Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Interleukin-6 Signaling in Atherosclerosis: From Molecular Mechanisms To Clinical Outcomes

Author(s): Charalampos Papastamos, Alexios S. Antonopoulos*, Spyridon Simantiris, Nikolaos Koumallos, Marios Sagris, Panagiotis Theofilis, Evangelos Oikonomou, Gerasimos Siasos, Konstantinos Tsioufis and Dimitris Tousoulis

Volume 23, Issue 22, 2023

Published on: 10 August, 2023

Page: [2172 - 2183] Pages: 12

DOI: 10.2174/1568026623666230718141235

Price: $65

Abstract

Interleukin-6 (IL-6) is a cytokine centrally involved in several immune responses and it has been recognized as a driver of enhanced atherothrombotic risk. Immunity and inflammation are intrinsically involved in atherosclerosis progression. This generated ‘inflammation hypothesis’, which is now validated in large-scale clinical trials. Abundant evidence supports the distinctive role of IL-6 in coronary artery disease. The focus on this cytokine stems from epidemiological studies linking high plasma concentrations of IL-6 with greater risk for adverse cardiovascular events, genetic studies which implicate a causative role of IL-6 in atherosclerosis and murine data which support the involvement of IL-6 in various pathophysiological cascades of atherothrombosis. The fact that high IL-6 levels are equivalent to increased cardiovascular risk created an unmet need to address those who are at ‘residual inflammatory risk’. Moreover, the opposing effects of IL-6 underlined the importance of deciphering specific signaling cascades, which may be responsible for different effects. Finally, murine data and some small clinical trials highlighted the possibility of reversing the pro-atherogenic effects of IL-6 by directly targeting it. While IL-1 blockage was proved effective, it is reasonable to examine if moving more downstream in the inflammation cascade could be more selective and effective than other anti-inflammatory therapies. In the present review, we examine the role of IL-6 as a biomarker of ‘residual inflammatory risk’, its vital role in the pathophysiology of atherosclerosis progression and the possibility of targeting it to stall coronary artery disease progression.

« Previous
Graphical Abstract

[1]
Ridker, P.M.; Rifai, N.; Stampfer, M.J.; Hennekens, C.H. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation, 2000, 101(15), 1767-1772.
[http://dx.doi.org/10.1161/01.CIR.101.15.1767] [PMID: 10769275]
[2]
Kaptoge, S.; Seshasai, S.R.K.; Gao, P.; Freitag, D.F.; Butterworth, A.S.; Borglykke, A.; Di Angelantonio, E.; Gudnason, V.; Rumley, A.; Lowe, G.D.O.; Jørgensen, T.; Danesh, J. Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur. Heart J., 2014, 35(9), 578-589.
[http://dx.doi.org/10.1093/eurheartj/eht367] [PMID: 24026779]
[3]
Ridker, P.M.; Rane, M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ. Res., 2021, 128(11), 1728-1746.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.319077] [PMID: 33998272]
[4]
Zacho, J.; Tybjærg-Hansen, A.; Jensen, J.S.; Grande, P.; Sillesen, H.; Nordestgaard, B.G. Genetically elevated C-reactive protein and ischemic vascular disease. N. Engl. J. Med., 2008, 359(18), 1897-1908.
[http://dx.doi.org/10.1056/NEJMoa0707402] [PMID: 18971492]
[5]
Lane, T.; Wassef, N.; Poole, S.; Mistry, Y.; Lachmann, H.J.; Gillmore, J.D.; Hawkins, P.N.; Pepys, M.B. Infusion of pharmaceutical-grade natural human C-reactive protein is not proinflammatory in healthy adult human volunteers. Circ. Res., 2014, 114(4), 672-676.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302770] [PMID: 24337102]
[6]
Ridker, P.M.; MacFadyen, J.G.; Glynn, R.J.; Bradwin, G.; Hasan, A.A.; Rifai, N. Comparison of interleukin-6, C-reactive protein, and low-density lipoprotein cholesterol as biomarkers of residual risk in contemporary practice: secondary analyses from the Cardiovascular Inflammation Reduction Trial. Eur. Heart J., 2020, 41(31), 2952-2961.
[http://dx.doi.org/10.1093/eurheartj/ehaa160] [PMID: 32221587]
[7]
van der Harst, P.; Verweij, N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res., 2018, 122(3), 433-443.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.312086] [PMID: 29212778]
[8]
Sarwar, N.; Butterworth, A.S.; Freitag, D.F.; Gregson, J.; Willeit, P.; Gorman, D.N.; Gao, P.; Saleheen, D.; Rendon, A.; Nelson, C.P.; Braund, P.S.; Hall, A.S.; Chasman, D.I.; Tybjærg-Hansen, A.; Chambers, J.C.; Benjamin, E.J.; Franks, P.W.; Clarke, R.; Wilde, A.A.; Trip, M.D.; Steri, M.; Witteman, J.C.; Qi, L.; van der Schoot, C.E.; de Faire, U.; Erdmann, J.; Stringham, H.M.; Koenig, W.; Rader, D.J.; Melzer, D.; Reich, D.; Psaty, B.M.; Kleber, M.E.; Panagiotakos, D.B.; Willeit, J.; Wennberg, P.; Woodward, M.; Adamovic, S.; Rimm, E.B.; Meade, T.W.; Gillum, R.F.; Shaffer, J.A.; Hofman, A.; Onat, A.; Sundström, J.; Wassertheil-Smoller, S.; Mellström, D.; Gallacher, J.; Cushman, M.; Tracy, R.P.; Kauhanen, J.; Karlsson, M.; Salonen, J.T.; Wilhelmsen, L.; Amouyel, P.; Cantin, B.; Best, L.G.; Ben-Shlomo, Y.; Manson, J.E.; Davey-Smith, G.; de Bakker, P.I.; O’Donnell, C.J.; Wilson, J.F.; Wilson, A.G.; Assimes, T.L.; Jansson, J.O.; Ohlsson, C.; Tivesten, Å.; Ljunggren, Ö.; Reilly, M.P.; Hamsten, A.; Ingelsson, E.; Cambien, F.; Hung, J.; Thomas, G.N.; Boehnke, M.; Schunkert, H.; Asselbergs, F.W.; Kastelein, J.J.; Gudnason, V.; Salomaa, V.; Harris, T.B.; Kooner, J.S.; Allin, K.H.; Nordestgaard, B.G.; Hopewell, J.C.; Goodall, A.H.; Ridker, P.M.; Hólm, H.; Watkins, H.; Ouwehand, W.H.; Samani, N.J.; Kaptoge, S.; Di Angelantonio, E.; Harari, O.; Danesh, J. Interleukin-6 receptor pathways in coronary heart disease: A collaborative meta-analysis of 82 studies. Lancet, 2012, 379(9822), 1205-1213.
[http://dx.doi.org/10.1016/S0140-6736(11)61931-4] [PMID: 22421339]
[9]
Swerdlow, DI.; Holmes, MV; Kuchenbaecker, KB; Engmann, EJ; Shah, T. The interleukin-6 receptor as a target for prevention of coronary heart disease: A mendelian randomisation analysis. Lancet., 2012, 379(9822), 1214-1224.
[10]
Bick, A.G.; Pirruccello, J.P.; Griffin, G.K.; Gupta, N.; Gabriel, S.; Saleheen, D.; Libby, P.; Kathiresan, S.; Natarajan, P. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation, 2020, 141(2), 124-131.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044362] [PMID: 31707836]
[11]
Akita, K.; Isoda, K.; Sato-Okabayashi, Y.; Kadoguchi, T.; Kitamura, K.; Ohtomo, F.; Shimada, K.; Daida, H. An interleukin-6 receptor antibody suppresses atherosclerosis in atherogenic mice. Front. Cardiovasc. Med., 2017, 4, 84.
[http://dx.doi.org/10.3389/fcvm.2017.00084] [PMID: 29312959]
[12]
Maier, W.; Altwegg, L.A.; Corti, R.; Gay, S.; Hersberger, M.; Maly, F.E.; Sütsch, G.; Roffi, M.; Neidhart, M.; Eberli, F.R.; Tanner, F.C.; Gobbi, S.; von Eckardstein, A.; Lüscher, T.F. Inflammatory markers at the site of ruptured plaque in acute myocardial infarction: Locally increased interleukin-6 and serum amyloid A but decreased C-reactive protein. Circulation, 2005, 111(11), 1355-1361.
[http://dx.doi.org/10.1161/01.CIR.0000158479.58589.0A] [PMID: 15753219]
[13]
Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med., 2017, 377(12), 1119-1131.
[14]
Ridker, P.M.; Libby, P.; MacFadyen, J.G.; Thuren, T.; Ballantyne, C.; Fonseca, F.; Koenig, W.; Shimokawa, H.; Everett, B.M.; Glynn, R.J. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: Analyses from the canakinumab anti-inflammatory thrombosis outcomes study (CANTOS). Eur. Heart J., 2018, 39(38), 3499-3507.
[http://dx.doi.org/10.1093/eurheartj/ehy310] [PMID: 30165610]
[15]
Ridker, P.M. Residual inflammatory risk: Addressing the obverse side of the atherosclerosis prevention coin. Eur. Heart J., 2016, 37(22), 1720-1722.
[http://dx.doi.org/10.1093/eurheartj/ehw024] [PMID: 26908943]
[16]
Ridker, P.M.; Cushman, M.; Stampfer, M.J.; Tracy, R.P.; Hennekens, C.H. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med., 1997, 336(14), 973-979.
[http://dx.doi.org/10.1056/NEJM199704033361401] [PMID: 9077376]
[17]
Ridker, P.M.; Rifai, N.; Pfeffer, M.A.; Sacks, F.M.; Moye, L.A.; Goldman, S.; Flaker, G.C.; Braunwald, E. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Circulation, 1998, 98(9), 839-844.
[http://dx.doi.org/10.1161/01.CIR.98.9.839] [PMID: 9738637]
[18]
Ridker, P.M.; Rifai, N.; Clearfield, M.; Downs, J.R.; Weis, S.E.; Miles, J.S.; Gotto, A.M., Jr Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N. Engl. J. Med., 2001, 344(26), 1959-1965.
[http://dx.doi.org/10.1056/NEJM200106283442601] [PMID: 11430324]
[19]
Morrow, D.A.; de Lemos, J.A.; Sabatine, M.S.; Wiviott, S.D.; Blazing, M.A.; Shui, A.; Rifai, N.; Califf, R.M.; Braunwald, E. Clinical relevance of C-reactive protein during follow-up of patients with acute coronary syndromes in the Aggrastat-to-Zocor Trial. Circulation, 2006, 114(4), 281-288.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.628909] [PMID: 16847150]
[20]
Ridker, P.M.; Danielson, E.; Fonseca, F.A.H.; Genest, J.; Gotto, A.M., Jr; Kastelein, J.J.P.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; Nordestgaard, B.G.; Shepherd, J.; Willerson, J.T.; Glynn, R.J. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: A prospective study of the JUPITER trial. Lancet, 2009, 373(9670), 1175-1182.
[http://dx.doi.org/10.1016/S0140-6736(09)60447-5] [PMID: 19329177]
[21]
Braunwald, E. Creating controversy where none exists: The important role of C-reactive protein in the CARE, AFCAPS/TexCAPS, prove it, reversal, a to z, jupiter, heart protection, and ascot trials. Eur. Heart J., 2012, 33(4), 430-432.
[http://dx.doi.org/10.1093/eurheartj/ehr310] [PMID: 21896564]
[22]
Pradhan, A.D.; Aday, A.W.; Rose, L.M.; Ridker, P.M. Residual inflammatory risk on treatment with pcsk9 inhibition and statin therapy. Circulation, 2018, 138(2), 141-149.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.034645] [PMID: 29716940]
[23]
Ridker, P.M.; Morrow, D.A.; Rose, L.M.; Rifai, N.; Cannon, C.P.; Braunwald, E. Relative efficacy of atorvastatin 80 mg and pravastatin 40 mg in achieving the dual goals of low-density lipoprotein cholesterol <70 mg/dl and C-reactive protein <2 mg/l: an analysis of the PROVE-IT TIMI-22 trial. J. Am. Coll. Cardiol., 2005, 45(10), 1644-1648.
[http://dx.doi.org/10.1016/j.jacc.2005.02.080] [PMID: 15893181]
[24]
Bohula, E.A.; Giugliano, R.P.; Cannon, C.P.; Zhou, J.; Murphy, S.A.; White, J.A.; Tershakovec, A.M.; Blazing, M.A.; Braunwald, E. Achievement of dual low-density lipoprotein cholesterol and high-sensitivity C-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in improve-it. Circulation, 2015, 132(13), 1224-1233.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.018381] [PMID: 26330412]
[25]
Ridker, P.M.; Cannon, C.P.; Morrow, D.; Rifai, N.; Rose, L.M.; McCabe, C.H.; Pfeffer, M.A.; Braunwald, E. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med., 2005, 352(1), 20-28.
[http://dx.doi.org/10.1056/NEJMoa042378] [PMID: 15635109]
[26]
Ridker, P.M.; Revkin, J.; Amarenco, P.; Brunell, R.; Curto, M.; Civeira, F. Cardiovascular efficacy and safety of bococizumab in high-risk patients. N. Engl. J. Med., 2017, 376(16), 1527-1539.
[27]
Everett, B.M. Residual inflammatory risk. J. Am. Coll. Cardiol., 2019, 73(19), 2410-2412.
[http://dx.doi.org/10.1016/j.jacc.2019.02.056] [PMID: 31097160]
[28]
Lu, Y.; Zhou, S.; Dreyer, R.P.; Spatz, E.S.; Geda, M.; Lorenze, N.P.; D’Onofrio, G.; Lichtman, J.H.; Spertus, J.A.; Ridker, P.M.; Krumholz, H.M. Sex differences in inflammatory markers and health status among young adults with acute myocardial infarction. Circ. Cardiovasc. Qual. Outcomes, 2017, 10(2), e003470.
[http://dx.doi.org/10.1161/CIRCOUTCOMES.116.003470] [PMID: 28228461]
[29]
Pagidipati, N.J.; Hellkamp, A.S.; Sharma, P.P.; Wang, T.Y.; Fonarow, G.C.; Pencina, M. High-sensitivity C-reactive protein elevation in patients with prior myocardial infarction in the United States. Am. Heart J., 2018, 204, 151-155.
[http://dx.doi.org/10.1016/j.ahj.2018.07.014] [PMID: 30121016]
[30]
Ridker, P.M. How common is residual inflammatory risk? Circ. Res., 2017, 120(4), 617-619.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.310527] [PMID: 28209792]
[31]
Ridker, P.M. From C-reactive protein to interleukin-6 to interleukin-1. Circ. Res., 2016, 118(1), 145-156.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306656] [PMID: 26837745]
[32]
Ridker, P.M.; MacFadyen, J.G.; Thuren, T.; Libby, P. Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1β inhibition with canakinumab: Further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis. Eur. Heart J., 2020, 41(23), 2153-2163.
[http://dx.doi.org/10.1093/eurheartj/ehz542] [PMID: 31504417]
[33]
Ridker, P.M.; Everett, B.M.; Pradhan, A.; MacFadyen, J.G.; Solomon, D.H.; Zaharris, E. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med., 2018, 380(8), 752-762.
[34]
Fanola, C.L.; Morrow, D.A.; Cannon, C.P.; Jarolim, P.; Lukas, M.A.; Bode, C.; Hochman, J.S.; Goodrich, E.L.; Braunwald, E.; O’Donoghue, M.L. Interleukin‐6 and the risk of adverse outcomes in patients after an acute coronary syndrome: observations from the solid‐timi 52 (stabilization of plaque using darapladib—thrombolysis in myocardial infarction 52) trial. J. Am. Heart Assoc., 2017, 6(10), e005637.
[http://dx.doi.org/10.1161/JAHA.117.005637] [PMID: 29066436]
[35]
Ridker, P.M.; Tuttle, K.R.; Perkovic, V.; Libby, P.; MacFadyen, J.G. Inflammation drives residual risk in chronic kidney disease: A CANTOS substudy. Eur. Heart J., 2022, 43(46), 4832-4844.
[http://dx.doi.org/10.1093/eurheartj/ehac444] [PMID: 35943897]
[36]
Ross, R. Atherosclerosis :An inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126.
[http://dx.doi.org/10.1056/NEJM199901143400207] [PMID: 9887164]
[37]
Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature, 2011, 473(7347), 317-325.
[http://dx.doi.org/10.1038/nature10146] [PMID: 21593864]
[38]
Tousoulis, D.; Psarros, C.; Demosthenous, M.; Patel, R.; Antoniades, C.; Stefanadis, C. Innate and adaptive inflammation as a therapeutic target in vascular disease: The emerging role of statins. J. Am. Coll. Cardiol., 2014, 63(23), 2491-2502.
[http://dx.doi.org/10.1016/j.jacc.2014.01.054] [PMID: 24613322]
[39]
Kasikara, C.; Doran, A.C.; Cai, B.; Tabas, I. The role of non-resolving inflammation in atherosclerosis. J. Clin. Invest., 2018, 128(7), 2713-2723.
[http://dx.doi.org/10.1172/JCI97950] [PMID: 30108191]
[40]
Tardif, J.C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; Berry, C.; López-Sendón, J.; Ostadal, P.; Koenig, W.; Angoulvant, D.; Grégoire, J.C.; Lavoie, M.A.; Dubé, M.P.; Rhainds, D.; Provencher, M.; Blondeau, L.; Orfanos, A.; L’Allier, P.L.; Guertin, M.C.; Roubille, F. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med., 2019, 381(26), 2497-2505.
[http://dx.doi.org/10.1056/NEJMoa1912388] [PMID: 31733140]
[41]
Virchow, R. Cellular pathology as based upon physiological and pathological histology. Br Foreign Med Chir Rev., 1860, 26(52), 478-479.
[42]
Mayerl, C.; Lukasser, M.; Sedivy, R.; Niederegger, H.; Seiler, R.; Wick, G. Atherosclerosis research from past to present—on the track of two pathologists with opposing views, carl von rokitansky and rudolf virchow. Virchows Arch., 2006, 449(1), 96-103.
[http://dx.doi.org/10.1007/s00428-006-0176-7] [PMID: 16612625]
[43]
Virchow, R. Cellular pathology as based upon physiological and pathological histology; Kessinger Publishing, LLC, 1863.
[http://dx.doi.org/10.5962/bhl.title.32770]
[44]
Libby, P.; Hansson, G.K. From focal lipid storage to systemic inflammation. J. Am. Coll. Cardiol., 2019, 74(12), 1594-1607.
[http://dx.doi.org/10.1016/j.jacc.2019.07.061] [PMID: 31537270]
[45]
Jonasson, L; Holm, J; Skalli, O; Bondjers, G Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis., 1986, 6(2), 131-138.
[46]
Tarbell, J.M. Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Eng., 2003, 5(1), 79-118.
[http://dx.doi.org/10.1146/annurev.bioeng.5.040202.121529] [PMID: 12651738]
[47]
Yang, H.; Zhang, N.; Okoro, E.; Guo, Z. Transport of apolipoprotein b-containing lipoproteins through endothelial cells is associated with apolipoprotein e-carrying hdl-like particle formation. Int. J. Mol. Sci., 2018, 19(11), 3593.
[http://dx.doi.org/10.3390/ijms19113593] [PMID: 30441770]
[48]
McLaren, J.E.; Michael, D.R.; Ashlin, T.G.; Ramji, D.P. Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Prog. Lipid Res., 2011, 50(4), 331-347.
[http://dx.doi.org/10.1016/j.plipres.2011.04.002] [PMID: 21601592]
[49]
Tabas, I; Williams, KJ; Borén, JJC Subendothelial lipoprotein retention as the initiating process in atherosclerosis: Update and therapeutic implications., Circulation., 2007, 116(16), 1832-1844.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.676890]
[50]
Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol., 2013, 13(10), 709-721.
[http://dx.doi.org/10.1038/nri3520] [PMID: 23995626]
[51]
Li, A.C.; Glass, C.K. The macrophage foam cell as a target for therapeutic intervention. Nat. Med., 2002, 8(11), 1235-1242.
[http://dx.doi.org/10.1038/nm1102-1235] [PMID: 12411950]
[52]
Newby, A. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc. Res., 2006, 69(3), 614-624.
[http://dx.doi.org/10.1016/j.cardiores.2005.08.002] [PMID: 16266693]
[53]
Durham, A.L.; Speer, M.Y.; Scatena, M.; Giachelli, C.M.; Shanahan, C.M. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc. Res., 2018, 114(4), 590-600.
[http://dx.doi.org/10.1093/cvr/cvy010] [PMID: 29514202]
[54]
Antoniades, C.; Bakogiannis, C.; Tousoulis, D.; Antonopoulos, A.S.; Stefanadis, C. The CD40/CD40 ligand system: Linking inflammation with atherothrombosis. J. Am. Coll. Cardiol., 2009, 54(8), 669-677.
[http://dx.doi.org/10.1016/j.jacc.2009.03.076] [PMID: 19679244]
[55]
Libby, P. Interleukin-1 beta as a target for atherosclerosis therapy. J. Am. Coll. Cardiol., 2017, 70(18), 2278-2289.
[http://dx.doi.org/10.1016/j.jacc.2017.09.028] [PMID: 29073957]
[56]
Ait-Oufella, H.; Sage, A.P.; Mallat, Z.; Tedgui, A. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ. Res., 2014, 114(10), 1640-1660.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302761] [PMID: 24812352]
[57]
Miller, Y.I.; Choi, S.H.; Wiesner, P.; Fang, L.; Harkewicz, R.; Hartvigsen, K.; Boullier, A.; Gonen, A.; Diehl, C.J.; Que, X.; Montano, E.; Shaw, P.X.; Tsimikas, S.; Binder, C.J.; Witztum, J.L. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ. Res., 2011, 108(2), 235-248.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223875] [PMID: 21252151]
[58]
Yvan-Charvet, L.; Welch, C.; Pagler, T.A.; Ranalletta, M.; Lamkanfi, M.; Han, S.; Ishibashi, M.; Li, R.; Wang, N.; Tall, A.R. Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation, 2008, 118(18), 1837-1847.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.793869] [PMID: 18852364]
[59]
Bae, YS; Lee, JH; Choi, SH; Kim, S; Almazan, F; Witztum, JL Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: Toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ Res., 2009, 104(2), 210-218.
[60]
Liao, H.S.; Matsumoto, A.; Itakura, H.; Doi, T.; Honda, M.; Kodama, T.; Geng, Y.J. Transcriptional inhibition by interleukin-6 of the class A macrophage scavenger receptor in macrophages derived from human peripheral monocytes and the THP-1 monocytic cell line. Arterioscler. Thromb. Vasc. Biol., 1999, 19(8), 1872-1880.
[http://dx.doi.org/10.1161/01.ATV.19.8.1872] [PMID: 10446065]
[61]
Abdolmaleki, F.; Gheibi Hayat, S.M.; Bianconi, V.; Johnston, T.P.; Sahebkar, A. Atherosclerosis and immunity: A perspective. Trends Cardiovasc. Med., 2019, 29(6), 363-371.
[http://dx.doi.org/10.1016/j.tcm.2018.09.017] [PMID: 30292470]
[62]
Loppnow, H.; Libby, P. Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6. J. Clin. Invest., 1990, 85(3), 731-738.
[http://dx.doi.org/10.1172/JCI114498] [PMID: 2312724]
[63]
Schuett, H.; Luchtefeld, M.; Grothusen, C.; Grote, K.; Schieffer, B. How much is too much? Interleukin-6 and its signalling in atherosclerosis. Thromb. Haemost., 2009, 102(8), 215-222.
[http://dx.doi.org/10.1160/TH09-05-0297] [PMID: 19652871]
[64]
Huber, S.A.; Sakkinen, P.; Conze, D.; Hardin, N.; Tracy, R. Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol., 1999, 19(10), 2364-2367.
[http://dx.doi.org/10.1161/01.ATV.19.10.2364] [PMID: 10521365]
[65]
Keidar, S.; Heinrich, R.; Kaplan, M.; Hayek, T.; Aviram, M. Angiotensin II administration to atherosclerotic mice increases macrophage uptake of oxidized ldl: A possible role for interleukin-6. Arterioscler. Thromb. Vasc. Biol., 2001, 21(9), 1464-1469.
[http://dx.doi.org/10.1161/hq0901.095547] [PMID: 11557673]
[66]
Schuett, H.; Oestreich, R.; Waetzig, G.H.; Annema, W.; Luchtefeld, M.; Hillmer, A.; Bavendiek, U.; von Felden, J.; Divchev, D.; Kempf, T.; Wollert, K.C.; Seegert, D.; Rose-John, S.; Tietge, U.J.F.; Schieffer, B.; Grote, K. Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol., 2012, 32(2), 281-290.
[http://dx.doi.org/10.1161/ATVBAHA.111.229435] [PMID: 22075248]
[67]
Zhang, K.; Huang, X.; Li, X.; Feng, M.; Li, L.; Cai, X.; Zhang, C.; Liu, X.; Zhang, M.; Zhang, Y.; Wang, X.; Zhang, M. Interleukin 6 destabilizes atherosclerotic plaques by downregulating prolyl-4-hydroxylase α1 via a mitogen-activated protein kinase and c-Jun pathway. Arch. Biochem. Biophys., 2012, 528(2), 127-133.
[http://dx.doi.org/10.1016/j.abb.2012.09.007] [PMID: 23022409]
[68]
Song, L.; Schindler, C. IL-6 and the acute phase response in murine atherosclerosis. Atherosclerosis, 2004, 177(1), 43-51.
[http://dx.doi.org/10.1016/j.atherosclerosis.2004.06.018] [PMID: 15488864]
[69]
Schieffer, B.; Selle, T.; Hilfiker, A.; Hilfiker-Kleiner, D.; Grote, K.; Tietge, U.J.F.; Trautwein, C.; Luchtefeld, M.; Schmittkamp, C.; Heeneman, S.; Daemen, M.J.A.P.; Drexler, H. Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation, 2004, 110(22), 3493-3500.
[http://dx.doi.org/10.1161/01.CIR.0000148135.08582.97] [PMID: 15557373]
[70]
Madan, M.; Bishayi, B.; Hoge, M.; Amar, S. Atheroprotective role of interleukin-6 in diet- and/or pathogen-associated atherosclerosis using an ApoE heterozygote murine model. Atherosclerosis, 2008, 197(2), 504-514.
[http://dx.doi.org/10.1016/j.atherosclerosis.2007.02.023] [PMID: 17412346]
[71]
Yudkin, J.S.; Kumari, M.; Humphries, S.E.; Mohamed-Ali, V. Inflammation, obesity, stress and coronary heart disease: Is interleukin-6 the link? Atherosclerosis, 2000, 148(2), 209-214.
[http://dx.doi.org/10.1016/S0021-9150(99)00463-3] [PMID: 10657556]
[72]
Carey, A.L.; Steinberg, G.R.; Macaulay, S.L.; Thomas, W.G.; Holmes, A.G.; Ramm, G.; Prelovsek, O.; Hohnen-Behrens, C.; Watt, M.J.; James, D.E.; Kemp, B.E.; Pedersen, B.K.; Febbraio, M.A. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes, 2006, 55(10), 2688-2697.
[http://dx.doi.org/10.2337/db05-1404] [PMID: 17003332]
[73]
Yudkin, J.S.; Stehouwer, C.D.A.; Emeis, J.J.; Coppack, S.W. C-reactive protein in healthy subjects: Associations with obesity, insulin resistance, and endothelial dysfunction: A potential role for cytokines originating from adipose tissue? Arterioscler. Thromb. Vasc. Biol., 1999, 19(4), 972-978.
[http://dx.doi.org/10.1161/01.ATV.19.4.972] [PMID: 10195925]
[74]
Esteve, E.; Castro, A.; López-Bermejo, A.; Vendrell, J.; Ricart, W.; Fernández-Real, J.M. Serum interleukin-6 correlates with endothelial dysfunction in healthy men independently of insulin sensitivity. Diabetes Care, 2007, 30(4), 939-945.
[http://dx.doi.org/10.2337/dc06-1793] [PMID: 17392554]
[75]
Loppnow, H.; Libby, P. Adult human vascular endothelial cells express the IL6 gene differentially in response to LPS or IL1. Cell. Immunol., 1989, 122(2), 493-503.
[http://dx.doi.org/10.1016/0008-8749(89)90095-6] [PMID: 2788520]
[76]
Ohta, M.; Kihara, T.; Toriuchi, K.; Aoki, H.; Iwaki, S.; Kakita, H.; Yamada, Y.; Aoyama, M. IL-6 promotes cell adhesion in human endothelial cells via microRNA-126–3p suppression. Exp. Cell Res., 2020, 393(2), 112094.
[http://dx.doi.org/10.1016/j.yexcr.2020.112094] [PMID: 32439495]
[77]
Romano, M.; Sironi, M.; Toniatti, C.; Polentarutti, N.; Fruscella, P.; Ghezzi, P.; Faggioni, R.; Luini, W.; van Hinsbergh, V.; Sozzani, S.; Bussolino, F.; Poli, V.; Ciliberto, G.; Mantovani, A. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity, 1997, 6(3), 315-325.
[http://dx.doi.org/10.1016/S1074-7613(00)80334-9] [PMID: 9075932]
[78]
Alsaffar, H.; Martino, N.; Garrett, J.P.; Adam, A.P. Interleukin-6 promotes a sustained loss of endothelial barrier function via Janus kinase-mediated STAT3 phosphorylation and de novo protein synthesis. Am. J. Physiol. Cell Physiol., 2018, 314(5), C589-C602.
[http://dx.doi.org/10.1152/ajpcell.00235.2017] [PMID: 29351406]
[79]
Neumann, F.J.; Ott, I.; Marx, N.; Luther, T.; Kenngott, S.; Gawaz, M.; Kotzsch, M.; Schömig, A. Effect of human recombinant interleukin-6 and interleukin-8 on monocyte procoagulant activity. Arterioscler. Thromb. Vasc. Biol., 1997, 17(12), 3399-3405.
[http://dx.doi.org/10.1161/01.ATV.17.12.3399] [PMID: 9437185]
[80]
Davalos, D.; Akassoglou, K. Fibrinogen as a key regulator of inflammation in disease. Semin. Immunopathol., 2012, 34(1), 43-62.
[http://dx.doi.org/10.1007/s00281-011-0290-8] [PMID: 22037947]
[81]
Dong, J.; Fujii, S.; Li, H.; Nakabayashi, H.; Sakai, M.; Nishi, S.; Goto, D.; Furumoto, T.; Imagawa, S.; Zaman, T.A.K.M.; Kitabatake, A. Interleukin-6 and mevastatin regulate plasminogen activator inhibitor-1 through CCAAT/enhancer-binding protein-delta. Arterioscler. Thromb. Vasc. Biol., 2005, 25(5), 1078-1084.
[http://dx.doi.org/10.1161/01.ATV.0000159701.24372.49] [PMID: 15718495]
[82]
Burstein, S.A.; Peng, J.; Friese, P.; Wolf, R.F.; Harrison, P.; Downs, T.; Hamilton, K.; Comp, P.; Dale, G.L. Cytokine-induced alteration of platelet and hemostatic function. Stem Cells, 1996, 14(S1)(1), 154-162.
[http://dx.doi.org/10.1002/stem.5530140720] [PMID: 11012216]
[83]
Kerr, R.; Stirling, D.; Ludlam, C.A. Interleukin 6 and Haemostasis. Br. J. Haematol., 2001, 115(1), 3-12.
[http://dx.doi.org/10.1046/j.1365-2141.2001.03061.x] [PMID: 11722403]
[84]
Croce, K Intertwining of thrombosis and inflammation in atherosclerosis. Curr Opin Hematol., 2007, 14(1), 55-61.
[85]
Rocha, V.Z.; Libby, P. Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol., 2009, 6(6), 399-409.
[http://dx.doi.org/10.1038/nrcardio.2009.55] [PMID: 19399028]
[86]
Antonopoulos, A.S.; Tousoulis, D. The molecular mechanisms of obesity paradox. Cardiovasc. Res., 2017, 113(9), 1074-1086.
[http://dx.doi.org/10.1093/cvr/cvx106] [PMID: 28549096]
[87]
Neeland, I.J.; Ross, R.; Després, J.P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; Griffin, B.; Zambon, A.; Barter, P.; Fruchart, J.C.; Eckel, R.H. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol., 2019, 7(9), 715-725.
[http://dx.doi.org/10.1016/S2213-8587(19)30084-1] [PMID: 31301983]
[88]
Stols-Gonçalves, D.; Hovingh, G.K.; Nieuwdorp, M.; Holleboom, A.G. NAFLD and atherosclerosis: Two sides of the same dysmetabolic coin? Trends Endocrinol. Metab., 2019, 30(12), 891-902.
[http://dx.doi.org/10.1016/j.tem.2019.08.008] [PMID: 31630897]
[89]
Alon, L.; Corica, B.; Raparelli, V.; Cangemi, R.; Basili, S.; Proietti, M.; Romiti, G.F. Risk of cardiovascular events in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. Eur. J. Prev. Cardiol., 2022, 29(6), 938-946.
[http://dx.doi.org/10.1093/eurjpc/zwab212] [PMID: 34939092]
[90]
Oikonomou, E.K.; Antoniades, C. The role of adipose tissue in cardiovascular health and disease. Nat. Rev. Cardiol., 2019, 16(2), 83-99.
[http://dx.doi.org/10.1038/s41569-018-0097-6] [PMID: 30287946]
[91]
Ohman, M.; Wright, A.; Wickenheiser, K.; Luo, W.; Eitzman, D. Visceral adipose tissue and atherosclerosis. Curr. Vasc. Pharmacol., 2009, 7(2), 169-179.
[http://dx.doi.org/10.2174/157016109787455680] [PMID: 19356000]
[92]
Tarantino, G.; Citro, V.; Balsano, C.; Capone, D. Age and interleukin-15 levels are independently associated with intima-media thickness in obesity-related nafld patients. Front. Med., 2021, 8, 634962.
[http://dx.doi.org/10.3389/fmed.2021.634962] [PMID: 34095164]
[93]
Finelli, C.; Tarantino, G. Is visceral fat reduction necessary to favour metabolic changes in the liver? J. Gastrointestin. Liver Dis., 2012, 21(2), 205-208.
[PMID: 22720311]
[94]
Antonopoulos, A.S.; Sanna, F.; Sabharwal, N.; Thomas, S.; Oikonomou, E.K.; Herdman, L.; Margaritis, M.; Shirodaria, C.; Kampoli, A.M.; Akoumianakis, I.; Petrou, M.; Sayeed, R.; Krasopoulos, G.; Psarros, C.; Ciccone, P.; Brophy, C.M.; Digby, J.; Kelion, A.; Uberoi, R.; Anthony, S.; Alexopoulos, N.; Tousoulis, D.; Achenbach, S.; Neubauer, S.; Channon, K.M.; Antoniades, C. Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl. Med., 2017, 9(398), eaal2658.
[http://dx.doi.org/10.1126/scitranslmed.aal2658] [PMID: 28701474]
[95]
Oikonomou, E.K.; Marwan, M.; Desai, M.Y.; Mancio, J.; Alashi, A.; Hutt Centeno, E.; Thomas, S.; Herdman, L.; Kotanidis, C.P.; Thomas, K.E.; Griffin, B.P.; Flamm, S.D.; Antonopoulos, A.S.; Shirodaria, C.; Sabharwal, N.; Deanfield, J.; Neubauer, S.; Hopewell, J.C.; Channon, K.M.; Achenbach, S.; Antoniades, C. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data. Lancet, 2018, 392(10151), 929-939.
[http://dx.doi.org/10.1016/S0140-6736(18)31114-0] [PMID: 30170852]
[96]
Garbers, C.; Heink, S.; Korn, T.; Rose-John, S. Interleukin-6: Designing specific therapeutics for a complex cytokine. Nat. Rev. Drug Discov., 2018, 17(6), 395-412.
[http://dx.doi.org/10.1038/nrd.2018.45] [PMID: 29725131]
[97]
Chimen, M; Yates, CM; McGettrick, HM; Ward, LS; Harrison, MJ; Apta, B Monocyte subsets coregulate inflammatory responses by integrated signaling through TNF and IL-6 at the endothelial cell interface. J Immunol., 2017, 198(7), 2834-2843.
[http://dx.doi.org/10.4049/jimmunol.1601281]
[98]
Wolf, J; Rose-John, S; Garbers, C Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine., 2014, 70(1), 11-20.
[http://dx.doi.org/10.1016/j.cyto.2014.05.024] [PMID: 24986424]
[99]
Ridker, P.M. Inhibiting interleukin-6 to reduce cardiovascular event rates. J. Am. Coll. Cardiol., 2021, 77(15), 1856-1858.
[http://dx.doi.org/10.1016/j.jacc.2021.02.060] [PMID: 33858621]
[100]
Lee, J.; Lee, S.; Zhang, H.; Hill, M.A.; Zhang, C.; Park, Y. Interaction of il-6 and tnf-α contributes to endothelial dysfunction in type 2 diabetic mouse hearts. PLoS One, 2017, 12(11), e0187189.
[http://dx.doi.org/10.1371/journal.pone.0187189] [PMID: 29095915]
[101]
George, M.J.; Jasmin, N.H.; Cummings, V.T.; Richard-Loendt, A.; Launchbury, F.; Woollard, K.; Turner-Stokes, T.; Garcia Diaz, A.I.; Lythgoe, M.; Stuckey, D.J.; Hingorani, A.D.; Gilroy, D.W. Selective interleukin-6 trans-signaling blockade is more effective than panantagonism in reperfused myocardial infarction. JACC Basic Transl. Sci., 2021, 6(5), 431-443.
[http://dx.doi.org/10.1016/j.jacbts.2021.01.013] [PMID: 34095633]
[102]
Kleveland, O.; Kunszt, G.; Bratlie, M.; Ueland, T.; Broch, K.; Holte, E.; Michelsen, A.E.; Bendz, B.; Amundsen, B.H.; Espevik, T.; Aakhus, S.; Damås, J.K.; Aukrust, P.; Wiseth, R.; Gullestad, L. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur. Heart J., 2016, 37(30), 2406-2413.
[http://dx.doi.org/10.1093/eurheartj/ehw171] [PMID: 27161611]
[103]
Broch, K.; Anstensrud, A.K.; Woxholt, S.; Sharma, K.; Tøllefsen, I.M.; Bendz, B.; Aakhus, S.; Ueland, T.; Amundsen, B.H.; Damås, J.K.; Berg, E.S.; Bjørkelund, E.; Bendz, C.; Hopp, E.; Kleveland, O.; Stensæth, K.H.; Opdahl, A.; Kløw, N.E.; Seljeflot, I.; Andersen, G.Ø.; Wiseth, R.; Aukrust, P.; Gullestad, L. Randomized trial of interleukin-6 receptor inhibition in patients with acute st-segment elevation myocardial infarction. J. Am. Coll. Cardiol., 2021, 77(15), 1845-1855.
[http://dx.doi.org/10.1016/j.jacc.2021.02.049] [PMID: 33858620]
[104]
Ridker, P.M.; MacFadyen, J.G.; Glynn, R.J.; Koenig, W.; Libby, P.; Everett, B.M.; Lefkowitz, M.; Thuren, T.; Cornel, J.H. Inhibition of interleukin-1β by canakinumab and cardiovascular outcomes in patients with chronic kidney disease. J. Am. Coll. Cardiol., 2018, 71(21), 2405-2414.
[http://dx.doi.org/10.1016/j.jacc.2018.03.490] [PMID: 29793629]
[105]
Ridker, P.M.; Devalaraja, M.; Baeres, F.M.M.; Engelmann, M.D.M.; Hovingh, G.K.; Ivkovic, M.; Lo, L.; Kling, D.; Pergola, P.; Raj, D.; Libby, P.; Davidson, M. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet, 2021, 397(10289), 2060-2069.
[http://dx.doi.org/10.1016/S0140-6736(21)00520-1] [PMID: 34015342]
[106]
Ridker, P.M. From rescue to zeus: Will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction? Cardiovasc. Res., 2021, 117(11), e138-e140.
[http://dx.doi.org/10.1093/cvr/cvab231] [PMID: 34352102]
[107]
Liuzzo, G.; Biasucci, L.M.; Gallimore, J.R.; Grillo, R.L.; Rebuzzi, A.G.; Pepys, M.B.; Maseri, A. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N. Engl. J. Med., 1994, 331(7), 417-424.
[http://dx.doi.org/10.1056/NEJM199408183310701] [PMID: 7880233]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy