Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Towards a Systemic Concept of the Brain Ishemia Stroke: Monte Carlo Driven in silico Model

Author(s): Valentin V. Fursov*, Alexander V. Ananiev and Dmitry A. Kuznetsov

Volume 23, Issue 10, 2024

Published on: 18 April, 2024

Page: [1275 - 1284] Pages: 10

DOI: 10.2174/1871527322666230719111903

Price: $65

Abstract

Background: The work proposes a new mathematical model of dynamic processes of a typical spatially heterogeneous biological system, and sets and solves a mathematical problem of modeling the dynamics of the system of neurovascular units of the brain in conditions of ischemic stroke. There is a description of only a small number of mathematical models of stroke in the literature. This model is being studied and a numerical and software implementation of the corresponding mathematical problem is proposed.

Methods: This work is the first attempt ever aiming to employ a Monte Carlo computational approach for In Silico simulation of the most critical parameters in molecular and cellular pathogenesis of the brain ischemic stroke. In this work, a new mathematical model of the development of ischemic stroke is proposed in the form of a discrete model based on neurovascular units (NVU) as elements.

Results: As a result of testing the program with the assignment of empirically selected coefficients, data were obtained on the evolution of the states of the lattice of the cellular automaton of the model for the spread of stroke in a region of the brain tissue. A resulting new theoretical model of the particular pathologically altered biosystem might be taken as a promising tool for further studies in neurology; general pathology and cell biology.

Conclusion: For the first time, a mathematical model has been constructed that allows us to represent the spatial dynamics of the development of the affected area in ischemic stroke of the brain, taking into account neurovascular units as single morphofunctional structures.

[1]
Vasta M. Kai Velten: Mathematical modeling and simulation. Introduction for scientists and engineers. Meccanica 2009; 44(6): 767-8.
[http://dx.doi.org/10.1007/s11012-009-9215-1]
[2]
Matyushkin IV, Zapletina MA. Cellular automata review based on modern domestic publications. Computer Research and Modeling 2019; 11(1): 9-57.
[http://dx.doi.org/10.20537/2076-7633-2019-11-1-9-57]
[3]
Monroe D III, Hoffman M. A cell-based model of hemostasis. Thromb Haemost 2001; 85(6): 958-65.
[http://dx.doi.org/10.1055/s-0037-1615947] [PMID: 11434702]
[4]
Shabunin AV. Synchronization of infections spread processes in populations interacting: Modeling by lattices of cellular automata. Izvestiya VUZ. Izv Vyss Ucebn Zaved Prikl Nelinejn Din 2020; 28(4): 383-96.
[http://dx.doi.org/10.18500/0869-6632-2020-28-4-383-396]
[5]
Treml LM, Bartocci E, Gizzi A. Modeling and analysis of cardiac hybrid cellular automata via GPU-accelerated Monte Carlo simulation. Mathematics 2021; 9(2): 164.
[http://dx.doi.org/10.3390/math9020164]
[6]
Miramontes P. A cellular automaton model for the evolution of nucleic acids. 1992. PhD Thesis, Universidad Nacional Autonoma de Mexico: Mexico City.
[7]
Wolfram S. Statistical mechanics of cellular automata. Rev Mod Phys 1983; 55(3): 601-44.
[http://dx.doi.org/10.1103/RevModPhys.55.601]
[8]
Kroese DP, Brereton T, Taimre T, Botev ZI. Why the Monte Carlo method is so important today. Wiley Interdiscip Rev Comput Stat 2014; 6(6): 386-92.
[http://dx.doi.org/10.1002/wics.1314]
[9]
Trobia J, Tian K, Batista AM, et al. Mathematical model of brain tumour growth with drug resistance. Commun Nonlinear Sci Numer Simul 2021; 103106013.
[http://dx.doi.org/10.1016/j.cnsns.2021.106013]
[10]
Kim G, Kim K, Lee E, et al. Recent progress on microelectrodes in neural interfaces. Materials (Basel) 2018; 11(10): 1995.
[http://dx.doi.org/10.3390/ma11101995] [PMID: 30332782]
[11]
Kravchenko SV, Kade AK, Trofimenko AI, Vcherashnyuk SP, Malyshko VV. Cognitive neural prosthetics - the way from experiment to clinical application. Innovative Medicine of Kuban 2021; 3(3): 64-72.
[http://dx.doi.org/10.35401/2500-0268-2021-23-3-64-72]
[12]
Fursov V, Fursov IA, Bukhvostov AA, Majouga AG, Kuznetsov DA. In Silico Studies on Pharmacokinetics and Neuroprotective Potential of 25Mg2+: Releasing Nanocationites - Background and Perspectives [Internet]. Pharmacogenetics. IntechOpen; 2021. Available from:
[http://dx.doi.org/10.5772/intechopen.97729]
[13]
Chapuisat G, Grenier E. A global model for ischemic stroke with stress on spreading depressions. Prog Biophys Mol Biol 2008; 97: 4-27.
[http://dx.doi.org/10.1016/j.pbiomolbio.2007.10.004] [PMID: 18063019]
[14]
Krausch N, Barz T, Sawatzki A, et al. Monte Carlo Simulations for the Analysis of Non-linear Parameter Confidence Intervals in Optimal Experimental Design. Front Bioeng Biotechnol 2019; 7: 122.
[http://dx.doi.org/10.3389/fbioe.2019.00122] [PMID: 31179278]
[15]
Fursov VV, Ananyev AV. Computer mathematical model of pathophysiological changes. Nat techn sci 2022; 5(168): 173-7.
[16]
Bon LI, Maksimovich NYe. Morphological notions of the rat’s brain blood circulation. Vestnik VGMU 2018; 17(2): 30-6.
[17]
Wevers NR, Nair AL, Fowke TM, et al. Modeling ischemic stroke in a triculture neurovascular unit on-a-chip. Fluids Barriers CNS 2021; 18(1): 59.
[http://dx.doi.org/10.1186/s12987-021-00294-9] [PMID: 34906183]
[18]
Salehy N, Ökten G. Monte Carlo and quasi-Monte Carlo methods for Dempster’s rule of combination. Int J Approx Reason 2022; 145: 163-86.
[http://dx.doi.org/10.1016/j.ijar.2022.03.008]
[19]
Feil B, Kucherenko S, Shah N. Comparison of Monte Carlo and quasi Monte Carlo sampling methods in high dimensional model representation.
[http://dx.doi.org/10.1109/SIMUL.2009.34]
[20]
Dujovny M, Ibe O. Near infrared LED: An emerging technology on the treatment of stroke. J Neurol Stroke 2014; 1(6): 00038.
[http://dx.doi.org/10.15406/jnsk.2014.01.00039]
[21]
Shertaev MM, Ibragimov UK. Morphological changes in brain tissues after experimental ischemia. Novosibirsk State Pedagogical University Bulletin 2015; 5(1): 72-9.
[22]
Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 1986; 17(3): 472-6.
[http://dx.doi.org/10.1161/01.STR.17.3.472] [PMID: 3715945]
[23]
Bon LI, Maksimovich NY, Zimatkin SM. Cytochemical disturbances in the parietal cortex and hippocampus of rats after incomplete ischemia. Vestnik of Vitebsk State Med Uni 2018; 17(1): 43-9.
[http://dx.doi.org/10.22263/2312-4156.2018.1.43]
[24]
Xiao J, Padrick MM, Jiang T, et al. Acute ischemic stroke versus transient ischemic attack: Differential plaque morphological features in symptomatic intracranial atherosclerotic lesions. Atherosclerosis 2021; 319: 72-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2021.01.002] [PMID: 33486353]
[25]
Sergeeva SP, Erofeeva LM. Some aspects of the morphology of nerve tissue brain after acute ischemic stroke. J Nucl Med Technol 2016; 23(3): 130-5.
[26]
Manfred O, Auer RN, König HG. Forensic Neuropathology and Associated Neurology. Springer. 2005; p. 660.
[27]
Bowler JV, Hachinski V. The concept of vascular cognitive impairment.Vascular cognitive impairment. Martin Dunitz 2002; pp. 9-26.
[28]
Markus HS. Genes, endothelial function and cerebral small vessel disease in man. Exp Physiol 2008; 93(1): 121-7.
[http://dx.doi.org/10.1113/expphysiol.2007.038752] [PMID: 17933861]
[29]
Benarroch EE. Neurovascular unit dysfunction: A vascular component of Alzheimer disease? Neurology 2007; 68(20): 1730-2.
[http://dx.doi.org/10.1212/01.wnl.0000264502.92649.ab] [PMID: 17502556]
[30]
Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 2013; 12(5): 483-97.
[http://dx.doi.org/10.1016/S1474-4422(13)70060-7] [PMID: 23602162]
[31]
Adams HP Jr, del Zoppo G, Alberts MJ, et al. Guidelines for the Early Management of Adults With Ischemic Stroke. Stroke 2007; 38(5): 1655-711.
[http://dx.doi.org/10.1161/STROKEAHA.107.181486] [PMID: 17431204]
[32]
Dronne MA, Boissel JP, Grenier E, et al. Mathematical modelling of an ischemic stroke: an integrative approach. Acta Biotheor 2004; 52(4): 255-72.
[http://dx.doi.org/10.1023/B:ACBI.0000046597.53669.ff] [PMID: 15520533]
[33]
Kuznetsov DA, Roumiantsev SA, Fallahi M, Amirshahi N, Makarov AV, Kardashova KS. A tumor selective chemotherapy. Can this be managed by an algorithm based on the non-Markovian population dynamics? J Med Med Sci 2010; 1(1): 1-9. https://www.interesjournals.org/JMMS

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy