Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

A Review on the Mechanism and Structure-activity Relationship of Resveratrol Heteroaryl Analogues

Author(s): Yijun Xiang, Yao Xu, Jiaxin Li, Jingyi Jiang, Yanjie Wang, Xiaoshun Li, Wenbin Ai, Pengbing Mi*, Zehua Yang* and Zitong Zheng*

Volume 27, Issue 7, 2024

Published on: 25 August, 2023

Page: [947 - 958] Pages: 12

DOI: 10.2174/1386207326666230713125512

Price: $65

Abstract

Resveratrol is one of the most interesting naturally-occurring nonflavonoid phenolic compounds with various biological activities, such as anticancer, neuroprotection, antibacterial, and anti-inflammatory. However, there is no clinical usage of resveratrol due to either its poor activity or poor pharmacokinetic properties. Heteroarenes-modified resveratrol is one pathway to improve its biological activities and bioavailability, and form more modification sites. In this review, we present the progress of heteroaryl analogues of resveratrol with promising biological activities in the latest five years, ranging from the synthesis to the structure-activity relationship and mechanism of actions. Finally, introducing heteroarenes into resveratrol is an effective strategy, which focuses on the selectivity of structure-activity relationship in vivo.

Graphical Abstract

[1]
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506.
[http://dx.doi.org/10.1038/nrd2060] [PMID: 16732220]
[2]
Sales, J.M.; Resurreccion, A.V.A. Resveratrol in peanuts. Crit. Rev. Food Sci. Nutr., 2014, 54(6), 734-770.
[http://dx.doi.org/10.1080/10408398.2011.606928] [PMID: 24345046]
[3]
Jeandet, P.; Bessis, R.; Gautheron, B. The production of resveratrol (3,5,4′-trihydroxystilbene) by grape berries in difffferent developmental stages. Am. J. Enol. Vitic., 1991, 42(1), 41-46.
[http://dx.doi.org/10.5344/ajev.1991.42.1.41]
[4]
Lyons, M.M.; Yu, C.; Toma, R.B.; Cho, S.Y.; Reiboldt, W.; Lee, J.; van Breemen, R.B. Resveratrol in raw and baked blueberries and bilberries. J. Agric. Food Chem., 2003, 51(20), 5867-5870.
[http://dx.doi.org/10.1021/jf034150f] [PMID: 13129286]
[5]
Dai, M.; Yuan, D.; Lei, Y.; Li, J.; Ren, Y.; Zhang, Y.; Cang, H.; Gao, W.; Tang, Y. Expression, purification and structural characterization of resveratrol synthase from polygonum cuspidatum. Protein Expr. Purif., 2022, 191, 106024.
[http://dx.doi.org/10.1016/j.pep.2021.106024] [PMID: 34808343]
[6]
Chen, Y.H.; Chung, Y.L.; Lin, C.H. Ultra-low-temperature non-aqueous capillary electrophoretic separation–77 K fluorescence spectroscopic detection for the on-line identification of photo-converted analytes of trans-resveratrol. J. Chromatogr. A, 2002, 943(2), 287-294.
[http://dx.doi.org/10.1016/S0021-9673(01)01465-0] [PMID: 11833648]
[7]
Lin, C.H.; Chen, Y.H. On-line identification oftrans- andcis-resveratrol by nonaqueous capillary electrophoresis/fluorescence spectroscopy at 77 K. Electrophoresis, 2001, 22(12), 2574-2579.
[http://dx.doi.org/10.1002/1522-2683(200107)22:12<2574:AID-ELPS2574>3.0.CO;2-M] [PMID: 11519961]
[8]
Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet, 1992, 339(8808), 1523-1526.
[http://dx.doi.org/10.1016/0140-6736(92)91277-F] [PMID: 1351198]
[9]
Falomir, E.; Lucas, R.; Peñalver, P.; Martí-Centelles, R.; Dupont, A.; Zafra-Gómez, A.; Carda, M.; Morales, J.C. Cytotoxic, antiangiogenic and antitelomerase activity of glucosyl- and acyl-resveratrol prodrugs and resveratrol sulfate metabolites. ChemBioChem, 2016, 17(14), 1343-1348.
[http://dx.doi.org/10.1002/cbic.201600084] [PMID: 27147200]
[10]
Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation, 2017, 14(1), 1-10.
[http://dx.doi.org/10.1186/s12974-016-0779-0] [PMID: 28086917]
[11]
Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol., 2017, 1, 1-9.
[12]
Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol., 2017, 174(12), 1633-1646.
[http://dx.doi.org/10.1111/bph.13492] [PMID: 27058985]
[13]
Qin, L.; Lu, T.; Qin, Y.; He, Y.; Cui, N.; Du, A.; Sun, J. In vivo effect of resveratrol-loaded solid lipid nanoparticles to relieve physical fatigue for sports nutrition supplements. Molecules, 2020, 25(22), 5302.
[http://dx.doi.org/10.3390/molecules25225302] [PMID: 33202918]
[14]
Ma, D.S.L.; Tan, L.T.H.; Chan, K.G.; Yap, W.H.; Pusparajah, P.; Chuah, L.H.; Ming, L.C.; Khan, T.M.; Lee, L.H.; Goh, B.H. Resveratrol-potential antibacterial agent against foodborne pathogens. Front. Pharmacol., 2018, 9, 102.
[http://dx.doi.org/10.3389/fphar.2018.00102] [PMID: 29515440]
[15]
Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E., Jr; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos., 2004, 32(12), 1377-1382.
[http://dx.doi.org/10.1124/dmd.104.000885] [PMID: 15333514]
[16]
Vion, E.; Page, G.; Bourdeaud, E.; Paccalin, M.; Guillard, J.; Rioux Bilan, A. Trans ε-viniferin is an amyloid-β disaggregating and anti-inflammatory drug in a mouse primary cellular model of Alzheimer’s disease. Mol. Cell. Neurosci., 2018, 88, 1-6.
[http://dx.doi.org/10.1016/j.mcn.2017.12.003] [PMID: 29223600]
[17]
Saha, B.; Patro, B.S.; Koli, M.; Pai, G.; Ray, J.; Bandyopadhyay, S.K.; Chattopadhyay, S. trans-4,4′-Dihydroxystilbene (DHS) inhibits human neuroblastoma tumor growth and induces mitochondrial and lysosomal damages in neuroblastoma cell lines. Oncotarget, 2017, 8(43), 73905-73924.
[http://dx.doi.org/10.18632/oncotarget.17879] [PMID: 29088756]
[18]
Fan, G.J.; Liu, X.D.; Qian, Y.P.; Shang, Y.J.; Li, X.Z.; Dai, F.; Fang, J.G.; Jin, X.L.; Zhou, B. 4,4′-Dihydroxy-trans-stilbene, a resveratrol analogue, exhibited enhanced antioxidant activity and cytotoxicity. Bioorg. Med. Chem., 2009, 17(6), 2360-2365.
[http://dx.doi.org/10.1016/j.bmc.2009.02.014] [PMID: 19251420]
[19]
Azmi, M.; Din, M.; Kee, C.; Suhaimi, M.; Ping, A.; Ahmad, K.; Nafiah, M.; Thomas, N.; Mohamad, K.; Hoong, L.; Awang, K. Design, synthesis and cytotoxic evaluation of o-carboxamido stilbene analogues. Int. J. Mol. Sci., 2013, 14(12), 23369-23389.
[http://dx.doi.org/10.3390/ijms141223369] [PMID: 24287912]
[20]
Mayhoub, A.S.; Marler, L.; Kondratyuk, T.P.; Park, E.J.; Pezzuto, J.M.; Cushman, M. Optimization of thiazole analogues of resveratrol for induction of NAD(P)H: Quinone reductase 1 (QR1). Bioorg. Med. Chem., 2012, 20(24), 7030-7039.
[http://dx.doi.org/10.1016/j.bmc.2012.10.006] [PMID: 23142320]
[21]
Penthala, N.R.; Janganati, V.; Bommagani, S.; Crooks, P.A. Synthesis and evaluation of a series of quinolinyl trans-cyanostilbene analogs as anticancer agents. MedChemComm, 2014, 5(7), 886-890.
[http://dx.doi.org/10.1039/C4MD00115J]
[22]
Pecyna, P.; Wargula, J.; Murias, M.; Kucinska, M. More than resveratrol: New insights into stilbene-based compounds. Biomolecules, 2020, 10(8), 1111.
[http://dx.doi.org/10.3390/biom10081111] [PMID: 32726968]
[23]
Ahmadi, R.; Ebrahimzadeh, M.A. Resveratrol – A comprehensive review of recent advances in anticancer drug design and development. Eur. J. Med. Chem., 2020, 200, 112356.
[http://dx.doi.org/10.1016/j.ejmech.2020.112356] [PMID: 32485531]
[24]
Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, 97, 699-718.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.015] [PMID: 25934508]
[25]
Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem., 2017, 25(21), 5891-5903.
[http://dx.doi.org/10.1016/j.bmc.2017.09.035] [PMID: 28988624]
[26]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[27]
Yang, X.; Qiang, X.; Li, Y.; Luo, L.; Xu, R.; Zheng, Y.; Cao, Z.; Tan, Z.; Deng, Y. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. Bioorg. Chem., 2017, 71, 305-314.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.016] [PMID: 28267984]
[28]
St Jean, D.J., Jr; Fotsch, C. Mitigating heterocycle metabolism in drug discovery. J. Med. Chem., 2012, 55(13), 6002-6020.
[http://dx.doi.org/10.1021/jm300343m] [PMID: 22533875]
[29]
Romagnoli, R.; Baraldi, P.G.; Cruz-Lopez, O.; Lopez Cara, C.; Carrion, M.D.; Brancale, A.; Hamel, E.; Chen, L.; Bortolozzi, R.; Basso, G.; Viola, G. Synthesis and antitumor activity of 1,5-disubstituted 1,2,4-triazoles as cis-restricted combretastatin analogues. J. Med. Chem., 2010, 53(10), 4248-4258.
[http://dx.doi.org/10.1021/jm100245q] [PMID: 20420439]
[30]
Xiao, Y.; Chen, H.; Song, C.; Zeng, X.; Zheng, Q.; Zhang, Y.; Lei, X.; Zheng, X. Pharmacological activities and structure-modification of resveratrol analogues. Pharmazie, 2015, 70(12), 765-771.
[PMID: 26817272]
[31]
Liu, Y.; Liu, Y.; Chen, H.; Yao, X.; Xiao, Y.; Zeng, X.; Zheng, Q.; Wei, Y.; Song, C.; Zhang, Y.; Zhu, P.; Wang, J.; Zheng, X. Synthetic resveratrol derivatives and their biological activities: A review. Open J. Med. Chem., 2015, 5(4), 97-105.
[http://dx.doi.org/10.4236/ojmc.2015.54006]
[32]
Yang, M.F.; Yao, X.; Chen, L.M.; Gu, J.Y.; Yang, Z.H.; Chen, H.F.; Zheng, X.; Zheng, Z.T. Synthesis and biological evaluation of resveratrol derivatives with anti-breast cancer activity. Arch. Pharm., 2020, 353(7), 2000044.
[http://dx.doi.org/10.1002/ardp.202000044] [PMID: 32342549]
[33]
Mantri, M.; de Graaf, O.; van Veldhoven, J.; Göblyös, A.; von Frijtag Drabbe Künzel, J.K.; Mulder-Krieger, T.; Link, R.; de Vries, H.; Beukers, M.W.; Brussee, J.; IJzerman, A.P.; Ijzerman, A.P. 2-Amino-6-furan-2-yl-4-substituted nicotinonitriles as A2A adenosine receptor antagonists. J. Med. Chem., 2008, 51(15), 4449-4455.
[http://dx.doi.org/10.1021/jm701594y] [PMID: 18637670]
[34]
Deng, S.; Tang, S.; Dai, C.; Zhou, Y.; Yang, X.; Li, D.; Xiao, X. P21Waf1/Cip1 plays a critical role in furazolidone-induced apoptosis in HepG2 cells through influencing the caspase-3 activation and ROS generation. Food Chem. Toxicol., 2016, 88, 1-12.
[http://dx.doi.org/10.1016/j.fct.2015.12.004] [PMID: 26687534]
[35]
Jin, L.; Ren, Y.J.; Du, C. Synthesis and antitumor activities of resveratrol derivatives on cervical cancer hela cells. Chem. Nat. Compd., 2015, 51(4), 652-655.
[http://dx.doi.org/10.1007/s10600-015-1377-6]
[36]
Du, C.; Dong, M.H.; Ren, Y.J.; Jin, L.; Xu, C. Design, synthesis and antibreast cancer MCF-7 cells biological evaluation of heterocyclic analogs of resveratrol. J. Asian Nat. Prod. Res., 2017, 19(9), 890-902.
[http://dx.doi.org/10.1080/10286020.2016.1250747] [PMID: 27809606]
[37]
Jing, S.; Xing, S.; Yu, L.; Wu, Y.; Zhao, C. Synthesis and characterization of Ag/polyaniline core–shell nanocomposites based on silver nanoparticles colloid. Mater. Lett., 2007, 61(13), 2794-2797.
[http://dx.doi.org/10.1016/j.matlet.2006.10.032]
[38]
Uthaman, A.; Lal, H.M.; Thomas, S. Fundamentals of silver nanoparticles and their toxicological aspects. Polymer nanocomposites based on silver nanoparticles. Engineering Materials; Lal, H.M.; Thomas, S.; Li, T.; Maria, H.J., Eds.; Springer: Cham, 2021, pp. 1-24.
[http://dx.doi.org/10.1007/978-3-030-44259-0_1]
[39]
Huo, C.; Khoshnamvand, M.; Liu, C.; Wang, H.; Liu, P.; Yuan, C.G. Roles of silver nanoparticles adsorbed ions and nanoparticles’ size in antimicrobial activity of biosynthesized silver nanoparticles. Mater. Res. Express, 2019, 6(12), 1250a6.
[http://dx.doi.org/10.1088/2053-1591/ab608e]
[40]
Velidandi, A.; Pabbathi, N.P.P.; Dahariya, S.; Baadhe, R.R. Green synthesis of novel Ag–Cu and Ag–Zn bimetallic nanoparticles and their in vitro biological, eco-toxicity and catalytic studies. Nano-Struct. Nano-Objects, 2021, 26, 1-11.
[41]
Hamad, A.; Khashan, K.S.; Hadi, A. Silver nanoparticles and silver ions as potential antibacterial agents. J. Inorg. Organomet. Polym. Mater., 2020, 30(12), 4811-4828.
[http://dx.doi.org/10.1007/s10904-020-01744-x]
[42]
Kazemizadeh, F.; Malekfar, R.; Parvin, P. Pulsed laser ablation synthesis of carbon nanoparticles in vacuum. J. Phys. Chem. Solids, 2017, 104, 252-256.
[http://dx.doi.org/10.1016/j.jpcs.2017.01.015]
[43]
Khashan, K.S.; Abdulameer, F.A.; Jabir, M.S.; Hadi, A.A.; Sulaiman, G.M. Anticancer activity and toxicity of carbon nanoparticles produced by pulsed laser ablation of graphite in water. Adv. Nat. Sci., Nanosci. Nanotechnol., 2020, 11(3), 035010.
[http://dx.doi.org/10.1088/2043-6254/aba1de]
[44]
Keylor, M.H.; Matsuura, B.S.; Stephenson, C.R.J. Chemistry and biology of resveratrol-derived natural products. Chem. Rev., 2015, 115(17), 8976-9027.
[http://dx.doi.org/10.1021/cr500689b] [PMID: 25835567]
[45]
Arjun, P.N.J.; Sankar, B.; Shankar, K.V.; Kulkarni, N.V.; Sivasankaran, S.; Shankar, B. Silver and silver nanoparticles for the potential treatment of Covid-19: A review. Coatings, 2022, 12(11), 1679.
[http://dx.doi.org/10.3390/coatings12111679]
[46]
de Oliveira, C.S.; Lira, B.F.; Barbosa-Filho, J.M.; Lorenzo, J.G.F.; de Athayde-Filho, P.F. Synthetic approaches and pharmacological activity of 1,3,4-oxadiazoles: A review of the literature from 2000-2012. Molecules, 2012, 17(9), 10192-10231.
[http://dx.doi.org/10.3390/molecules170910192] [PMID: 22926303]
[47]
Gan, X.; Hu, D.; Li, P.; Wu, J.; Chen, X.; Xue, W.; Song, B. Design, synthesis, antiviral activity and three-dimensional quantitative structure-activity relationship study of novel 1,4-pentadien-3-one derivatives containing the 1,3,4-oxadiazole moiety. Pest Manag. Sci., 2016, 72(3), 534-543.
[http://dx.doi.org/10.1002/ps.4018] [PMID: 25847602]
[48]
Murty, M.S.R.; Penthala, R.; Polepalli, S.; Jain, N. Synthesis and biological evaluation of novel resveratrol-oxadiazole hybrid heterocycles as potential antiproliferative agents. Med. Chem. Res., 2016, 25(4), 627-643.
[http://dx.doi.org/10.1007/s00044-016-1514-1]
[49]
Jian, W.; He, D.; Song, S. Synthesis, biological evaluation, and molecular modeling studies of new oxadiazole-stilbene hybrids against phytopathogenic fungi. Sci. Rep., 2016, 6(1), 31045.
[http://dx.doi.org/10.1038/srep31045] [PMID: 27530962]
[50]
Wen, L.; Jian, W.; Shang, J.; He, D. Synthesis and antifungal activities of novel thiophene-based stilbene derivatives bearing an 1,3,4-oxadiazole unit. Pest Manag. Sci., 2019, 75(4), 1123-1130.
[http://dx.doi.org/10.1002/ps.5229] [PMID: 30284404]
[51]
Spilovska, K.; Korabecny, J.; Nepovimova, E.; Dolezal, R.; Mezeiova, E.; Soukup, O.; Kuca, K. Multitarget tacrine hybrids with neuroprotective properties to confront Alzheimer’s disease. Curr. Top. Med. Chem., 2017, 17(9), 1006-1026.
[http://dx.doi.org/10.2174/1568026605666160927152728] [PMID: 27697055]
[52]
Rodríguez-Franco, M.I.; Fernández-Bachiller, M.I.; Pérez, C.; Hernández-Ledesma, B.; Bartolomé, B. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J. Med. Chem., 2006, 49(2), 459-462.
[http://dx.doi.org/10.1021/jm050746d] [PMID: 16420031]
[53]
Oset-Gasque, M.J.; Marco-Contelles, J.L. Tacrine-Natural-Product Hybrids for Alzheimer’s Disease Therapy. Curr. Med. Chem., 2020, 27(26), 4392-4400.
[http://dx.doi.org/10.2174/0929867325666180403151725] [PMID: 29611473]
[54]
Jeřábek, J.; Uliassi, E.; Guidotti, L.; Korábečný, J.; Soukup, O.; Sepsova, V.; Hrabinova, M.; Kuča, K.; Bartolini, M.; Peña-Altamira, L.E.; Petralla, S.; Monti, B.; Roberti, M.; Bolognesi, M.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur. J. Med. Chem., 2017, 127, 250-262.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.048] [PMID: 28064079]
[55]
Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901.
[PMID: 27670581]
[56]
Amr, A.G.E.; Mohamed, A.M.; Mohamed, S.F.; Abdel-Hafez, N.A.; Hammam, A.E.F.G. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorg. Med. Chem., 2006, 14(16), 5481-5488.
[http://dx.doi.org/10.1016/j.bmc.2006.04.045] [PMID: 16713269]
[57]
Abadi, A.H.; Ibrahim, T.M.; Abouzid, K.M.; Lehmann, J.; Tinsley, H.N.; Gary, B.D.; Piazza, G.A. Design, synthesis and biological evaluation of novel pyridine derivatives as anticancer agents and phosphodiesterase 3 inhibitors. Bioorg. Med. Chem., 2009, 17(16), 5974-5982.
[http://dx.doi.org/10.1016/j.bmc.2009.06.063] [PMID: 19628397]
[58]
Reddy, G.C.; Prakash, S.S.; Diwakar, L. Stilbene heterocycles: Synthesis, antimicrobial, antioxidant and anticancer activities. Pharma. Innovation J., 2015, 3(12), 24-30.
[59]
Semenov, A.V.; Balakireva, O.I.; Tarasova, I.V.; Burtasov, A.A.; Semenova, E.V.; Petrov, P.S.; Minaeva, O.V.; Pyataev, N.A. Synthesis, theoretical, and experimental study of radical scavenging activity of 3-pyridinol containing trans-resveratrol analogs. Med. Chem. Res., 2018, 27(4), 1298-1308.
[http://dx.doi.org/10.1007/s00044-018-2150-8]
[60]
Matxain, J.M.; Ristilä, M.; Strid, Å.; Eriksson, L.A. Theoretical study of the antioxidant properties of pyridoxine. J. Phys. Chem. A, 2006, 110(48), 13068-13072.
[http://dx.doi.org/10.1021/jp065115p] [PMID: 17134167]
[61]
Mooney, S.; Leuendorf, J.E.; Hendrickson, C.; Hellmann, H. Vitamin B6: A long known compound of surprising complexity. Molecules, 2009, 14(1), 329-351.
[http://dx.doi.org/10.3390/molecules14010329] [PMID: 19145213]
[62]
Li, W.; Yang, X.; Song, Q.; Cao, Z.; Shi, Y.; Deng, Y.; Zhang, L. Pyridoxine-resveratrol hybrids as novel inhibitors of MAO-B with antioxidant and neuroprotective activities for the treatment of Parkinson’s disease. Bioorg. Chem., 2020, 97, 103707.
[http://dx.doi.org/10.1016/j.bioorg.2020.103707] [PMID: 32146176]
[63]
Hider, R.C.; Hoffbrand, A.V. The role of deferiprone in iron chelation. N. Engl. J. Med., 2018, 379(22), 2140-2150.
[http://dx.doi.org/10.1056/NEJMra1800219] [PMID: 30485781]
[64]
Xu, P.; Zhang, M.; Sheng, R.; Ma, Y. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ 1–42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 127, 174-186.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.045] [PMID: 28061347]
[65]
Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur. J. Med. Chem., 2014, 76, 193-244.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.005] [PMID: 24583357]
[66]
Park, J.H.; Min, H.Y.; Kim, S.S.; Lee, J.Y.; Lee, S.K.; Lee, Y.S. Styrylquinazolines: A new class of inhibitors on prostaglandin E2 production in lipopolysaccharide-activated macrophage cells. Arch. Pharm., 2004, 337(1), 20-24.
[http://dx.doi.org/10.1002/ardp.200300791] [PMID: 14760624]
[67]
Kim, J.Y.; Choi, H.E.; Lee, H.H.; Shin, J.S.; Shin, D.H.; Choi, J.H.; Lee, Y.S.; Lee, K.T. Resveratrol analogue (E)-8-acetoxy-2- 2-(3,4-diacetoxyphenyl)ethenyl -quinazoline induces G(2)/M cell cycle arrest through the activation of ATM/ATR in human cervical carcinoma HeLa cells. Oncol. Rep., 2015, 33(5), 2639-2647.
[http://dx.doi.org/10.3892/or.2015.3871] [PMID: 25812484]
[68]
Park, E.Y.; Kim, J.I.; Leem, D.G.; Shin, J.S.; Kim, K.T.; Choi, S.Y.; Lee, M.H.; Choi, J.H.; Lee, Y.S.; Lee, K.T. Resveratrol analogue (E)-8-acetoxy-2-[2-(3,4-diacetoxyphenyl) ethenyl]-quinazoline induces apoptosis via Fas-mediated pathway in HL-60 human leukemia cells. Oncol. Rep., 2016, 36(6), 3577-3587.
[http://dx.doi.org/10.3892/or.2016.5168] [PMID: 27748905]
[69]
Kondaparla, S.; Soni, A.; Manhas, A.; Srivastava, K.; Puri, S.K.; Katti, S.B. Antimalarial activity of novel 4-aminoquinolines active against drug resistant strains. Bioorg. Chem., 2017, 70, 74-85.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.010] [PMID: 27908538]
[70]
Tseng, C.H.; Tung, C.W.; Wu, C.H.; Tzeng, C.C.; Chen, Y.H.; Hwang, T.L.; Chen, Y.L. Discovery of indeno 1,2-c quinoline derivatives as potent dual antituberculosis and anti-inflammatory agents. Molecules, 2017, 22(6), 1001.
[http://dx.doi.org/10.3390/molecules22061001] [PMID: 28621733]
[71]
Czarnecka, K.; Girek, M.; Maciejewska, K.; Skibiński, R.; Jończyk, J.; Bajda, M.; Kabziński, J.; Sołowiej, P.; Majsterek, I.; Szymański, P. New cyclopentaquinoline hybrids with multifunctional capacities for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 158-170.
[http://dx.doi.org/10.1080/14756366.2017.1406485] [PMID: 29210299]
[72]
Hou, Y.; Zhang, Y.; Mi, Y.; Wang, J.; Zhang, H.; Xu, J.; Yang, Y.; Liu, J.; Ding, L.; Yang, J.; Chen, G.; Wu, C. A novel quinolyl-substituted analogue of resveratrol inhibits LPS-induced inflammatory responses in microglial cells by blocking the NF-kappa B/MAPK signaling pathways. Mol. Nutr. Food Res., 2019, 63(20), 1801380.
[http://dx.doi.org/10.1002/mnfr.201801380] [PMID: 31378007]
[73]
Abdelhamid, R.; Luo, J.; VandeVrede, L.; Kundu, I.; Michalsen, B.; Litosh, V.A.; Schiefer, I.T.; Gherezghiher, T.; Yao, P.; Qin, Z.; Thatcher, G.R.J. Benzothiophene selective estrogen receptor modulators provide neuroprotection by a novel GPR30-dependent mechanism. ACS Chem. Neurosci., 2011, 2(5), 256-268.
[http://dx.doi.org/10.1021/cn100106a] [PMID: 21731800]
[74]
Taha, M.; Ismail, N.H.; Imran, S.; Selvaraj, M.; Rahim, F. Synthesis of novel inhibitors of β-glucuronidase based on the benzothiazole skeleton and their molecular docking studies. RSC Advances, 2016, 6(4), 3003-3012.
[http://dx.doi.org/10.1039/C5RA23072A]
[75]
Chand, K.; Rajeshwari; Hiremathad, A.; Singh, M.; Santos, M.A.; Keri, R.S. A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives. Pharmacol. Rep., 2017, 69(2), 281-295.
[http://dx.doi.org/10.1016/j.pharep.2016.11.007] [PMID: 28171830]
[76]
Penthala, N.R.; Thakkar, S.; Crooks, P.A. Heteroaromatic analogs of the resveratrol analog DMU-212 as potent anti-cancer agents. Bioorg. Med. Chem. Lett., 2015, 25(14), 2763-2767.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.019] [PMID: 26022840]
[77]
Popova, E.A.; Protas, A.V.; Trifonov, R.E. Tetrazole derivatives as promising anticancer agents. Anticancer. Agents Med. Chem., 2018, 17(14), 1856-1868.
[PMID: 28356016]
[78]
Bommagani, S.; Penthala, N.R.; Balasubramaniam, M.; Kuravi, S.; Caldas-Lopes, E.; Guzman, M.L.; Balusu, R.; Crooks, P.A. A novel tetrazole analogue of resveratrol is a potent anticancer agent. Bioorg. Med. Chem. Lett., 2019, 29(2), 172-178.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.006] [PMID: 30528695]
[79]
Stivala, L.A.; Savio, M.; Carafoli, F.; Perucca, P.; Bianchi, L.; Maga, G.; Forti, L.; Pagnoni, U.M.; Albini, A.; Prosperi, E.; Vannini, V. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J. Biol. Chem., 2001, 276(25), 22586-22594.
[http://dx.doi.org/10.1074/jbc.M101846200] [PMID: 11316812]
[80]
Parida, P.K.; Mahata, B.; Santra, A.; Chakraborty, S.; Ghosh, Z.; Raha, S.; Misra, A.K.; Biswas, K.; Jana, K. Inhibition of cancer progression by a novel trans-stilbene derivative through disruption of microtubule dynamics, driving G2/M arrest, and p53-dependent apoptosis. Cell Death Dis., 2018, 9(5), 448.
[http://dx.doi.org/10.1038/s41419-018-0476-2] [PMID: 29670107]
[81]
Pagliai, F.; Pirali, T.; Del Grosso, E.; Di Brisco, R.; Tron, G.C.; Sorba, G.; Genazzani, A.A. Rapid synthesis of triazole-modified resveratrol analogues via click chemistry. J. Med. Chem., 2006, 49(2), 467-470.
[http://dx.doi.org/10.1021/jm051118z] [PMID: 16420033]
[82]
Bertini, S.; Calderone, V.; Carboni, I.; Maffei, R.; Martelli, A.; Martinelli, A.; Minutolo, F.; Rajabi, M.; Testai, L.; Tuccinardi, T.; Ghidoni, R.; Macchia, M. Synthesis of heterocycle-based analogs of resveratrol and their antitumor and vasorelaxing properties. Bioorg. Med. Chem., 2010, 18(18), 6715-6724.
[http://dx.doi.org/10.1016/j.bmc.2010.07.059] [PMID: 20728369]
[83]
Mayhoub, A.S.; Marler, L.; Kondratyuk, T.P.; Park, E.J.; Pezzuto, J.M.; Cushman, M. Optimizing thiadiazole analogues of resveratrol versus three chemopreventive targets. Bioorg. Med. Chem., 2012, 20(1), 510-520.
[http://dx.doi.org/10.1016/j.bmc.2011.09.031] [PMID: 22115839]
[84]
Bellina, F.; Guazzelli, N.; Lessi, M.; Manzini, C. Imidazole analogues of resveratrol: Synthesis and cancer cell growth evaluation. Tetrahedron, 2015, 71(15), 2298-2305.
[http://dx.doi.org/10.1016/j.tet.2015.02.024]
[85]
Vergara, D.; De Domenico, S.; Tinelli, A.; Stanca, E.; Del Mercato, L.L.; Giudetti, A.M.; Simeone, P.; Guazzelli, N.; Lessi, M.; Manzini, C.; Santino, A.; Bellina, F.; Maffia, M. Anticancer effects of novel resveratrol analogues on human ovarian cancer cells. Mol. Biosyst., 2017, 13(6), 1131-1141.
[http://dx.doi.org/10.1039/C7MB00128B] [PMID: 28429008]
[86]
Shanks, D.; Amorati, R.; Fumo, M.G.; Pedulli, G.F.; Valgimigli, L.; Engman, L. Synthesis and Antioxidant Profile of all- r ac -α-. Selenotocopherol. J. Org. Chem., 2006, 71(3), 1033-1038.
[http://dx.doi.org/10.1021/jo052133e] [PMID: 16438517]
[87]
Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: Toxicology and pharmacology. Chem. Rev., 2004, 104(12), 6255-6286.
[http://dx.doi.org/10.1021/cr0406559] [PMID: 15584701]
[88]
Bhabak, K.P.; Mugesh, G. Functional mimics of glutathione peroxidase: Bioinspired synthetic antioxidants. Acc. Chem. Res., 2010, 43(11), 1408-1419.
[http://dx.doi.org/10.1021/ar100059g] [PMID: 20690615]
[89]
Tanini, D.; D’Esopo, V.; Chen, D.; Barchielli, G.; Capperucci, A. Novel sulfur and selenium-containing antioxidants: Synthesis and evaluation of their GPx-like activity. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(2), 166-168.
[http://dx.doi.org/10.1080/10426507.2016.1252365]
[90]
He, X.; Zhong, M.; Li, S.; Li, X.; Li, Y.; Li, Z.; Gao, Y.; Ding, F.; Wen, D.; Lei, Y.; Zhang, Y. Synthesis and biological evaluation of organoselenium (NSAIDs-SeCN and SeCF3) derivatives as potential anticancer agents. Eur. J. Med. Chem., 2020, 208, 112864-112864.
[http://dx.doi.org/10.1016/j.ejmech.2020.112864] [PMID: 32987314]
[91]
Hassan, W.; Oliveira, C.S.; Noreen, H.; Kamdem, J.P.; Nogueira, C.W.; Rocha, J.B.T. Organoselenium compounds as potential neuroprotective therapeutic agents. Curr. Org. Chem., 2016, 20(2), 218-231.
[http://dx.doi.org/10.2174/1385272819666150810222632]
[92]
Mhetre, A.B.; Lee, H.; Yang, H.; Lee, K.; Nam, D.H.; Lim, D. Synthesis and anticancer activity of benzoselenophene and heteroaromatic derivatives of 1,2,9,9a-tetrahydrocyclopropa[c]ben zo[e]indol-4-one (CBI). Org. Biomol. Chem., 2017, 15(5), 1198-1208.
[http://dx.doi.org/10.1039/C6OB02729F] [PMID: 28090614]
[93]
Tanini, D.; Panzella, L.; Amorati, R.; Capperucci, A.; Pizzo, E.; Napolitano, A.; Menichetti, S.; d’Ischia, M. Resveratrol-based benzoselenophenes with an enhanced antioxidant and chain breaking capacity. Org. Biomol. Chem., 2015, 13(20), 5757-5764.
[http://dx.doi.org/10.1039/C5OB00193E] [PMID: 25902184]
[94]
Domazetovic, V.; Fontani, F.; Tanini, D.; D’Esopo, V.; Viglianisi, C.; Marcucci, G.; Panzella, L.; Napolitano, A.; Brandi, M.L.; Capperucci, A.; Menichetti, S.; Vincenzini, M.T.; Iantomasi, T. Protective role of benzoselenophene derivatives of resveratrol on the induced oxidative stress in intestinal myofibroblasts and osteocytes. Chem. Biol. Interact., 2017, 275, 13-21.
[http://dx.doi.org/10.1016/j.cbi.2017.07.015] [PMID: 28735861]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy