105] [PMID: 27879650]
[12]
Flandreau, E.I.; Toth, M. Animal models of PTSD: A critical review. Curr. Top. Behav. Neurosci., 2017, 38, 47-68.
[http://dx.doi.org/10.1007/7854_2016_65] [PMID: 28070873]
[13]
Milad, M.R.; Rauch, S.L.; Pitman, R.K.; Quirk, G.J. Fear extinction in rats: Implications for human brain imaging and anxiety disorders. Biol. Psychol., 2006, 73(1), 61-71.
[http://dx.doi.org/10.1016/j.biopsycho.2006.01.008] [PMID: 16476517]
[14]
Fanselow, M.S. What is conditioned fear? Trends Neurosci., 1984, 7(12), 460-462.
[http://dx.doi.org/10.1016/S0166-2236(84)80253-2]
[15]
Milad, M.R.; Quirk, G.J. Fear extinction as a model for translational neuroscience: Ten years of progress. Annu. Rev. Psychol., 2012, 63, 129-151.
[http://dx.doi.org/10.1146/annurev.psych.121208.131631]
[16]
Andero, R.; Ressler, K.J. Fear extinction and BDNF: Translating animal models of PTSD to the clinic. Genes Brain Behav., 2012, 11(5), 503-512.
[http://dx.doi.org/10.1111/j.1601-183X.2012.00801.x] [PMID: 22530815]
[17]
Kim, J.J.; Jung, M.W. Neural circuits and mechanisms involved in Pavlovian fear conditioning: A critical review. Neurosci. Biobehav. Rev., 2006, 30(2), 188-202.
[http://dx.doi.org/10.1016/j.neubiorev.2005.06.005] [PMID: 16120461]
[18]
Milad, M.R.; Quirk, G.J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 2002, 420(6911), 70-74.
[http://dx.doi.org/10.1038/nature01138] [PMID: 12422216]
[19]
Ravindran, L.N.; Stein, M.B. Pharmacotherapy of PTSD: Premises, principles, and priorities. Brain Res., 2009, 1293, 24-39.
[http://dx.doi.org/10.1016/j.brainres.2009.03.037] [PMID: 19332035]
[20]
Asnis, G.M.; Kohn, S.R.; Henderson, M.; Brown, N.L. SSRIs versus non-SSRIs in post-traumatic stress disorder: An update with recommendations. Drugs, 2004, 64(4), 383-404.
[http://dx.doi.org/10.2165/00003495-200464040-00004] [PMID: 14969574]
[21]
Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in neuronal development and function. Ann. Rev. Neurosci., 2001, 24(1), 677-736.
[22]
Notaras, M.; van den Buuse, M. Brain-derived neurotrophic factor and its role in stress-related disorders. Stress: Genetics, epigenetics, and genomics; Fink, G., Ed.; Academic Press, Elsevier: San Diego, Cambridge, Oxford, 2021, Vol. 4, pp. 253-261.
[http://dx.doi.org/10.1016/B978-0-12-813156-5.00023-6]
[23]
Notaras, M.; Hill, R.; van den Buuse, M. The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Mol. Psychiatry, 2015, 20(8), 916-930.
[http://dx.doi.org/10.1038/mp.2015.27] [PMID: 25824305]
[24]
Notaras, M.; van den Buuse, M. Brain-Derived Neurotrophic Factor (BDNF): Novel insights into regulation and genetic variation. Neuroscientist, 2019, 25(5), 434-454.
[http://dx.doi.org/10.1177/1073858418810142] [PMID: 30387693]
[25]
Yang, J.; Siao, C.J.; Nagappan, G.; Marinic, T.; Jing, D.; McGrath, K.; Chen, Z.Y.; Mark, W.; Tessarollo, L.; Lee, F.S.; Lu, B.; Hempstead, B.L. Neuronal release of proBDNF. Nat. Neurosci., 2009, 12(2), 113-115.
[http://dx.doi.org/10.1038/nn.2244] [PMID: 19136973]
[26]
Nagappan, G.; Zaitsev, E.; Senatorov, V.V., Jr; Yang, J.; Hempstead, B.L.; Lu, B. Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc. Natl. Acad. Sci. USA, 2009, 106(4), 1267-1272.
[http://dx.doi.org/10.1073/pnas.0807322106] [PMID: 19147841]
[27]
Notaras, M.; van den Buuse, M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol. Psychiatry, 2020, 25(10), 2251-2274.
[http://dx.doi.org/10.1038/s41380-019-0639-2] [PMID: 31900428]
[28]
Conner, J.M.; Lauterborn, J.C.; Yan, Q.; Gall, C.M.; Varon, S. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J. Neurosci., 1997, 17(7), 2295-2313.
[http://dx.doi.org/10.1523/JNEUROSCI.17-07-02295.1997] [PMID: 9065491]
[29]
Minichiello, L. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci., 2009, 10(12), 850-860.
[http://dx.doi.org/10.1038/nrn2738] [PMID: 19927149]
[30]
Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-Derived Neurotrophic Factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci., 2019, 13, 363.
[http://dx.doi.org/10.3389/fncel.2019.00363]
[31]
Figurov, A.; Pozzo-Miller, L.D.; Olafsson, P.; Wang, T.; Lu, B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature, 1996, 381(6584), 706-709.
[http://dx.doi.org/10.1038/381706a0] [PMID: 8649517]
[32]
Sasi, M.; Vignoli, B.; Canossa, M.; Blum, R. Neurobiology of local and intercellular BDNF signaling. Pflugers Arch., 2017, 469(5-6), 593-610.
[http://dx.doi.org/10.1007/s00424-017-1964-4] [PMID: 28280960]
[33]
Hill, R.A.; van den Buuse, M. Sex-dependent and region-specific changes in TrkB signaling in BDNF heterozygous mice. Brain Res., 2011, 1384, 51-60.
[http://dx.doi.org/10.1016/j.brainres.2011.01.060]
[34]
Klug, M.; Hill, R.A.; Choy, K.H.C.; Kyrios, M.; Hannan, A.J.; van den Buuse, M. Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice. Neurobiol. Dis., 2012, 46(3), 722-731.
[http://dx.doi.org/10.1016/j.nbd.2012.03.015] [PMID: 22426399]
[35]
Montkowski, A.; Holsboer, F. Intact spatial learning and memory in transgenic mice with reduced BDNF. Neuroreport, 1997, 8(3), 779-782.
[http://dx.doi.org/10.1097/00001756-199702100-00040] [PMID: 9106766]
[36]
Gray, J.; Yeo, G.S.H.; Cox, J.J.; Morton, J.; Adlam, A.L.R.; Keogh, J.M.; Yanovski, J.A.; El Gharbawy, A.; Han, J.C.; Tung, Y.C.L.; Hodges, J.R.; Raymond, F.L.; O’Rahilly, S.; Farooqi, I.S. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes, 2006, 55(12), 3366-3371.
[http://dx.doi.org/10.2337/db06-0550] [PMID: 17130481]
[37]
Gray, J.; Yeo, G.; Hung, C.; Keogh, J.; Clayton, P.; Banerjee, K.; McAulay, A.; O’Rahilly, S.; Farooqi, I.S. Functional characterization of human NTRK2 mutations identified in patients with severe early-onset obesity. Int. J. Obes., 2007, 31(2), 359-364.
[http://dx.doi.org/10.1038/sj.ijo.0803390]
[38]
Yeo, G.S.H.; Connie Hung, C.C.; Rochford, J.; Keogh, J.; Gray, J.; Sivaramakrishnan, S.; O’Rahilly, S.; Farooqi, I.S. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat. Neurosci., 2004, 7(11), 1187-1189.
[http://dx.doi.org/10.1038/nn1336] [PMID: 15494731]
[39]
Arosio, B.; Guerini, F.R.; Voshaar, R.C.O.; Aprahamian, I. Blood Brain-Derived Neurotrophic Factor (BDNF) and Major Depression: Do we have a translational perspective? Front. Behav. Neurosci., 2021, 15, 626906.
[http://dx.doi.org/10.3389/fnbeh.2021.626906] [PMID: 33643008]
[40]
Arumugam, V.; John, V.; Augustine, N.; Jacob, T.; Joy, S.; Sen, S.; Sen, T. The impact of antidepressant treatment on brain-derived neurotrophic factor level: An evidence-based approach through systematic review and meta-analysis. Indian J. Pharmacol., 2017, 49(3), 236-242.
[http://dx.doi.org/10.4103/ijp.IJP_700_16] [PMID: 29033483]
[41]
Casarotto, P.C.; Girych, M.; Fred, S.M.; Kovaleva, V.; Moliner, R.; Enkavi, G.; Biojone, C.; Cannarozzo, C.; Sahu, M.P.; Kaurinkoski, K.; Brunello, C.A.; Steinzeig, A.; Winkel, F.; Patil, S.; Vestring, S.; Serchov, T.; Diniz, C.R.A.F.; Laukkanen, L.; Cardon, I.; Antila, H.; Rog, T.; Piepponen, T.P.; Bramham, C.R.; Normann, C.; Lauri, S.E.; Saarma, M.; Vattulainen, I.; Castrén, E. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell, 2021, 184(5), 1299-1313.e19.
[http://dx.doi.org/10.1016/j.cell.2021.01.034] [PMID: 33606976]
[42]
Rosas-Vidal, L.E.; Do-Monte, F.H.; Sotres-Bayon, F.; Quirk, G.J. Hippocampal--prefrontal BDNF and memory for fear extinction. Neuropsychopharmacology, 2014, 39(9), 2161-2169.
[http://dx.doi.org/10.1038/npp.2014.64] [PMID: 24625752]
[43]
Kataoka, T.; Fuchikami, M.; Nojima, S.; Nagashima, N.; Araki, M.; Omura, J.; Miyagi, T.; Okamoto, Y.; Morinobu, S. Combined brain-derived neurotrophic factor with extinction training alleviate impaired fear extinction in an animal model of post-traumatic stress disorder. Genes Brain Behav., 2018, 12520.
[http://dx.doi.org/10.1111/gbb.12520] [PMID: 30246290]
[44]
Chaaya, N.; Wang, J.; Jacques, A.; Beecher, K.; Chaaya, M.; Battle, A.R.; Johnson, L.R.; Chehrehasa, F.; Belmer, A.; Bartlett, S.E. Contextual fear memory maintenance changes expression of pMAPK, BDNF and IBA-1 in the prelimbic cortex in a layer-specific manner. Front. Neural Circuits, 2021, 15, 660199.
[http://dx.doi.org/10.3389/fncir.2021.660199] [PMID: 34295224]
[45]
Peters, J.; Dieppa-Perea, L.M.; Melendez, L.M.; Quirk, G.J. Induction of fear extinction with hippocampal-infralimbic BDNF. Science, 2010, 328(5983), 1288-1290.
[http://dx.doi.org/10.1126/science.1186909] [PMID: 20522777]
[46]
Chang, S.H.; Yu, Y.H.; He, A.; Ou, C.Y.; Shyu, B.C.; Huang, A.C.W. BDNF protein and BDNF mRNA expression of the medial prefrontal cortex, amygdala, and hippocampus during situational reminder in the PTSD animal model. Behav. Neurol., 2021, 2021, 1-13.
[http://dx.doi.org/10.1155/2021/6657716] [PMID: 33763156]
[47]
Kirtley, A.; Thomas, K.L. The exclusive induction of extinction is gated by BDNF. Learn. Mem., 2010, 17(12), 612-619.
[http://dx.doi.org/10.1101/lm.1877010] [PMID: 21127000]
[48]
Radiske, A.; Rossato, J.I.; Köhler, C.A.; Gonzalez, M.C.; Medina, J.H.; Cammarota, M. Requirement for BDNF in the reconsolidation of fear extinction. J. Neurosci., 2015, 35(16), 6570-6574.
[http://dx.doi.org/10.1523/JNEUROSCI.4093-14.2015] [PMID: 25904806]
[49]
Chaaya, N.; Jacques, A.; Belmer, A.; Beecher, K.; Ali, S.A.; Chehrehasa, F.; Battle, A.R.; Johnson, L.R.; Bartlett, S.E. Contextual fear conditioning alter microglia number and morphology in the rat dorsal hippocampus. Front. Cell. Neurosci., 2019, 13, 214.
[http://dx.doi.org/10.3389/fncel.2019.00214] [PMID: 31139053]
[50]
Endres, T.; Lessmann, V. Age-dependent deficits in fear learning in heterozygous BDNF knock-out mice. Learn. Mem., 2012, 19(12), 561-570.
[http://dx.doi.org/10.1101/lm.028068.112] [PMID: 23154927]
[51]
Meis, S.; Endres, T.; Munsch, T.; Lessmann, V. The relation between long-term synaptic plasticity at glutamatergic synapses in the amygdala and fear learning in adult heterozygous BDNF-knockout Mice. Cereb. Cortex, 2018, 28(4), 1195-1208.
[http://dx.doi.org/10.1093/cercor/bhx032] [PMID: 28184413]
[52]
Psotta, L.; Lessmann, V.; Endres, T. Impaired fear extinction learning in adult heterozygous BDNF knock-out mice. Neurobiol. Learn. Mem., 2013, 103, 34-38.
[http://dx.doi.org/10.1016/j.nlm.2013.03.003] [PMID: 23578839]
[53]
Hill, J.L.; Hardy, N.F.; Jimenez, D.V.; Maynard, K.R.; Kardian, A.S.; Pollock, C.J.; Schloesser, R.J.; Martinowich, K. Loss of promoter IV-driven BDNF expression impacts oscillatory activity during sleep, sensory information processing and fear regulation. Transl. Psychiatry, 2016, 6(8), e873.
[http://dx.doi.org/10.1038/tp.2016.153] [PMID: 27552586]
[54]
Choi, D.C.; Maguschak, K.A.; Ye, K.; Jang, S.W.; Myers, K.M.; Ressler, K.J. Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2675-2680.
[http://dx.doi.org/10.1073/pnas.0909359107] [PMID: 20133801]
[55]
McEwen, B.S.; Bowles, N.P.; Gray, J.D.; Hill, M.N.; Hunter, R.G.; Karatsoreos, I.N.; Nasca, C. Mechanisms of stress in the brain. Nat. Neurosci., 2015, 18(10), 1353-1363.
[http://dx.doi.org/10.1038/nn.4086] [PMID: 26404710]
[56]
Gururajan, A.; Hill, R.A.; van den Buuse, M. Brain-derived neurotrophic factor heterozygous mutant rats show selective cognitive changes and vulnerability to chronic corticosterone treatment. Neuroscience, 2015, 284, 297-310.
[http://dx.doi.org/10.1016/j.neuroscience.2014.10.009] [PMID: 25445195]
[57]
Wu, Y.C.; Hill, R.A.; Gogos, A.; van den Buuse, M. Sex differences and the role of estrogen in animal models of schizophrenia: Interaction with BDNF. Neuroscience, 2013, 239, 67-83.
[http://dx.doi.org/10.1016/j.neuroscience.2012.10.024] [PMID: 23085218]
[58]
Baker-Andresen, D.; Flavell, C.R.; Li, X.; Bredy, T.W. Activation of BDNF signaling prevents the return of fear in female mice. Learn. Mem., 2013, 20(5), 237-240.
[http://dx.doi.org/10.1101/lm.029520.112] [PMID: 23589089]
[59]
Aksu, S.; Unlu, G.; Kardesler, A.C.; Cakaloz, B.; Aybek, H. Altered levels of brain-derived neurotrophic factor, proBDNF and tissue plasminogen activator in children with posttraumatic stress disorder. Psychiatry Res., 2018, 268, 478-483.
[http://dx.doi.org/10.1016/j.psychres.2018.07.013] [PMID: 30142554]
[60]
Stratta, P.; Sanità, P.; Bonanni, R.L.; de Cataldo, S.; Angelucci, A.; Rossi, R.; Origlia, N.; Domenici, L.; Carmassi, C.; Piccinni, A.; Dell’Osso, L.; Rossi, A. Clinical correlates of plasma brain-derived neurotrophic factor in post-traumatic stress disorder spectrum after a natural disaster. Psychiatry Res., 2016, 244, 165-170.
[http://dx.doi.org/10.1016/j.psychres.2016.07.019] [PMID: 27479108]
[61]
Bücker, J.; Fries, G.R.; Kapczinski, F.; Post, R.M.; Yatham, L.N.; Vianna, P.; Bogo Chies, J.A.; Gama, C.S.; Magalhães, P.V.; Aguiar, B.W.; Pfaffenseller, B. Kauer-Sant’Anna, M. Brain-derived neurotrophic factor and inflammatory markers in school-aged children with early trauma. Acta Psychiatr. Scand., 2015, 131(5), 360-368.
[http://dx.doi.org/10.1111/acps.12358] [PMID: 25401224]
[62]
Matsuoka, Y.; Nishi, D.; Noguchi, H.; Kim, Y.; Hashimoto, K. Longitudinal changes in serum brain-derived neurotrophic factor in accident survivors with posttraumatic stress disorder. Neuropsychobiology, 2013, 68(1), 44-50.
[http://dx.doi.org/10.1159/000350950] [PMID: 23774996]
[63]
Su, S.; Xiao, Z.; Lin, Z.; Qiu, Y.; Jin, Y.; Wang, Z. Plasma brain-derived neurotrophic factor levels in patients suffering from post-traumatic stress disorder. Psychiatry Res., 2015, 229(1-2), 365-369.
[http://dx.doi.org/10.1016/j.psychres.2015.06.038] [PMID: 26160204]
[64]
Howie, H.; Rijal, C.M.; Ressler, K.J. A review of epigenetic contributions to post-traumatic stress disorder. Dialogues Clin. Neurosci., 2019, 21(4), 417-428.
[http://dx.doi.org/10.31887/DCNS.2019.21.4/kressler] [PMID: 31949409]
[65]
Kim, T.Y.; Kim, S.J.; Chung, H.G.; Choi, J.H.; Kim, S.H.; Kang, J.I. Epigenetic alterations of the BDNF gene in combat-related post-traumatic stress disorder. Acta Psychiatr. Scand., 2017, 135(2), 170-179.
[http://dx.doi.org/10.1111/acps.12675] [PMID: 27886370]
[66]
Pilakka-Kanthikeel, S.; Atluri, V.S.; Sagar, V.; Saxena, S.K.; Nair, M. Targeted brain derived neurotropic factors (BDNF) delivery across the blood-brain barrier for neuro-protection using magnetic nano carriers: an in-vitro study. PLoS One, 2013, 8(4), e62241.
[67]
Mahan, A.L.; Ressler, K.J. Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci., 2012, 35(1), 24-35.
[http://dx.doi.org/10.1016/j.tins.2011.06.007] [PMID: 21798604]
[68]
Zeng, Y.; Liu, Y.; Wu, M.; Liu, J.; Hu, Q. Activation of TrkB by 7,8-dihydroxyflavone prevents fear memory defects and facilitates amygdalar synaptic plasticity in aging. J. Alzheimers Dis., 2012, 31(4), 765-778.
[http://dx.doi.org/10.3233/JAD-2012-120886] [PMID: 22710915]
[69]
Andero, R.; Heldt, S.A.; Ye, K.; Liu, X.; Armario, A.; Ressler, K.J. Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning. Am. J. Psychiatry, 2011, 168(2), 163-172.
[70]
Flavell, C.R.; Lambert, E.A.; Winters, B.D.; Bredy, T.W. Mechanisms governing the reactivation-dependent destabilization of memories and their role in extinction. Front. Behav. Neurosci., 2013, 7, 214.
[http://dx.doi.org/10.3389/fnbeh.2013.00214] [PMID: 24421762]
[71]
Klein, R.; Nanduri, V.; Jing, S.; Lamballe, F.; Tapley, P.; Bryant, S.; Cordon-Cardo, C.; Jones, K.R.; Reichardt, L.F.; Barbacid, M. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell, 1991, 66(2), 395-403.
[http://dx.doi.org/10.1016/0092-8674(91)90628-C] [PMID: 1649702]
[72]
Soppet, D.; Escandon, E.; Maragos, J.; Middlemas, D.S.; Raid, S.W.; Blair, J.; Burton, L.E.; Stanton, B.R.; Kaplan, D.R.; Hunter, T.; Nikolics, K.; Parade, L.F. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell, 1991, 65(5), 895-903.
[http://dx.doi.org/10.1016/0092-8674(91)90396-G] [PMID: 1645620]
[73]
Chen, Z.Y.; Ieraci, A.; Teng, H.; Dall, H.; Meng, C.X.; Herrera, D.G.; Nykjaer, A.; Hempstead, B.L.; Lee, F.S. Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J. Neurosci., 2005, 25(26), 6156-6166.
[http://dx.doi.org/10.1523/JNEUROSCI.1017-05.2005] [PMID: 15987945]
[74]
Yang, M.; Lim, Y.; Li, X.; Zhong, J.H.; Zhou, X.F. Precursor of brain-derived neurotrophic factor (proBDNF) forms a complex with Huntingtin-associated protein-1 (HAP1) and sortilin that modulates proBDNF trafficking, degradation, and processing. J. Biol. Chem., 2011, 286(18), 16272-16284.
[http://dx.doi.org/10.1074/jbc.M110.195347] [PMID: 21357693]
[75]
Chen, Z.Y.; Jing, D.; Bath, K.G.; Ieraci, A.; Khan, T.; Siao, C.J.; Herrera, D.G.; Toth, M.; Yang, C.; McEwen, B.S.; Hempstead, B.L.; Lee, F.S. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science, 2006, 314(5796), 140-143.
[http://dx.doi.org/10.1126/science.1129663] [PMID: 17023662]
[76]
Mercado, N.M.; Stancati, J.A.; Sortwell, C.E.; Mueller, R.L.; Boezwinkle, S.A.; Duffy, M.F.; Fischer, D.L.; Sandoval, I.M.; Manfredsson, F.P.; Collier, T.J.; Steece-Collier, K. The BDNF Val66Met polymorphism (rs6265) enhances dopamine neuron graft efficacy and side-effect liability in rs6265 knock-in rats. Neurobiol. Dis., 2021, 148, 105175.
[http://dx.doi.org/10.1016/j.nbd.2020.105175] [PMID: 33188920]
[77]
Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; Lu, B.; Weinberger, D.R. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 2003, 112(2), 257-269.
[http://dx.doi.org/10.1016/S0092-8674(03)00035-7] [PMID: 12553913]
[78]
Petryshen, T.L.; Sabeti, P.C.; Aldinger, K.A.; Fry, B.; Fan, J.B.; Schaffner, S.F.; Waggoner, S.G.; Tahl, A.R.; Sklar, P. Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Mol. Psychiatry, 2010, 15(8), 810-815.
[http://dx.doi.org/10.1038/mp.2009.24] [PMID: 19255578]
[79]
Dincheva, I.; Pattwell, S.S.; Tessarollo, L.; Bath, K.G.; Lee, F.S. BDNF modulates contextual fear learning during adolescence. Dev. Neurosci., 2014, 36(3-4), 269-276.
[http://dx.doi.org/10.1159/000358824] [PMID: 24992985]
[80]
Felmingham, K.L.; Zuj, D.V.; Hsu, K.C.M.; Nicholson, E.; Palmer, M.A.; Stuart, K.; Vickers, J.C.; Malhi, G.S.; Bryant, R.A. The BDNF Val66Met polymorphism moderates the relationship between Posttraumatic Stress Disorder and fear extinction learning. Psychoneuroendocrinology, 2018, 91, 142-148.
[http://dx.doi.org/10.1016/j.psyneuen.2018.03.002] [PMID: 29550677]
[81]
Giza, J.I.; Kim, J.; Meyer, H.C.; Anastasia, A.; Dincheva, I.; Zheng, C.I.; Lopez, K.; Bains, H.; Yang, J.; Bracken, C.; Liston, C.; Jing, D.; Hempstead, B.L.; Lee, F.S. The BDNF val66met prodomain disassembles dendritic spines altering fear extinction circuitry and behavior. Neuron, 2018, 99(1), 163-178.e6.
[http://dx.doi.org/10.1016/j.neuron.2018.05.024] [PMID: 29909994]
[82]
Mühlberger, A.; Andreatta, M.; Ewald, H.; Glotzbach-Schoon, E.; Tröger, C.; Baumann, C.; Reif, A.; Deckert, J.; Pauli, P. The BDNF Val66Met polymorphism modulates the generalization of cued fear responses to a novel context. Neuropsychopharmacology, 2014, 39(5), 1187-1195.
[http://dx.doi.org/10.1038/npp.2013.320] [PMID: 24247044]
[83]
Soliman, F.; Glatt, C.E.; Bath, K.G.; Levita, L.; Jones, R.M.; Pattwell, S.S.; Jing, D.; Tottenham, N.; Amso, D.; Somerville, L.H.; Voss, H.U.; Glover, G.; Ballon, D.J.; Liston, C.; Teslovich, T.; Van Kempen, T.; Lee, F.S.; Casey, B.J. A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science, 2010, 327(5967), 863-866.
[http://dx.doi.org/10.1126/science.1181886] [PMID: 20075215]
[84]
Lonsdorf, T.B.; Golkar, A.; Lindström, K.M.; Haaker, J.; Öhman, A.; Schalling, M.; Ingvar, M. BDNF val66met affects neural activation pattern during fear conditioning and 24 h delayed fear recall. Soc. Cogn. Affect. Neurosci., 2015, 10(5), 664-671.
[http://dx.doi.org/10.1093/scan/nsu102] [PMID: 25103087]
[85]
Lonsdorf, T.B.; Weike, A.I.; Golkar, A.; Schalling, M.; Hamm, A.O.; Öhman, A. Amygdala-dependent fear conditioning in humans is modulated by the BDNFval66met polymorphism. Behav. Neurosci., 2010, 124(1), 9-15.
[http://dx.doi.org/10.1037/a0018261] [PMID: 20141276]
[86]
Asthana, M.K.; Brunhuber, B.; Mühlberger, A.; Reif, A.; Schneider, S.; Herrmann, M.J. Preventing the return of fear using reconsolidation update mechanisms depends on the met-allele of the brain derived neurotrophic factor val66met polymorphism. Int. J. Neuropsychopharmacol., 2015, 19(6), pyv137.
[http://dx.doi.org/10.1093/ijnp/pyv137] [PMID: 26721948]
[87]
Jaehne, E.J.; Kent, J.N.; Antolasic, E.J.; Wright, B.J.; Spiers, J.G.; Creutzberg, K.C.; De Rosa, F.; Riva, M.A.; Sortwell, C.E.; Collier, T.J.; van den Buuse, M. Behavioral phenotyping of a rat model of the BDNF Val66Met polymorphism reveals selective impairment of fear memory. Transl. Psychiatry, 2022, 12(1), 93.
[http://dx.doi.org/10.1038/s41398-022-01858-5] [PMID: 35256586]
[88]
Long, V.A.; Fanselow, M.S. Stress-enhanced fear learning in rats is resistant to the effects of immediate massed extinction. Stress, 2012, 15(6), 627-636.
[http://dx.doi.org/10.3109/10253890.2011.650251] [PMID: 22176467]
[89]
Raju, S.; Notaras, M.; Grech, A.M.; Schroeder, A.; van den Buuse, M.; Hill, R.A. BDNF Val66Met genotype and adolescent glucocorticoid treatment induce sex-specific disruptions to fear extinction and amygdala GABAergic interneuron expression in mice. Horm. Behav., 2022, 144, 105231.
[http://dx.doi.org/10.1016/j.yhbeh.2022.105231] [PMID: 35779519]
[90]
Notaras, M.; Hill, R.; Gogos, J.A.; van den Buuse, M. BDNF Val66Met genotype determines hippocampus-dependent behavior via sensitivity to glucocorticoid signaling. Mol. Psychiatry, 2016, 21(6), 730-732.
[http://dx.doi.org/10.1038/mp.2015.152] [PMID: 26821977]
[91]
Corrone, M.; Ratnayake, R.; De Oliveira, N.; Jaehne, E.J.; van den Buuse, M. Methamphetamine-induced locomotor sensitization in mice is not associated with deficits in a range of cognitive, affective and social behaviours: Interaction with brain-derived neurotrophic factor (BDNF) Val66Met. Behav. Pharmacol., 2022, 34(1), 20-36.
[92]
Richter-Levin, G.; Stork, O.; Schmidt, M.V. Animal models of PTSD: A challenge to be met. Mol. Psychiatry, 2019, 24(8), 1135-1156.
[http://dx.doi.org/10.1038/s41380-018-0272-5] [PMID: 30816289]
[93]
Osterburg, A.R.; Hexley, P.; Supp, D.M.; Robinson, C.T.; Noel, G.; Ogle, C.; Boyce, S.T.; Aronow, B.J.; Babcock, G.F. Concerns over interspecies transcriptional comparisons in mice and humans after trauma. Proc. Natl. Acad. Sci. USA, 2013, 110(36), E3370.
[http://dx.doi.org/10.1073/pnas.1306033110] [PMID: 23847210]
[94]
Cohen, H.; Geva, A.B.; Matar, M.A.; Zohar, J.; Kaplan, Z. Post-traumatic stress behavioural responses in inbred mouse strains: can genetic predisposition explain phenotypic vulnerability? Int. J. Neuropsychopharmacol., 2008, 11(3), 331-349.
[http://dx.doi.org/10.1017/S1461145707007912] [PMID: 17655807]
[95]
Shansky, R.M. Sex differences in PTSD resilience and susceptibility: Challenges for animal models of fear learning. Neurobiol. Stress, 2015, 1, 60-65.
[96]
Dai, W.; Kaminga, A.C.; Wu, X.; Wen, S.W.; Tan, H.; Yan, J.; Deng, J.; Lai, Z.; Liu, A. Brain-derived neurotropic factor val66met polymorphism and posttraumatic stress disorder among survivors of the 1998 Dongting lake flood in China. BioMed Res. Int., 2017, 2017, 1-9.
[http://dx.doi.org/10.1155/2017/4569698] [PMID: 28589140]
[97]
Guo, J.C.; Yang, Y.J.; Zheng, J.F.; Guo, M.; Wang, X.D.; Gao, Y.S.; Fu, L.Q.; Jiang, X.L.; Fu, L.M.; Huang, T. Functional rs6265 polymorphism in the brain‐derived neurotrophic factor gene confers protection against neurocognitive dysfunction in posttraumatic stress disorder among Chinese patients with hepatocellular carcinoma. J. Cell. Biochem., 2019, 120(6), 10434-10443.
[http://dx.doi.org/10.1002/jcb.28328] [PMID: 30659644]
[98]
Young, D.A.; Neylan, T.C.; O’Donovan, A.; Metzler, T.; Richards, A.; Ross, J.A.; Inslicht, S.S. The interaction of BDNF Val66Met, PTSD, and child abuse on psychophysiological reactivity and HPA axis function in a sample of Gulf War Veterans. J. Affect. Disord., 2018, 235, 52-60.
[http://dx.doi.org/10.1016/j.jad.2018.04.004] [PMID: 29649711]
[99]
Li, R.H.; Fan, M.; Hu, M.S.; Ran, M.S.; Fang, D.Z. Reduced severity of posttraumatic stress disorder associated with Val allele of Val66Met polymorphism at brain-derived neurotrophic factor gene among Chinese adolescents after Wenchuan earthquake. Psychophysiology, 2016, 53(5), 705-711.
[http://dx.doi.org/10.1111/psyp.12603] [PMID: 26751724]
[100]
Zhang, L.; Benedek, D.M.; Fullerton, C.S.; Forsten, R.D.; Naifeh, J.A.; Li, X.X.; Hu, X.Z.; Li, H.; Jia, M.; Xing, G.Q.; Benevides, K.N.; Ursano, R.J. PTSD risk is associated with BDNF Val66Met and BDNF overexpression. Mol. Psychiatry, 2014, 19(1), 8-10.
[http://dx.doi.org/10.1038/mp.2012.180] [PMID: 23319005]
[101]
Nedic Erjavec, G.; Nikolac Perkovic, M.; Tudor, L.; Uzun, S.; Kovacic Petrovic, Z.; Konjevod, M.; Sagud, M.; Kozumplik, O.; Svob Strac, D.; Peraica, T.; Mimica, N.; Havelka, M.A.; Zilic, D.; Pivac, N. Moderating effects of BDNF genetic variants and smoking on cognition in PTSD veterans. Biomolecules, 2021, 11(5), 641.
[http://dx.doi.org/10.3390/biom11050641] [PMID: 33926045]
[102]
Dretsch, M.N.; Williams, K.; Emmerich, T.; Crynen, G.; Ait-Ghezala, G.; Chaytow, H.; Mathura, V.; Crawford, F.C.; Iverson, G.L. Brain‐derived neurotropic factor polymorphisms, traumatic stress, mild traumatic brain injury, and combat exposure contribute to postdeployment traumatic stress. Brain Behav., 2016, 6(1), e00392.
[http://dx.doi.org/10.1002/brb3.392] [PMID: 27110438]
[103]
Pivac, N.; Kozaric-Kovacic, D.; Grubisic-Ilic, M.; Nedic, G.; Rakos, I.; Nikolac, M.; Blazev, M.; Muck-Seler, D. The association between brain-derived neurotrophic factor Val66Met variants and psychotic symptoms in posttraumatic stress disorder. World J. Biol. Psychiatry, 2012, 13(4), 306-311.
[http://dx.doi.org/10.3109/15622975.2011.582883] [PMID: 21728904]
[104]
Felmingham, K.L.; Dobson-Stone, C.; Schofield, P.R.; Quirk, G.J.; Bryant, R.A. The brain-derived neurotrophic factor val66met polymorphism predicts response to exposure therapy in posttraumatic stress disorder. Biol. Psychiatry, 2013, 73(11), 1059-1063.
[http://dx.doi.org/10.1016/j.biopsych.2012.10.033]
[105]
Lyoo, I.K.; Kim, J.E.; Yoon, S.J.; Hwang, J.; Bae, S.; Kim, D.J. The neurobiological role of the dorsolateral prefrontal cortex in recovery from trauma. Longitudinal brain imaging study among survivors of the South Korean subway disaster. Arch. Gen. Psychiatry, 2011, 68(7), 701-713.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.70] [PMID: 21727254]
[106]
Jin, M.J.; Jeon, H.; Hyun, M.H.; Lee, S.H. Influence of childhood trauma and brain-derived neurotrophic factor Val66Met polymorphism on posttraumatic stress symptoms and cortical thickness. Sci. Rep., 2019, 9(1), 6028.
[http://dx.doi.org/10.1038/s41598-019-42563-6] [PMID: 30988377]
[107]
van den Heuvel, L.; Suliman, S.; Malan-Müller, S.; Hemmings, S.; Seedat, S. Brain-derived neurotrophic factor Val66met polymorphism and plasma levels in road traffic accident survivors. Anxiety Stress Coping, 2016, 29(6), 616-629.
[http://dx.doi.org/10.1080/10615806.2016.1163545] [PMID: 26999419]
[108]
Valente, N.L.M.; Vallada, H.; Cordeiro, Q.; Miguita, K.; Bressan, R.A.; Andreoli, S.B.; Mari, J.J.; Mello, M.F. Candidate-gene approach in posttraumatic stress disorder after urban violence: Association analysis of the genes encoding serotonin transporter, dopamine transporter, and BDNF. J. Mol. Neurosci., 2011, 44(1), 59-67.
[http://dx.doi.org/10.1007/s12031-011-9513-7] [PMID: 21491204]
[109]
Bruenig, D.; Lurie, J.; Morris, C.P.; Harvey, W.; Lawford, B.; Young, R.M.; Voisey, J. A case-control study and meta-analysis reveal BDNF val66met is a possible risk factor for PTSD. Neural Plast., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/6979435] [PMID: 27413557]
[110]
Guo, J.C.; Yang, Y.J.; Guo, M.; Wang, X.D.; Juan, Y.; Gao, Y.S.; Fu, L.Q.; Jiang, X.L.; Fu, L.M.; Huang, T. Guo; Yang, Y.-J.; Guo, M.; Wang, X.-D.; Juan, Y.; Gao, Y.-S.; Fu, L.-Q.; Jiang, X.-L.; Fu, L.-M.; Huang, T., Correlations of four genetic single nucleotide polymorphisms in brain-derived neurotrophic factor with posttraumatic stress disorder. Psychiatry Investig., 2018, 15(4), 407-412.
[http://dx.doi.org/10.30773/pi.2017.06.17.1] [PMID: 29551049]
[111]
Bountress, K.E.; Bacanu, S.A.; Tomko, R.L.; Korte, K.J.; Hicks, T.; Sheerin, C.; Lind, M.J.; Marraccini, M.; Nugent, N.; Amstadter, A.B. The effects of a BDNF val66met polymorphism on posttraumatic stress disorder: A meta-analysis. Neuropsychobiology, 2017, 76(3), 136-142.
[http://dx.doi.org/10.1159/000489407] [PMID: 29874672]
[112]
Tudor, L.; Konjevod, M.; Nikolac Perkovic, M.; Svob Strac, D.; Nedic Erjavec, G.; Uzun, S.; Kozumplik, O.; Sagud, M.; Kovacic Petrovic, Z.; Pivac, N. Genetic variants of the brain-derived neurotrophic factor and metabolic indices in veterans with posttraumatic stress disorder. Front. Psychiatry, 2018, 9, 637.
[http://dx.doi.org/10.3389/fpsyt.2018.00637] [PMID: 30542302]
[113]
Dinoff, A.; Herrmann, N.; Swardfager, W.; Lanctôt, K.L. The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: A meta-analysis. Eur. J. Neurosci., 2017, 46(1), 1635-1646.
[http://dx.doi.org/10.1111/ejn.13603] [PMID: 28493624]
[114]
Patki, G.; Li, L.; Allam, F.; Solanki, N.; Dao, A.T.; Alkadhi, K.; Salim, S. Moderate treadmill exercise rescues anxiety and depression-like behavior as well as memory impairment in a rat model of posttraumatic stress disorder. Physiol. Behav., 2014, 130, 47-53.
[http://dx.doi.org/10.1016/j.physbeh.2014.03.016]
[115]
Vaynman, S.; Ying, Z.; Gomez-Pinilla, F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci., 2004, 20(10), 2580-2590.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03720.x] [PMID: 15548201]
[116]
Fang, Z.H.; Lee, C.H.; Seo, M.K.; Cho, H.; Lee, J.G.; Lee, B.J.; Park, S.W.; Kim, Y.H. Effect of treadmill exercise on the BDNF-mediated pathway in the hippocampus of stressed rats. Neurosci. Res., 2013, 76(4), 187-194.
[http://dx.doi.org/10.1016/j.neures.2013.04.005] [PMID: 23665137]
[117]
Lu, J.; Xu, Y.; Hu, W.; Gao, Y.; Ni, X.; Sheng, H.; Liu, Y. Exercise ameliorates depression-like behavior and increases hippocampal BDNF level in ovariectomized rats. Neurosci. Lett., 2014, 573, 13-18.
[http://dx.doi.org/10.1016/j.neulet.2014.04.053]
[118]
Marais, L.; Stein, D.J.; Daniels, W.M.U. Exercise increases BDNF levels in the striatum and decreases depressive-like behavior in chronically stressed rats. Metab. Brain Dis., 2009, 24(4), 587-597.
[http://dx.doi.org/10.1007/s11011-009-9157-2] [PMID: 19844781]
[119]
Marlatt, M.W.; Potter, M.C.; Lucassen, P.J.; van Praag, H. Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Dev. Neurobiol., 2012, 72(6), 943-952.
[http://dx.doi.org/10.1002/dneu.22009] [PMID: 22252978]
[120]
Shafia, S.; Vafaei, A.A.; Samaei, S.A.; Bandegi, A.R.; Rafiei, A.; Valadan, R.; Hosseini-Khah, Z.; Mohammadkhani, R.; Rashidy-Pour, A. Effects of moderate treadmill exercise and fluoxetine on behavioural and cognitive deficits, hypothalamic-pituitary-adrenal axis dysfunction and alternations in hippocampal BDNF and mRNA expression of apoptosis – related proteins in a rat model of post-traumatic stress disorder. Neurobiol. Learn. Mem., 2017, 139, 165-178.
[http://dx.doi.org/10.1016/j.nlm.2017.01.009] [PMID: 28137660]
[121]
Neeper, S.A.; Gómez-Pinilla, F.; Choi, J.; Cotman, C.W. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res., 1996, 726(1-2), 49-56.
[http://dx.doi.org/10.1016/0006-8993(96)00273-9] [PMID: 8836544]
[122]
Sun, L.; Cui, K.; Xing, F.; Liu, X. Akt dependent adult hippocampal neurogenesis regulates the behavioral improvement of treadmill running to mice model of post-traumatic stress disorder. Behav. Brain Res., 2020, 379, 112375.
[http://dx.doi.org/10.1016/j.bbr.2019.112375] [PMID: 31759046]
[123]
van Praag, H. Neurogenesis and exercise: past and future directions. Neuromol. Med., 2008, 10(2), 128-140.
[http://dx.doi.org/10.1007/s12017-008-8028-z] [PMID: 18286389]
[124]
Nowacka-Chmielewska, M.; Grabowska, K.; Grabowski, M.; Meybohm, P.; Burek, M.; Małecki, A. Running from stress: Neurobiological mechanisms of exercise-induced stress resilience. Int. J. Mol. Sci., 2022, 23(21), 13348.
[http://dx.doi.org/10.3390/ijms232113348] [PMID: 36362131]
[125]
Ishikawa, R.; Uchida, C.; Kitaoka, S.; Furuyashiki, T.; Kida, S. Improvement of PTSD-like behavior by the forgetting effect of hippocampal neurogenesis enhancer memantine in a social defeat stress paradigm. Mol. Brain, 2019, 12(1), 68.
[http://dx.doi.org/10.1186/s13041-019-0488-6] [PMID: 31370877]
[126]
Schoenfeld, T.J.; Rhee, D.; Martin, L.; Smith, J.A.; Sonti, A.N.; Padmanaban, V.; Cameron, H.A. New neurons restore structural and behavioral abnormalities in a rat model of PTSD. Hippocampus, 2019, 29(9), 848-861.
[http://dx.doi.org/10.1002/hipo.23087] [PMID: 30865372]
[127]
Powers, M.B.; Medina, J.L.; Burns, S.; Kauffman, B.Y.; Monfils, M.; Asmundson, G.J.; Diamond, A.; McIntyre, C.; Smits, J.A. Exercise augmentation of exposure therapy for PTSD: Rationale and pilot efficacy data. Cogn. Behav. Ther., 2015, 44(4), 314-327.
[128]
Crombie, K.M.; Sartin-Tarm, A.; Sellnow, K.; Ahrenholtz, R.; Lee, S.; Matalamaki, M.; Almassi, N.E.; Hillard, C.J.; Koltyn, K.F.; Adams, T.G.; Cisler, J.M. Exercise-induced increases in Anandamide and BDNF during extinction consolidation contribute to reduced threat following reinstatement: Preliminary evidence from a randomized controlled trial. Psychoneuroendocrinology, 2021, 132, 105355.
[http://dx.doi.org/10.1016/j.psyneuen.2021.105355] [PMID: 34280820]
[129]
Szuhany, K.L.; Bugatti, M.; Otto, M.W. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res., 2015, 60, 56-64.
[http://dx.doi.org/10.1016/j.jpsychires.2014.10.003] [PMID: 25455510]
[130]
Hu, S.; Tucker, L.; Wu, C.; Yang, L. Beneficial effects of exercise on depression and anxiety during the COVID-19 pandemic: A narrative review. Front. Psychiatry, 2020, 11, 587557.
[http://dx.doi.org/10.3389/fpsyt.2020.587557] [PMID: 33329133]
[131]
Ruiz-González, D.; Hernández-Martínez, A.; Valenzuela, P.L.; Morales, J.S.; Soriano-Maldonado, A. Effects of physical exercise on plasma brain-derived neurotrophic factor in neurodegenerative disorders: A systematic review and meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev., 2021, 128, 394-405.
[http://dx.doi.org/10.1016/j.neubiorev.2021.05.025] [PMID: 34087277]
[132]
Cavalcante, B.R.R.; Improta-Caria, A.C.; Melo, V.H.; De Sousa, R.A.L. Exercise-linked consequences on epilepsy. Epilepsy Behav., 2021, 121(Pt A), 108079.
[http://dx.doi.org/10.1016/j.yebeh.2021.108079] [PMID: 34058490]
[133]
Murawska-Ciałowicz, E.; Wiatr, M.; Ciałowicz, M.; Gomes de Assis, G.; Borowicz, W.; Rocha-Rodrigues, S.; Paprocka-Borowicz, M.; Marques, A. BDNF impact on biological markers of depression - Role of physical exercise and training. Int. J. Environ. Res. Public Health, 2021, 18(14), 7553.
[http://dx.doi.org/10.3390/ijerph18147553] [PMID: 34300001]
[134]
Jaehne, E.J.; Kent, J.N.; Lam, N.; Schonfeld, L.; Spiers, J.G.; Begni, V.; De Rosa, F.; Riva, M.A.; van den Buuse, M. Chronic running‐wheel exercise from adolescence leads to increased anxiety and depression‐like phenotypes in adulthood in rats: Effects on stress markers and interaction with BDNF Val66Met genotype. Dev. Psychobiol., 2023, 65(1), e22347.
[http://dx.doi.org/10.1002/dev.22347] [PMID: 36567651]
[135]
Nascimento, C.M.C.; Pereira, J.R.; Pires de Andrade, L.; Garuffi, M.; Ayan, C.; Kerr, D.S.; Talib, L.L.; Cominetti, M.R.; Stella, F. Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different bdnf Val66Met genotypes. J. Alzheimers Dis., 2014, 43(1), 81-91.
[http://dx.doi.org/10.3233/JAD-140576] [PMID: 25062900]
[136]
Rahman, M.S.; Millischer, V.; Zeebari, Z.; Forsell, Y.; Lavebratt, C. BDNF Val66Met and childhood adversity on response to physical exercise and internet-based cognitive behavioural therapy in depressed Swedish adults. J. Psychiatr. Res., 2017, 93, 50-58.
[137]
Kim, J.M.; Stewart, R.; Bae, K.Y.; Kim, S.W.; Yang, S.J.; Park, K.H.; Shin, I.S.; Yoon, J.S. Role of BDNF val66met polymorphism on the association between physical activity and incident dementia. Neurobiol. Aging, 2011, 32(3), 551.e5-12.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.01.018]
[138]
Liu, T.; Canon, M.D.; Shen, L.; Marples, B.A.; Colton, J.P.; Lo, W.J.; Gray, M.; Li, C. The influence of the BDNF Val66Met polymorphism on the association of regular physical activity with cognition among individuals with diabetes. Biol. Res. Nurs., 2021, 23(3), 318-330.
[http://dx.doi.org/10.1177/1099800420966648] [PMID: 33063528]
[139]
Zarza-Rebollo, J.A.; Molina, E.; López-Isac, E.; Pérez-Gutiérrez, A.M.; Gutiérrez, B.; Cervilla, J.A.; Rivera, M. Interaction effect between physical activity and the BDNF Val66Met polymorphism on depression in women from the PISMA-ep study. Int. J. Environ. Res. Public Health, 2022, 19(4), 2068.
[http://dx.doi.org/10.3390/ijerph19042068] [PMID: 35206257]
[140]
Mata, J.; Thompson, R.J.; Gotlib, I.H. BDNF genotype moderates the relation between physical activity and depressive symptoms. Health Psychol., 2010, 29(2), 130-133.
[http://dx.doi.org/10.1037/a0017261] [PMID: 20230085]
[141]
Takeuchi, H.; Tomita, H.; Taki, Y.; Kikuchi, Y.; Ono, C.; Yu, Z.; Sekiguchi, A.; Nouchi, R.; Kotozaki, Y.; Nakagawa, S.; Miyauchi, C.M.; Iizuka, K.; Yokoyama, R.; Shinada, T.; Yamamoto, Y.; Hanawa, S.; Araki, T.; Kunitoki, K.; Sassa, Y.; Kawashima, R. Effect of the interaction between BDNF Val66Met polymorphism and daily physical activity on mean diffusivity. Brain Imaging Behav., 2020, 14(3), 806-820.
[http://dx.doi.org/10.1007/s11682-018-0025-8] [PMID: 30617785]
[142]
Caldwell, H.A.E.; Bryan, A.D.; Hagger, M.S. What keeps a body moving? The brain-derived neurotrophic factor val66met polymorphism and intrinsic motivation to exercise in humans. J. Behav. Med., 2014, 37(6), 1180-1192.
[http://dx.doi.org/10.1007/s10865-014-9567-4] [PMID: 24805993]
[143]
Ieraci, A.; Madaio, A.I.; Mallei, A.; Lee, F.S.; Popoli, M. Brain-derived neurotrophic factor val66met human polymorphism impairs the beneficial exercise-induced neurobiological changes in mice. Neuropsychopharmacology, 2016, 41(13), 3070-3079.
[http://dx.doi.org/10.1038/npp.2016.120] [PMID: 27388329]
[144]
Lemos, J.R., Jr; Alves, C.R.; de Souza, S.B.C.; Marsiglia, J.D.C.; Silva, M.S.M.; Pereira, A.C.; Teixeira, A.L.; Vieira, E.L.M.; Krieger, J.E.; Negrão, C.E.; Alves, G.B.; de Oliveira, E.M.; Bolani, W.; Dias, R.G.; Trombetta, I.C. Peripheral vascular reactivity and serum BDNF responses to aerobic training are impaired by the BDNF Val66Met polymorphism. Physiol. Genomics, 2016, 48(2), 116-123.
[http://dx.doi.org/10.1152/physiolgenomics.00086.2015] [PMID: 26603150]
[145]
Watts, A.; Andrews, S.J.; Anstey, K.J. Sex differences in the impact of BDNF genotype on the longitudinal relationship between physical activity and cognitive performance. Gerontology, 2018, 64(4), 361-372.
[http://dx.doi.org/10.1159/000486369] [PMID: 29402782]
[146]
Helm, E.E.; Matt, K.S.; Kirschner, K.F.; Pohlig, R.T.; Kohl, D.; Reisman, D.S. The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning. Neurobiol. Learn. Mem., 2017, 144, 77-85.
[http://dx.doi.org/10.1016/j.nlm.2017.06.003] [PMID: 28668279]
[147]
Keyan, D.; Bryant, R.A. Acute exercise-induced enhancement of fear inhibition is moderated by BDNF Val66Met polymorphism. Transl. Psychiatry, 2019, 9(1), 131.
[http://dx.doi.org/10.1038/s41398-019-0464-z] [PMID: 30967530]
[148]
Pitts, B.L.; Whealin, J.M.; Harpaz-Rotem, I.; Duman, R.S.; Krystal, J.H.; Southwick, S.M.; Pietrzak, R.H. BDNF Val66Met polymorphism and posttraumatic stress symptoms in U.S. military veterans: Protective effect of physical exercise. Psychoneuroendocrinology, 2019, 100, 198-202.
[http://dx.doi.org/10.1016/j.psyneuen.2018.10.011] [PMID: 30388593]
[149]
Keyan, D.; Bryant, R.A. Role of BDNF val66met polymorphism in modulating exercised-induced emotional memories. Psychoneuroendocrinology, 2017, 77, 150-157.
[http://dx.doi.org/10.1016/j.psyneuen.2016.12.013] [PMID: 28056410]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy