Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Amalgamated Pharmacoinformatics Study to Investigate the Mechanism of Xiao Jianzhong Tang against Chronic Atrophic Gastritis

Author(s): Xu Lian, Kaidi Fan, Xuemei Qin* and Yuetao Liu*

Volume 20, Issue 5, 2024

Published on: 01 August, 2023

Page: [598 - 615] Pages: 18

DOI: 10.2174/1573409919666230720141115

Price: $65

Abstract

Background: Traditional Chinese medicine (TCM) Xiao Jianzhong Tang (XJZ) has a favorable efficacy in the treatment of chronic atrophic gastritis (CAG). However, its pharmacological mechanism has not been fully explained.

Objective: The purpose of this study was to find the potential mechanism of XJZ in the treatment of CAG using pharmacocoinformatics approaches.

Methods: Network pharmacology was used to screen out the key compounds and key targets, MODELLER and GNNRefine were used to repair and refine proteins, Autodock vina was employed to perform molecular docking, Δ Lin_F9XGB was used to score the docking results, and Gromacs was used to perform molecular dynamics simulations (MD).

Results: Kaempferol, licochalcone A, and naringenin, were obtained as key compounds, while AKT1, MAPK1, MAPK14, RELA, STAT1, and STAT3 were acquired as key targets. Among docking results, 12 complexes scored greater than five. They were run for 50ns MD. The free binding energy of AKT1-licochalcone A and MAPK1-licochalcone A was less than -15 kcal/mol and AKT1-naringenin and STAT3-licochalcone A was less than -9 kcal/mol. These complexes were crucial in XJZ treating CAG.

Conclusion: Our findings suggest that licochalcone A could act on AKT1, MAPK1, and STAT3, and naringenin could act on AKT1 to play the potential therapeutic effect on CAG. The work also provides a powerful approach to interpreting the complex mechanism of TCM through the amalgamation of network pharmacology, deep learning-based protein refinement, molecular docking, machine learning-based binding affinity estimation, MD simulations, and MM-PBSA-based estimation of binding free energy.

Graphical Abstract

[1]
Koulis, A.; Buckle, A.; Boussioutas, A. Premalignant lesions and gastric cancer: Current understanding. World J. Gastrointest. Oncol., 2019, 11(9), 665-678.
[http://dx.doi.org/10.4251/wjgo.v11.i9.665] [PMID: 31558972]
[2]
Li, Y.; Xia, R.; Zhang, B.; Li, C. Chronic Atrophic Gastritis: A Review. J. Environ. Pathol. Toxicol. Oncol., 2018, 37(3), 241-259.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018026839] [PMID: 30317974]
[3]
Rodriguez-Castro, K.I.; Franceschi, M.; Noto, A.; Miraglia, C.; Nouvenne, A.; Leandro, G.; Meschi, T.; De’ Angelis, G.L.; Di Mario, F. Clinical manifestations of chronic atrophic gastritis. Acta Biomed., 2018, 89(8-S), 88-92.
[PMID: 30561424]
[4]
Woodford, A.M.; Chaudhry, R.; Conte, G.A.; Gupta, V.; Anne, M. Chronic atrophic gastritis presenting as hemolytic anemia due to severe Vitamin B12 deficiency. Case Rep. Hematol., 2021, 2021, 1-5.
[http://dx.doi.org/10.1155/2021/9571072] [PMID: 34373795]
[5]
Wei, W.; Lin, S.; Zhu, Y. Effects of Anwei decoction on the protein expression of TFF in rats with chronic atrophic gastritis. Mod. Res. Inflamm., 2014, 3(1), 1-6.
[http://dx.doi.org/10.4236/mri.2014.31001]
[6]
Ou, J.; Wang, L. Efficacy of Self-made Hewei Decoction for chronic atrophic gastritis and its effect on gastrin and pepsinogen expression levels. Contrast Media Mol. Imaging, 2022, 2022, 1-8.
[http://dx.doi.org/10.1155/2022/1092695] [PMID: 35694708]
[7]
Wen, J.; Wu, S.; Ma, X.; Zhao, Y. Zuojin Pill attenuates Helicobacter pylori-induced chronic atrophic gastritis in rats and improves gastric epithelial cells function in GES-1 cells. J. Ethnopharmacol., 2022, 285, 114855.
[http://dx.doi.org/10.1016/j.jep.2021.114855] [PMID: 34808298]
[8]
Yin, J.; Yi, J.; Yang, C.; Xu, B.; Lin, J.; Hu, H.; Wu, X.; Shi, H.; Fei, X. Weiqi Decoction attenuated chronic atrophic gastritis with precancerous lesion through regulating microcirculation disturbance and HIF-1α signaling pathway. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/2651037] [PMID: 31320912]
[9]
Guo, C.Y. Observation on the curative effect of Xiaojianzhong Decoction in treating chronic gastritis. Mod J Integr Tradit Chin West Med, 2022, 2, 2464-2465.
[10]
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120.
[http://dx.doi.org/10.1016/S1875-5364(13)60037-0] [PMID: 23787177]
[11]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[12]
Chai, X-L.; Pan, Q.; Zhang, Z-Q.; Tian, C-Y.; Yu, T.; Yang, R. Effect and signaling pathways of Nelumbinis folium in the treatment of hyperlipidemia assessed by network pharmacology. World J. Tradit. Chin. Med., 2021, 7(4), 445-455.
[http://dx.doi.org/10.4103/2311-8571.328619]
[13]
Zhao, T.T.; Lan, R.R.; Liang, S.D.; Schmalzing, G.; Gao, H.W.; Verkhratsky, A.; He, C.H.; Nie, H. An exploration in the potential substance basis and mechanism of Chuanxiong Rhizoma and Angelicae Dahuricae Radix on analgesia based on network pharmacology and molecular docking. World J. Tradit. Chin. Med., 2021, 7(2), 201-208.
[14]
Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol., 2002, 9(9), 646-652.
[http://dx.doi.org/10.1038/nsb0902-646] [PMID: 12198485]
[15]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[16]
Xu, H.Y.; Zhang, Y.Q.; Liu, Z.M.; Chen, T.; Lv, C.Y.; Tang, S.H.; Zhang, X.B.; Zhang, W.; Li, Z.Y.; Zhou, R.R.; Yang, H.J.; Wang, X.J.; Huang, L.Q. ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res., 2019, 47(D1), D976-D982.
[http://dx.doi.org/10.1093/nar/gky987] [PMID: 30365030]
[17]
Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14.
[http://dx.doi.org/10.1093/nar/gkab255] [PMID: 33893803]
[18]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[19]
Nickel, J.; Gohlke, B.O.; Erehman, J.; Banerjee, P.; Rong, W.W.; Goede, A.; Dunkel, M.; Preissner, R. SuperPred: Update on drug classification and target prediction. Nucleic Acids Res., 2014, 42(W1), W26-W31.
[http://dx.doi.org/10.1093/nar/gku477] [PMID: 24878925]
[20]
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[21]
Liu, X.; Ouyang, S.; Yu, B.; Liu, Y.; Huang, K.; Gong, J.; Zheng, S.; Li, Z.; Li, H.; Jiang, H. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res., 2010, 38(Web Server issue)(Suppl.2), W609-W614.
[http://dx.doi.org/10.1093/nar/gkq300] [PMID: 20430828]
[22]
Ochoa, D.; Hercules, A.; Carmona, M.; Suveges, D.; Gonzalez-Uriarte, A.; Malangone, C.; Miranda, A.; Fumis, L.; Carvalho-Silva, D.; Spitzer, M.; Baker, J.; Ferrer, J.; Raies, A.; Razuvayevskaya, O.; Faulconbridge, A.; Petsalaki, E.; Mutowo, P.; Machlitt-Northen, S.; Peat, G.; McAuley, E.; Ong, C.K.; Mountjoy, E.; Ghoussaini, M.; Pierleoni, A.; Papa, E.; Pignatelli, M.; Koscielny, G.; Karim, M.; Schwartzentruber, J.; Hulcoop, D.G.; Dunham, I.; McDonagh, E.M. Open Targets Platform: Supporting systematic drug–target identification and prioritisation. Nucleic Acids Res., 2021, 49(D1), D1302-D1310.
[http://dx.doi.org/10.1093/nar/gkaa1027] [PMID: 33196847]
[23]
Hamosh, A.; Scott, A.F.; Amberger, J.S.; Bocchini, C.A.; McKusick, V.A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res., 2005, 33(Database issue), D514-D517.
[http://dx.doi.org/10.1093/nar/gki033] [PMID: 15608251]
[24]
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The GeneCards Suite.Practical Guide to Life Science Databases; Springer Nature: London, 2022, pp. 27-56.
[25]
Piñero, J.; Bravo, À.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res., 2017, 45(D1), D833-D839.
[http://dx.doi.org/10.1093/nar/gkw943] [PMID: 27924018]
[26]
UniProt Consortium. T. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2018, 46(5), 2699.
[http://dx.doi.org/10.1093/nar/gky092] [PMID: 29425356]
[27]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[28]
Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[29]
Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res., 2022, 50(W1), W216-W221.
[http://dx.doi.org/10.1093/nar/gkac194] [PMID: 35325185]
[30]
Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(1), 2.
[http://dx.doi.org/10.1186/1471-2105-4-2] [PMID: 12525261]
[31]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(S4)(Suppl. 4), S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[32]
Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res., 2011, 39(Web Server issue)(Suppl. 2), W316-W322.
[http://dx.doi.org/10.1093/nar/gkr483] [PMID: 21715386]
[33]
Martí-Renom, M.A.; Stuart, A.C.; Fiser, A.; Sánchez, R.; Melo, F.; Šali, A. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct., 2000, 29(1), 291-325.
[http://dx.doi.org/10.1146/annurev.biophys.29.1.291] [PMID: 10940251]
[34]
Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics, 2016, 5, 5-6.
[http://dx.doi.org/10.1002/cpbi.3]
[35]
Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.Y.; Pieper, U.; Sali, A. Comparative protein structure modeling using Modeller; Curr. Protoc. Bioinformatics, 2006. Chapter 5, 6.
[PMID: 18428767]
[36]
Jing, X.; Xu, J. Fast and effective protein model refinement using deep graph neural networks. Nature Computational Science, 2021, 1(7), 462-469.
[http://dx.doi.org/10.1038/s43588-021-00098-9] [PMID: 35321360]
[37]
Chen, V.B.; Arendall, W.B., III; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(1), 12-21.
[http://dx.doi.org/10.1107/S0907444909042073] [PMID: 20057044]
[38]
Zhang, J.; Zhang, Y. A novel side-chain orientation dependent potential derived from random-walk reference state for protein fold selection and structure prediction. PLoS One, 2010, 5(10), e15386.
[http://dx.doi.org/10.1371/journal.pone.0015386] [PMID: 21060880]
[39]
Volkamer, A.; Kuhn, D.; Rippmann, F.; Rarey, M. DoGSiteScorer: A web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics, 2012, 28(15), 2074-2075.
[http://dx.doi.org/10.1093/bioinformatics/bts310] [PMID: 22628523]
[40]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[41]
Cetin, A. In silico studies on stilbenolignan analogues as SARS-CoV-2 Mpro inhibitors. Chem. Phys. Lett., 2021, 771, 138563.
[http://dx.doi.org/10.1016/j.cplett.2021.138563] [PMID: 33776065]
[42]
Cetin, A. Some flavolignans as potent Sars-Cov-2 inhibitors via molecular docking, molecular dynamic simulations and ADME analysis. Curr. Computeraided Drug Des., 2022, 18(5), 337-346.
[http://dx.doi.org/10.2174/1573409918666220816113516] [PMID: 35975852]
[43]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[44]
Yang, C.; Zhang, Y. Delta machine learning to improve scoring-ranking-screening performances of protein–ligand scoring functions. J. Chem. Inf. Model., 2022, 62(11), 2696-2712.
[http://dx.doi.org/10.1021/acs.jcim.2c00485] [PMID: 35579568]
[45]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[46]
Zenodo. GROMACS 2022 Manual. 2020. Available From: https://zenodo.org/record/7037337
[47]
Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 2012, 33(5), 580-592.
[http://dx.doi.org/10.1002/jcc.22885] [PMID: 22162017]
[48]
Frank, N. Software update: The ORCA program system, version 4.0 Comput. Mol. Sci, 2018, 8(1), e1327.
[http://dx.doi.org/10.1002/wcms.1327]
[49]
Frank, N. Software update: The ORCA program system, version 5.0 Comput. Mol. Sci, 2022, 12(5), e1606.
[http://dx.doi.org/10.1002/wcms.1606]
[50]
Lu, T. Sobtop: A tool of generating forcefield parameters and GROMACS topology file. 2022. Available From: sobereva.com/soft/Sobtop
[51]
Turner, P.J. Center for Coastal And Land-Margin Research (CCALMR); Oregon Graduate Institute of Science and Technology.: Oregon, 2005.
[52]
Jing, X. GNNRefine: Fast and effective protein model refinement by deep graph neural networks; , 2021. Available From: https://codeocean.com/capsule/5769140/tree/v1
[53]
Lobanov, M.Iu.; Bogatyreva, N.S.; Galzitskaia, O.V. Radius of gyration is indicator of compactness of protein structure. Mol. Biol., 2008, 42(4), 701-706.
[PMID: 18856071]
[54]
Borjian Boroujeni, M.; Shahbazi Dastjerdeh, M.; Shokrgozar, M.A.; Rahimi, H.; Omidinia, E. Computational driven molecular dynamics simulation of keratinocyte growth factor behavior at different pH conditions. Informatics in Medicine Unlocked, 2021, 23, 100514.
[http://dx.doi.org/10.1016/j.imu.2021.100514]
[55]
Hao, Y.; Zhang, C.; Sun, Y.; Xu, H. Licochalcone A inhibits cell proliferation, migration, and invasion through regulating the PI3K/AKT signaling pathway in oral squamous cell carcinoma. OncoTargets Ther., 2019, 12, 4427-4435.
[http://dx.doi.org/10.2147/OTT.S201728] [PMID: 31239711]
[56]
Chen, X.; Liu, Z.; Meng, R.; Shi, C.; Guo, N. Antioxidative and anticancer properties of Licochalcone A from licorice. J. Ethnopharmacol., 2017, 198, 331-337.
[http://dx.doi.org/10.1016/j.jep.2017.01.028] [PMID: 28111219]
[57]
Shu, J.; Cui, X.; Liu, X.; Yu, W.; Zhang, W.; Huo, X.; Lu, C. Licochalcone A inhibits IgE-mediated allergic reaction through PLC/ERK/STAT3 pathway. Int. J. Immunopathol. Pharmacol., 2022, 36, 3946320221135462.
[http://dx.doi.org/10.1177/03946320221135462] [PMID: 36263976]
[58]
Wu, J.; Ye, X.; Yang, S.; Yu, H.; Zhong, L.; Gong, Q. Systems pharmacology study of the anti-liver injury mechanism of citri reticulatae pericarpium. Front. Pharmacol., 2021, 12, 618846.
[http://dx.doi.org/10.3389/fphar.2021.618846] [PMID: 33912040]
[59]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[60]
Chu, X.; Ci, X.; Wei, M.; Yang, X.; Cao, Q.; Guan, M.; Li, H.; Deng, Y.; Feng, H.; Deng, X. Licochalcone a inhibits lipopolysaccharide-induced inflammatory response in vitro and in vivo. J. Agric. Food Chem., 2012, 60(15), 3947-3954.
[http://dx.doi.org/10.1021/jf2051587] [PMID: 22400806]
[61]
Furuhashi, I.; Iwata, S.; Sato, T.; Inoue, H.; Shibata, S. Inhibition by licochalcone A, a novel flavonoid isolated from liquorice root, of IL-1β-induced PGE2 production in human skin fibroblasts. J. Pharm. Pharmacol., 2010, 57(12), 1661-1666.
[http://dx.doi.org/10.1211/jpp.57.12.0017] [PMID: 16354411]
[62]
Chang, J.; Zhang, Y.; Shen, N.; Zhou, J.; Zhang, H. MiR-129-5p prevents depressive-like behaviors by targeting MAPK1 to suppress inflammation. Exp. Brain Res., 2021, 239(11), 3359-3370.
[http://dx.doi.org/10.1007/s00221-021-06203-8] [PMID: 34482419]
[63]
Lee, H.; Jeong, A.J.; Ye, S.K. Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep., 2019, 52(7), 415-423.
[http://dx.doi.org/10.5483/BMBRep.2019.52.7.152] [PMID: 31186087]
[64]
Pan, C.; Liu, Q.; Wu, X. HIF1α/miR-520a-3p/AKT1/mTOR feedback promotes the proliferation and glycolysis of gastric cancer cells. Cancer Manag. Res., 2019, 11, 10145-10156.
[http://dx.doi.org/10.2147/CMAR.S223473] [PMID: 31819647]
[65]
Xue, L.; Zhang, W.J.; Fan, Q.X.; Wang, L.X. Licochalcone A inhibits PI3K/Akt/mTOR signaling pathway activation and promotes autophagy in breast cancer cells. Oncol. Lett., 2018, 15(2), 1869-1873.
[PMID: 29399197]
[66]
Huang, C.F.; Yang, S.F.; Chiou, H.L.; Hsu, W.H.; Hsu, J.C.; Liu, C.J.; Hsieh, Y.H. Licochalcone A inhibits the invasive potential of human glioma cells by targeting the MEK/ERK and ADAM9 signaling pathways. Food Funct., 2018, 9(12), 6196-6204.
[http://dx.doi.org/10.1039/C8FO01643G] [PMID: 30465574]
[67]
Funakoshi-Tago, M.; Tago, K.; Nishizawa, C.; Takahashi, K.; Mashino, T.; Iwata, S.; Inoue, H.; Sonoda, Y.; Kasahara, T. Licochalcone A is a potent inhibitor of TEL-Jak2-mediated transformation through the specific inhibition of Stat3 activation. Biochem. Pharmacol., 2008, 76(12), 1681-1693.
[http://dx.doi.org/10.1016/j.bcp.2008.09.012] [PMID: 18848530]
[68]
Fukai, T.; Marumo, A.; Kaitou, K.; Kanda, T.; Terada, S.; Nomura, T. Anti-Helicobacter pylori flavonoids from licorice extract. Life Sci., 2002, 71(12), 1449-1463.
[http://dx.doi.org/10.1016/S0024-3205(02)01864-7] [PMID: 12127165]
[69]
Park, J.M.; Park, S.H.; Hong, K.S.; Han, Y.M.; Jang, S.H.; Kim, E.H.; Hahm, K.B. Special licorice extracts containing lowered glycyrrhizin and enhanced licochalcone A prevented Helicobacter pylori-initiated, salt diet-promoted gastric tumorigenesis. Helicobacter, 2014, 19(3), 221-236.
[http://dx.doi.org/10.1111/hel.12121] [PMID: 24646026]
[70]
Den Hartogh, D.J.; Tsiani, E. Antidiabetic properties of naringenin: A citrus fruit polyphenol. Biomolecules, 2019, 9(3), 99.
[http://dx.doi.org/10.3390/biom9030099] [PMID: 30871083]
[71]
Ge, Y.; Chen, H.; Wang, J.; Liu, G.; Cui, S.W.; Kang, J.; Jiang, Y.; Wang, H. Naringenin prolongs lifespan and delays aging mediated by IIS and MAPK in Caenorhabditis elegans. Food Funct., 2021, 12(23), 12127-12141.
[http://dx.doi.org/10.1039/D1FO02472H] [PMID: 34787618]
[72]
Wu, J.; Ye, X.; Yang, S.; Yu, H.; Zhong, L.; Gong, Q. Systems pharmacology study of the anti-liver injury mechanism of citri reticulatae pericarpium. Front Pharmacol, 2021, 12, 618846.
[http://dx.doi.org/10.3389/fphar.2021.61884]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy