Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Chitosan Oligosaccharide Modified Bovine Serum Albumin Nanoparticles for Improving Oral Bioavailability of Naringenin

Author(s): Ruiyue Fang, Yiqi Liao, Huishuang Qiu, Yuxin Liu, Shiyuan Lin and Hui Chen*

Volume 21, Issue 8, 2024

Published on: 18 October, 2023

Page: [1142 - 1150] Pages: 9

DOI: 10.2174/1567201820666230718143726

Price: $65

Abstract

Introduction: With the rapid development of nanotechnology, the research and development of nano-drugs have become one of the development directions of drug innovation. The encapsulation of the nanoparticles can change the biological distribution of the drug in vivo and improve the bioavailability of the drug in vivo. Naringenin is poorly soluble in water and has a low bioavailability, thus limiting its clinical application. The main purpose of this study was to develop a nano-sized preparation that could improve the oral bioavailability of naringenin.

Methods: Chitosan oligosaccharide modified naringenin-loaded bovine serum albumin nanoparticles (BSA-COS@Nar NPs) were prepared by emulsification solvent evaporation and electrostatic interaction. The nanoparticles were characterized by HPLC, laser particle size analyzer, transmission electron microscope and X-ray diffraction analysis. The release in vitro was investigated, and the behavior of nanoparticles in rats was also studied. The caco-2 cell model was established in vitro to investigate the cytotoxicity and cellular uptake of nanoparticles.

Results: BSA-COS@Nar NPs were successfully prepared, and the first-order release model was confirmed in vitro release. In vivo pharmacokinetic results indicated that the area under the drug concentration- time curve (AUC) of BSA-COS@Nar NPs was 2.37 times more than free naringenin. Cytotoxicity and cellular uptake results showed that BSA-COS@Nar NPs had no significant cytotoxic effect on Caco- 2 cells and promoted cellular uptake of the drug.

Conclusion: BSA-COS@Nar NPs could improve the in vivo bioavailability of naringenin.

Graphical Abstract

[1]
Ahmad, A.; Prakash, R.; Khan, M.S.; Altwaijry, N.; Asghar, M.N.; Raza, S.S.; Khan, R. Enhanced antioxidant effects of naringenin nanoparticles synthesized using the high-energy ball milling method. ACS Omega, 2022, 7(38), 34476-34484.
[http://dx.doi.org/10.1021/acsomega.2c04148] [PMID: 36188293]
[2]
Dong, Z.; Wang, X.; Wang, M.; Wang, R.; Meng, Z.; Wang, X.; Yu, B.; Han, M.; Guo, Y. Optimization of naringenin nanoparticles to improve the antitussive effects on post-infectious cough. Molecules, 2022, 27(12), 3736.
[http://dx.doi.org/10.3390/molecules27123736] [PMID: 35744861]
[3]
Budel, R.G.; da Silva, D.A.; Moreira, M.P.; Dalcin, A.J.F.; da Silva, A.F.; Nazario, L.R.; Majolo, J.H.; Lopes, L.Q.S.; Santos, R.C.V.; Antunes Soares, F.A.; da Silva, R.S.; Gomes, P.; Boeck, C.R. Toxicological evaluation of naringin-loaded nanocapsules in vitro and in vivo. Colloids Surf. B Biointerfaces, 2020, 188, 110754.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110754] [PMID: 31887647]
[4]
Fuster, M.G.; Carissimi, G.; Montalbán, M.G.; Víllora, G. Improving anticancer therapy with naringenin-loaded silk fibroin nanoparticles. Nanomaterials, 2020, 10(4), 718.
[http://dx.doi.org/10.3390/nano10040718] [PMID: 32290154]
[5]
Fuior, E.; Deleanu, M.; Constantinescu, C.; Rebleanu, D.; Voicu, G.; Simionescu, M.; Calin, M. Functional role of VCAM-1 targeted flavonoid-loaded lipid nanoemulsions in reducing endothelium inflammation. Pharmaceutics, 2019, 11(8), 391.
[http://dx.doi.org/10.3390/pharmaceutics11080391] [PMID: 31382634]
[6]
Nouri, Z.; Sajadimajd, S.; Hoseinzadeh, L.; Bahrami, G.; Arkan, E.; Moradi, S.; Abdi, F.; Farzaei, M.H. Neuroprotective effect of naringenin‐loaded solid lipid nanoparticles against streptozocin‐induced neurotoxicity through autophagy blockage. J. Food Biochem., 2022, 46(12), e14408.
[http://dx.doi.org/10.1111/jfbc.14408] [PMID: 36129161]
[7]
Choi, J.; Hahm, E.; Park, K.; Jeong, D.; Rho, W.Y.; Kim, J.; Jeong, D.; Lee, Y.S.; Jhang, S.; Chung, H.; Cho, E.; Yu, J.H.; Jun, B.H.; Jung, S. SERS-based flavonoid detection using ethylenediamine-β-cyclodextrin as a capturing ligand. Nanomaterials, 2017, 7(1), 8.
[http://dx.doi.org/10.3390/nano7010008] [PMID: 28336842]
[8]
Lekmine, S.; Bendjedid, S.; Benslama, O.; Martín-García, A.I.; Boussekine, S.; Kadi, K.; Akkal, S.; Nieto, G.; Sami, R.; Al-Mushhin, A.A.M.; Baakdah, M.M.; Aljaadi, A.M.; Alharthy, S.A. Ultrasound-assisted extraction, LC–MS/MS analysis, anticholinesterase, and antioxidant activities of valuable natural metabolites from Astragalus armatus willd.: In silico molecular docking and in vitro enzymatic studies. Antioxidants, 2022, 11(10), 2000.
[http://dx.doi.org/10.3390/antiox11102000] [PMID: 36290723]
[9]
Nguyen-Ngo, C.; Willcox, J.C.; Lappas, M. Anti‐diabetic, anti‐inflammatory, and anti‐oxidant effects of naringenin in an in vitro human model and an in vivo murine model of gestational diabetes mellitus. Mol. Nutr. Food Res., 2019, 63(19), 1900224.
[http://dx.doi.org/10.1002/mnfr.201900224] [PMID: 31343820]
[10]
Hahm, E.; Kang, E.J.; Pham, X.H.; Jeong, D.; Jeong, D.H.; Jung, S.; Jun, B.H. Mono-6-deoxy-6-aminopropylamino-β-cyclodextrin on Ag-Embedded SiO2 nanoparticle as a selectively capturing ligand to flavonoids. Nanomaterials, 2019, 9(10), 1349.
[http://dx.doi.org/10.3390/nano9101349] [PMID: 31547075]
[11]
Tsai, M.J.; Huang, Y.B.; Fang, J.W.; Fu, Y.S.; Wu, P.C. Preparation and evaluation of submicron-carriers for naringenin topical application. Int. J. Pharm., 2015, 481(1-2), 84-90.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.034] [PMID: 25615985]
[12]
Carissimi, G.; Montalbán, M.G.; Víllora, G.; Barth, A. Direct quantification of drug loading content in polymeric nanoparticles by infrared spectroscopy. Pharmaceutics, 2020, 12(10), 912.
[http://dx.doi.org/10.3390/pharmaceutics12100912] [PMID: 32977658]
[13]
Hou, Y.; Piao, H.; Tahara, Y.; Qin, S.; Wang, J.; Kong, Q.; Zou, M.; Cheng, G.; Goto, M. Solid-in-oil nanodispersions as a novel delivery system to improve the oral bioavailability of bisphosphate, risedronate sodium. Eur. J. Pharm. Sci., 2020, 155, 105521.
[http://dx.doi.org/10.1016/j.ejps.2020.105521] [PMID: 32822808]
[14]
Qin, L.; Niu, Y.; Wang, Y.; Chen, X. Combination of phospholipid complex and submicron emulsion techniques for improving oral bioavailability and therapeutic efficacy of water-insoluble drug. Mol. Pharm., 2018, 15(3), 1238-1247.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01061] [PMID: 29412674]
[15]
Ezzati Nazhad Dolatabadi, J.; Hamishehkar, H.; Eskandani, M.; Valizadeh, H. Formulation, characterization and cytotoxicity studies of alendronate sodium-loaded solid lipid nanoparticles. Colloids Surf. B Biointerfaces, 2014, 117, 21-28.
[http://dx.doi.org/10.1016/j.colsurfb.2014.01.055] [PMID: 24607519]
[16]
Naeem, M.; Awan, U.A.; Subhan, F.; Cao, J.; Hlaing, S.P.; Lee, J.; Im, E.; Jung, Y.; Yoo, J.W. Advances in colon-targeted nano-drug delivery systems: Challenges and solutions. Arch. Pharm. Res., 2020, 43(1), 153-169.
[http://dx.doi.org/10.1007/s12272-020-01219-0] [PMID: 31989477]
[17]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[18]
Solanki, R.; Rostamabadi, H.; Patel, S.; Jafari, S.M. Anticancer nano-delivery systems based on bovine serum albumin nanoparticles: A critical review. Int J Biol Macromol, 2021, 193(Pt A), 528-540.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.10.040]
[19]
Wang, J.; Zhang, B. Bovine serum albumin as a versatile platform for cancer imaging and therapy. Curr. Med. Chem., 2018, 25(25), 2938-2953.
[http://dx.doi.org/10.2174/0929867324666170314143335] [PMID: 28292234]
[20]
Golianová, K.; Havadej, S.; Verebová, V.; Uličný, J.; Holečková, B.; Staničová, J. Interaction of conazole pesticides epoxiconazole and prothioconazole with human and bovine serum albumin studied using spectroscopic methods and molecular modeling. Int. J. Mol. Sci., 2021, 22(4), 1925.
[http://dx.doi.org/10.3390/ijms22041925] [PMID: 33672042]
[21]
da Silva, N.I.O.; Salvador, E.A.; Rodrigues Franco, I.; de Souza, G.A.P.; de Souza Morais, S.M.; Prado Rocha, R.; Dias Novaes, R.; Paiva Corsetti, P.; Malaquias, L.C.C.; Leomil Coelho, L.F. Bovine serum albumin nanoparticles induce histopathological changes and inflammatory cell recruitment in the skin of treated mice. Biomed. Pharmacother., 2018, 107, 1311-1317.
[http://dx.doi.org/10.1016/j.biopha.2018.08.106] [PMID: 30257346]
[22]
Lin, P.; Zhang, W.; Chen, D.; Yang, Y.; Sun, T.; Chen, H.; Zhang, J. Electrospun nanofibers containing chitosan-stabilized bovine serum albumin nanoparticles for bone regeneration. Colloids Surf. B Biointerfaces, 2022, 217, 112680.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112680] [PMID: 35803032]
[23]
Pichardo-Molina, J.L.; Cardoso-Avila, P.E.; Flores-Villavicencio, L.L.; Gomez-Ortiz, N.M.; Rodriguez-Rivera, M.A. Fluorescent carbon nanoparticles synthesized from bovine serum albumin nanoparticles. Int. J. Biol. Macromol., 2020, 142, 724-731.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.013] [PMID: 31622723]
[24]
Yang, Y.; Chen, Y.; Li, D.; Lin, S.; Chen, H.; Wu, W.; Zhang, W. Linolenic acid conjugated chitosan micelles for improving the oral absorption of doxorubicin via fatty acid transporter. Carbohydr. Polym., 2023, 300, 120233.
[http://dx.doi.org/10.1016/j.carbpol.2022.120233] [PMID: 36372473]
[25]
Dyawanapelly, S.; Koli, U.; Dharamdasani, V.; Jain, R.; Dandekar, P. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins. Drug Deliv. Transl. Res., 2016, 6(4), 365-379.
[http://dx.doi.org/10.1007/s13346-016-0295-x] [PMID: 27106502]
[26]
Radwan, S.E.S.; El-Moslemany, R.M.; Mehanna, R.A.; Thabet, E.H.; Abdelfattah, E.Z.A.; El-Kamel, A. Chitosan-coated bovine serum albumin nanoparticles for topical tetrandrine delivery in glaucoma: In vitro and in vivo assessment. Drug Deliv., 2022, 29(1), 1150-1163.
[http://dx.doi.org/10.1080/10717544.2022.2058648] [PMID: 35384774]
[27]
Muanprasat, C.; Chatsudthipong, V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol. Ther., 2017, 170, 80-97.
[http://dx.doi.org/10.1016/j.pharmthera.2016.10.013] [PMID: 27773783]
[28]
Miao, Y.; Chen, M.; Zhou, X.; Guo, L.; Zhu, J.; Wang, R.; Zhang, X.; Gan, Y. Chitosan oligosaccharide modified liposomes enhance lung cancer delivery of paclitaxel. Acta Pharmacol. Sin., 2021, 42(10), 1714-1722.
[http://dx.doi.org/10.1038/s41401-020-00594-0] [PMID: 33469196]
[29]
Huang, X.; Jiao, Y.; Zhou, C. Impacts of chitosan oligosaccharide (COS) on angiogenic activities. Microvasc. Res., 2021, 134, 104114.
[http://dx.doi.org/10.1016/j.mvr.2020.104114] [PMID: 33232706]
[30]
Wang, L.; Wang, L.; Wen, C.; Wang, N.; Yan, C.; Shen, C.; Song, S. Chitosan and chitosan oligosaccharide influence digestibility of whey protein isolate through electrostatic interaction. Int J Biol Macromol, 2022, 222(Pt A), 1443-1452.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.258]
[31]
Xia, W.; Wei, X.Y.; Xie, Y.Y.; Zhou, T. A novel chitosan oligosaccharide derivative: Synthesis, antioxidant and antibacterial properties. Carbohydr. Polym., 2022, 291, 119608.
[http://dx.doi.org/10.1016/j.carbpol.2022.119608] [PMID: 35698407]
[32]
Wu, H.; Nan, J.; Yang, L.; Park, H.J.; Li, J. Insulin-loaded liposomes packaged in alginate hydrogels promote the oral bioavailability of insulin. J. Control. Release, 2023, 353, 51-62.
[http://dx.doi.org/10.1016/j.jconrel.2022.11.032] [PMID: 36410613]
[33]
Panse, N.; Gerk, P.M. The Caco-2 Model: Modifications and enhancements to improve efficiency and predictive performance. Int. J. Pharm., 2022, 624, 122004.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122004] [PMID: 35820514]
[34]
Lu, R.; Yu, R.J.; Yang, C.; Wang, Q.; Xuan, Y.; Wang, Z.; He, Z.; Xu, Y.; Kou, L.; Zhao, Y.Z.; Yao, Q.; Xu, S.H. Evaluation of the hepatoprotective effect of naringenin loaded nanoparticles against acetaminophen overdose toxicity. Drug Deliv., 2022, 29(1), 3256-3269.
[http://dx.doi.org/10.1080/10717544.2022.2139431] [PMID: 36321805]
[35]
Joshi, H.; Hegde, A.R.; Shetty, P.K.; Gollavilli, H.; Managuli, R.S.; Kalthur, G.; Mutalik, S. Sunscreen creams containing naringenin nanoparticles: Formulation development and in vitro and in vivo evaluations. Photodermatol. Photoimmunol. Photomed., 2018, 34(1), 69-81.
[http://dx.doi.org/10.1111/phpp.12335] [PMID: 28767160]
[36]
Quintão, W.S.C.; Ferreira-Nunes, R.; Gratieri, T.; Cunha-Filho, M.; Gelfuso, G.M. Validation of a simple chromatographic method for naringenin quantification in skin permeation experiments. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2022, 1201-1202, 123291.
[http://dx.doi.org/10.1016/j.jchromb.2022.123291] [PMID: 35580438]
[37]
Chau Thuy Nguyen, D.; Dowling, J.; Ryan, R.; McLoughlin, P.; Fitzhenry, L. Controlled release of naringenin from soft hydrogel contact lens: An investigation into lens critical properties and in vitro release. Int. J. Pharm., 2022, 621, 121793.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121793] [PMID: 35526700]
[38]
Rebello, C.J.; Beyl, R.A.; Lertora, J.J.L.; Greenway, F.L.; Ravussin, E.; Ribnicky, D.M.; Poulev, A.; Kennedy, B.J.; Castro, H.F.; Campagna, S.R.; Coulter, A.A.; Redman, L.M. Safety and pharmacokinetics of naringenin: A randomized, controlled, single‐ascending‐dose clinical trial. Diabetes Obes. Metab., 2020, 22(1), 91-98.
[http://dx.doi.org/10.1111/dom.13868] [PMID: 31468636]
[39]
Wu, L.; Du, S.; Yang, F.; Ni, Z.; Chen, Z.; Liu, X.; Wang, Y.; Zhou, Q.; Li, W.; Qin, K. Simultaneous determination of nineteen compounds of Dahuang zhechong pill in rat plasma by UHPLC-MS/MS and its application in a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1151, 122200.
[http://dx.doi.org/10.1016/j.jchromb.2020.122200] [PMID: 32526664]
[40]
Chen, H.; Zhao, Y.; Li, R.; Chen, B.; Luo, Z.; Shi, Y.; Wang, K.; Zhang, W.; Lin, S. Preparation and in vitro and in vivo evaluation of panax notoginseng saponins-loaded nanoparticles coated with trimethyl chitosan derivatives. J. Pharm. Sci., 2022, 111(6), 1659-1666.
[http://dx.doi.org/10.1016/j.xphs.2021.11.002] [PMID: 34752811]
[41]
Yi, X.; Shi, X.; Gao, H. Cellular uptake of elastic nanoparticles. Phys. Rev. Lett., 2011, 107(9), 098101.
[http://dx.doi.org/10.1103/PhysRevLett.107.098101] [PMID: 21929271]
[42]
Sun, J.; Bi, C.; Chan, H.M.; Sun, S.; Zhang, Q.; Zheng, Y. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf. B Biointerfaces, 2013, 111, 367-375.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.032] [PMID: 23856543]
[43]
Hirt, N.; Body-Malapel, M. Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature. Part. Fibre Toxicol., 2020, 17(1), 57.
[http://dx.doi.org/10.1186/s12989-020-00387-7] [PMID: 33183327]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy