Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Novel Gene Signatures for Prostate Cancer Detection: Network Centralitybased Screening with Experimental Validation

Author(s): Anguo Zhao, Xuefeng Zhang, Guang Hu, Xuedong Wei, Yuhua Huang, Jianquan Hou* and Yuxin Lin*

Volume 18, Issue 10, 2023

Published on: 20 September, 2023

Page: [842 - 852] Pages: 11

DOI: 10.2174/1574893618666230713155145

Price: $65

Abstract

Background: Prostate cancer (PCa) is a kind of malignant tumor with high incidence among males worldwide. The identification of novel biomarker signatures is therefore of clinical significance for PCa precision medicine. It has been acknowledged that the breaking of stability and vulnerability in biological network provides important clues for cancer biomarker discovery.

Methods: In this study, a bioinformatics model by characterizing the centrality of nodes in PCa-specific protein-protein interaction (PPI) network was proposed and applied to identify novel gene signatures for PCa detection. Compared with traditional methods, this model integrated degree, closeness and betweenness centrality as the criterion for Hub gene prioritization. The identified biomarkers were validated based on receiver-operating characteristic evaluation, qRT-PCR experimental analysis and literatureguided functional survey.

Results: Four genes, i.e., MYOF, RBFOX3, OCLN, and CDKN1C, were screened with average AUC ranging from 0.79 to 0.87 in the predicted and validated datasets for PCa diagnosis. Among them, MYOF, RBFOX3, and CDKN1C were observed to be down-regulated whereas OCLN was over-expressed in PCa groups. The in vitro qRT-PCR experiment using cell line samples convinced the potential of identified genes as novel biomarkers for PCa detection. Biological process and pathway enrichment analysis suggested the underlying role of identified biomarkers in mediating PCa-related genes and pathways including TGF-β, Hippo, MAPK signaling during PCa occurrence and progression.

Conclusion: Novel gene signatures were screened as candidate biomarkers for PCa detection based on topological characterization of PCa-specific PPI network. More clinical validation using human samples will be performed in future work.

Graphical Abstract

[1]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022; 72(1): 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[2]
Witte JS. Prostate cancer genomics: Towards a new understanding. Nat Rev Genet 2009; 10(2): 77-82.
[http://dx.doi.org/10.1038/nrg2507] [PMID: 19104501]
[3]
Chen Y, Yu C, Liu X, et al. PCLiON: An ontology for data standardization and sharing of prostate cancer associated lifestyles. Int J Med Inform 2021; 145: 104332.
[http://dx.doi.org/10.1016/j.ijmedinf.2020.104332] [PMID: 33186790]
[4]
Zhang L, Yang BX, Zhang HT, Wang JG, Wang HL, Zhao XJ. Prostate cancer: An emerging threat to the health of aging men in Asia. Asian J Androl 2011; 13(4): 574-8.
[http://dx.doi.org/10.1038/aja.2010.126] [PMID: 21552284]
[5]
Payton S. Genetic differences in PSA. Nat Rev Urol 2014; 11(3): 130.
[http://dx.doi.org/10.1038/nrurol.2014.27] [PMID: 24535588]
[6]
Fan YH, Pan PH, Cheng WM, et al. The Prostate Health Index aids multi-parametric MRI in diagnosing significant prostate cancer. Sci Rep 2021; 11(1): 1286.
[http://dx.doi.org/10.1038/s41598-020-78428-6] [PMID: 33674631]
[7]
Li Y, Vongsangnak W, Chen L, Shen B. Integrative analysis reveals disease-associated genes and biomarkers for prostate cancer progression. BMC Med Genomics 2014; 7(S1): S3.
[http://dx.doi.org/10.1186/1755-8794-7-S1-S3] [PMID: 25080090]
[8]
Patel VL, Busch EL, Friebel TM, et al. Association of Genomic Domains in BRCA1 and BRCA2 with prostate cancer risk and aggressiveness. Cancer Res 2020; 80(3): 624-38.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1840] [PMID: 31723001]
[9]
Wilczak W, Rashed S, Hube-Magg C, et al. Up-regulation of mismatch repair genes MSH6, PMS2 and MLH1 parallels development of genetic instability and is linked to tumor aggressiveness and early PSA recurrence in prostate cancer. Carcinogenesis 2017; 38(1): 19-27.
[http://dx.doi.org/10.1093/carcin/bgw116] [PMID: 27803051]
[10]
Lin Y, Qian F, Shen L, Chen F, Chen J, Shen B. Computer-aided biomarker discovery for precision medicine: Data resources, models and applications. Brief Bioinform 2019; 20(3): 952-75.
[http://dx.doi.org/10.1093/bib/bbx158] [PMID: 29194464]
[11]
Lin Y, Zhao X, Miao Z, et al. Data-driven translational prostate cancer research: From biomarker discovery to clinical decision. J Transl Med 2020; 18(1): 119.
[http://dx.doi.org/10.1186/s12967-020-02281-4] [PMID: 32143723]
[12]
Lin Y, Wang L, Ge W, et al. Multi-omics network characterization reveals novel microRNA biomarkers and mechanisms for diagnosis and subtyping of kidney transplant rejection. J Transl Med 2021; 19(1): 346.
[http://dx.doi.org/10.1186/s12967-021-03025-8] [PMID: 34389032]
[13]
Lin Y, Qi X, Chen J, Shen B. Multivariate competing endogenous RNA network characterization for cancer microRNA biomarker discovery: A novel bioinformatics model with application to prostate cancer metastasis. Precis Clin Med 2022; 5(1): pbac001.
[http://dx.doi.org/10.1093/pcmedi/pbac001] [PMID: 35821682]
[14]
Shinde P, Marrec L, Rai A, et al. Symmetry in cancer networks identified: Proposal for multicancer biomarkers. Netw Sci 2019; 7(4): 541-55.
[http://dx.doi.org/10.1017/nws.2019.55]
[15]
Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science 2002; 296(5569): 910-3.
[http://dx.doi.org/10.1126/science.1065103] [PMID: 11988575]
[16]
Han B, Yang X, Zhang P, et al. DNA methylation biomarkers for nasopharyngeal carcinoma. PLoS One 2020; 15(4): e0230524.
[http://dx.doi.org/10.1371/journal.pone.0230524] [PMID: 32271791]
[17]
Mortensen MM, Høyer S, Lynnerup AS, et al. Expression profiling of prostate cancer tissue delineates genes associated with recurrence after prostatectomy. Sci Rep 2015; 5(1): 16018.
[http://dx.doi.org/10.1038/srep16018] [PMID: 26522007]
[18]
Meller S, Meyer HA, Bethan B, et al. Integration of tissue metabolomics, transcriptomics and immunohistochemistry reveals ERG- and gleason score-specific metabolomic alterations in prostate cancer. Oncotarget 2016; 7(2): 1421-38.
[http://dx.doi.org/10.18632/oncotarget.6370] [PMID: 26623558]
[19]
Shan M, Xia Q, Yan D, et al. Molecular analyses of prostate tumors for diagnosis of malignancy on fine-needle aspiration biopsies. Oncotarget 2017; 8(62): 104761-71.
[http://dx.doi.org/10.18632/oncotarget.22289] [PMID: 29285211]
[20]
Varambally S, Yu J, Laxman B, et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 2005; 8(5): 393-406.
[http://dx.doi.org/10.1016/j.ccr.2005.10.001] [PMID: 16286247]
[21]
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017; 45(W1): W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[22]
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Res 2012; 41(D1): D991-5.
[http://dx.doi.org/10.1093/nar/gks1193] [PMID: 23193258]
[23]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[24]
Han HW, Ohn JH, Moon J, Kim JH. Yin and Yang of disease genes and death genes between reciprocally scale-free biological networks. Nucleic Acids Res 2013; 41(20): 9209-17.
[http://dx.doi.org/10.1093/nar/gkt683] [PMID: 23935122]
[25]
Lin Y, Yuan X, Shen B. Network-based biomedical data analysis. Adv Exp Med Biol 2016; 939: 309-32.
[http://dx.doi.org/10.1007/978-981-10-1503-8_13] [PMID: 27807753]
[26]
Ahmed MM, Shafat Z, Tazyeen S, et al. Identification of pathogenic genes associated with CKD: An integrated bioinformatics approach. Front Genet 2022; 13: 891055.
[http://dx.doi.org/10.3389/fgene.2022.891055] [PMID: 36035163]
[27]
Zhang Y, Lu Y, Yang G, Hou D, Luo Z. An internet-oriented multilayer network model characterization and robustness analysis method. Entropy 2022; 24(8): 1147.
[http://dx.doi.org/10.3390/e24081147] [PMID: 36010811]
[28]
Uhlén M, Fagerberg L, Hallström BM, et al. Tissue-based map of the human proteome. Science 2015; 347(6220): 1260419.
[http://dx.doi.org/10.1126/science.1260419] [PMID: 25613900]
[29]
Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[30]
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res 2021; 49(D1): D545-51.
[http://dx.doi.org/10.1093/nar/gkaa970] [PMID: 33125081]
[31]
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28(1): 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[32]
Chen YX, Weng ZH, Zhang SL. Notch3 regulates the activation of hepatic stellate cells. World J Gastroenterol 2012; 18(12): 1397-403.
[http://dx.doi.org/10.3748/wjg.v18.i12.1397] [PMID: 22493555]
[33]
Jiao C, Meng T, Zhou C, et al. TGF-β signaling regulates SPOP expression and promotes prostate cancer cell stemness. Aging 2020; 12(9): 7747-60.
[http://dx.doi.org/10.18632/aging.103085] [PMID: 32364525]
[34]
Zhang Y, Mou Y, Liang C, et al. Promoting cell proliferation, cell cycle progression, and glycolysis: Glycometabolism-related genes act as prognostic signatures for prostate cancer. Prostate 2021; 81(3): 157-69.
[http://dx.doi.org/10.1002/pros.24092] [PMID: 33338276]
[35]
Xiaoli Z, Yawei W, Lianna L, Haifeng L, Hui Z. Screening of target genes and regulatory function of miRNAs as prognostic indicators for prostate cancer. Med Sci Monit 2015; 21: 3748-59.
[http://dx.doi.org/10.12659/MSM.894670] [PMID: 26628405]
[36]
Bainbridge A, Walker S, Smith J, et al. IKBKE activity enhances AR levels in advanced prostate cancer via modulation of the Hippo pathway. Nucleic Acids Res 2020; 48(10): 5366-82.
[http://dx.doi.org/10.1093/nar/gkaa271] [PMID: 32324216]
[37]
Meng X, Vander Ark A, Daft P, et al. Loss of TGF-β signaling in osteoblasts increases basic-FGF and promotes prostate cancer bone metastasis. Cancer Lett 2018; 418: 109-18.
[http://dx.doi.org/10.1016/j.canlet.2018.01.018] [PMID: 29337106]
[38]
Dai Y, Ren D, Yang Q, et al. The TGF-β signalling negative regulator PICK1 represses prostate cancer metastasis to bone. Br J Cancer 2017; 117(5): 685-94.
[http://dx.doi.org/10.1038/bjc.2017.212] [PMID: 28697177]
[39]
Jiang S, Zhu Y, Chen Z, et al. S100A14 inhibits cell growth and epithelial–mesenchymal transition (EMT) in prostate cancer through FAT1-mediated Hippo signaling pathway. Hum Cell 2021; 34(4): 1215-26.
[http://dx.doi.org/10.1007/s13577-021-00538-8] [PMID: 33890248]
[40]
Zhong B, Zhao Z, Jiang X. RP1-59D14.5 triggers autophagy and represses tumorigenesis and progression of prostate cancer via activation of the Hippo signaling pathway. Cell Death Dis 2022; 13(5): 458.
[http://dx.doi.org/10.1038/s41419-022-04865-y] [PMID: 35562348]
[41]
Dasgupta P, Kulkarni P, Bhat NS, et al. Activation of the Erk/MAPK signaling pathway is a driver for cadmium induced prostate cancer. Toxicol Appl Pharmacol 2020; 401: 115102.
[http://dx.doi.org/10.1016/j.taap.2020.115102] [PMID: 32512071]
[42]
Li S, Fong K, Gritsina G, et al. Activation of MAPK signaling by CXCR7 leads to enzalutamide resistance in prostate cancer. Cancer Res 2019; 79(10): 2580-92.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2812] [PMID: 30952632]
[43]
Wu HC, Chang CH, Tsou YA, Tsai CW, Lin CC, Bau DT. Significant association of caveolin-1 (CAV1) genotypes with prostate cancer susceptibility in Taiwan. Anticancer Res 2011; 31(2): 745-9.
[PMID: 21378366]
[44]
Sugie S, Mukai S, Yamasaki K, Kamibeppu T, Tsukino H, Kamoto T. Significant association of caveolin-1 and caveolin-2 with prostate cancer progression. Cancer Genomics Proteomics 2015; 12(6): 391-6.
[PMID: 26543085]
[45]
Liu R, Li S, Liu L, Xu B, Chen M. Identification of biomarkers, pathways and potential therapeutic target for docetaxel resistant prostate cancer. Bioengineered 2021; 12(1): 2377-88.
[http://dx.doi.org/10.1080/21655979.2021.1936831] [PMID: 34077304]
[46]
Rajan P, Stockley J, Sudbery IM, et al. Identification of a candidate prognostic gene signature by transcriptome analysis of matched pre- and post-treatment prostatic biopsies from patients with advanced prostate cancer. BMC Cancer 2014; 14(1): 977.
[http://dx.doi.org/10.1186/1471-2407-14-977] [PMID: 25519703]
[47]
Wang Y, Wang J, Yan K, Lin J, Zheng Z, Bi J. Identification of core genes associated with prostate cancer progression and outcome via bioinformatics analysis in multiple databases. PeerJ 2020; 8: e8786.
[http://dx.doi.org/10.7717/peerj.8786] [PMID: 32266115]
[48]
Koh CM, Bieberich CJ, Dang CV, Nelson WG, Yegnasubramanian S, De Marzo AM. MYC and Prostate cancer. Genes Cancer 2010; 1(6): 617-28.
[http://dx.doi.org/10.1177/1947601910379132] [PMID: 21779461]
[49]
Wang L, Wang J, Yin X, et al. GIPC2 interacts with Fzd7 to promote prostate cancer metastasis by activating WNT signaling. Oncogene 2022; 41(18): 2609-23.
[http://dx.doi.org/10.1038/s41388-022-02255-4] [PMID: 35347223]
[50]
Li Q, Wang M, Hu Y, et al. MYBL2 disrupts the Hippo-YAP pathway and confers castration resistance and metastatic potential in prostate cancer. Theranostics 2021; 11(12): 5794-812.
[http://dx.doi.org/10.7150/thno.56604] [PMID: 33897882]
[51]
Varzavand A, Hacker W, Ma D, et al. α3β1 integrin suppresses prostate cancer metastasis via regulation of the hippo pathway. Cancer Res 2016; 76(22): 6577-87.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1483] [PMID: 27680681]
[52]
Johansson M, McKay JD, Stattin P, et al. Comprehensive evaluation of genetic variation in theIGF1 gene and risk of prostate cancer. Int J Cancer 2007; 120(3): 539-42.
[http://dx.doi.org/10.1002/ijc.22344] [PMID: 17096324]
[53]
Loeb S, Bjurlin MA, Nicholson J, et al. Overdiagnosis and overtreatment of prostate cancer. Eur Urol 2014; 65(6): 1046-55.
[http://dx.doi.org/10.1016/j.eururo.2013.12.062] [PMID: 24439788]
[54]
Han C, Zhong J, Zhang Q, et al. Development of a dynamic network biomarkers method and its application for detecting the tipping point of prior disease development. Comput Struct Biotechnol J 2022; 20: 1189-97.
[http://dx.doi.org/10.1016/j.csbj.2022.02.019] [PMID: 35317238]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy