Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Research Progress on Small-molecule Inhibitors of Protein Arginine Methyltransferase 5 (PRMT5) for Treating Cancer

Author(s): Chaohua Guo, Lintao Wu, Xumei Zheng, Lin Zhao, Xiaojia Hou, Zhijun Wang* and Chun Han*

Volume 23, Issue 21, 2023

Published on: 19 July, 2023

Page: [2048 - 2074] Pages: 27

DOI: 10.2174/1568026623666230712120527

Price: $65

Abstract

Background: The protein arginine methyltransferase family includes nine members, with PRMT5 being the major type II arginine methyltransferase. PRMT5 is upregulated in a variety of tumors and promotes tumorigenesis and tumor cell proliferation and metastasis, making it a potential tumor therapy target. Recently, PRMT5 inhibitor research and development have become hotspots in the tumor therapy field.

Methods: We classified and summarized PRMT5 inhibitors according to different binding mechanisms. We mainly analyzed the structure, biological activity, and binding interactions of PRMT5 inhibitors with the PRMT5 enzyme.

Results: At present, many PRMT5 inhibitors with various mechanisms of action have been reported, including substrate-competitive inhibitors, SAM-competitive inhibitors, dual substrate-/SAMcompetitive inhibitors, allosteric inhibitors, PRMT5 degraders, MTA-cooperative PRMT5 inhibitors and PPI inhibitors.

Conclusion: These inhibitors are beneficial to the treatment of tumors. Some drugs are being used in clinical trials. PRMT5 inhibitors have broad application prospects in tumor therapy.

Graphical Abstract

[1]
Karkhanis, V.; Hu, Y.J.; Baiocchi, R.A.; Imbalzano, A.N.; Sif, S. Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem. Sci., 2011, 36(12), 633-641.
[http://dx.doi.org/10.1016/j.tibs.2011.09.001] [PMID: 21975038]
[2]
Bedford, M.T.; Clarke, S.G. Protein arginine methylation in mammals: Who, what, and why. Mol. Cell, 2009, 33(1), 1-13.
[http://dx.doi.org/10.1016/j.molcel.2008.12.013] [PMID: 19150423]
[3]
Wysocka, J.; Allis, C.D.; Coonrod, S. Histone arginine methylation and its dynamic regulation. Front. Biosci., 2006, 11, 344-355.
[http://dx.doi.org/10.2741/1802]
[4]
Deng, X.; Gu, L.; Liu, C.; Lu, T.; Lu, F.; Lu, Z.; Cui, P.; Pei, Y.; Wang, B.; Hu, S.; Cao, X. Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Proc. Natl. Acad. Sci., 2010, 107(44), 19114-19119.
[http://dx.doi.org/10.1073/pnas.1009669107] [PMID: 20956294]
[5]
Sanchez, S.E.; Petrillo, E.; Beckwith, E.J.; Zhang, X.; Rugnone, M.L.; Hernando, C.E.; Cuevas, J.C.; Godoy Herz, M.A.; Depetris-Chauvin, A.; Simpson, C.G.; Brown, J.W.S.; Cerdán, P.D.; Borevitz, J.O.; Mas, P.; Ceriani, M.F.; Kornblihtt, A.R.; Yanovsky, M.J. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature, 2010, 468(7320), 112-116.
[http://dx.doi.org/10.1038/nature09470] [PMID: 20962777]
[6]
Ren, J.; Wang, Y.; Liang, Y.; Zhang, Y.; Bao, S.; Xu, Z. Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis. J. Biol. Chem., 2010, 285(17), 12695-12705.
[http://dx.doi.org/10.1074/jbc.M110.103911] [PMID: 20159986]
[7]
Rust, H.L.; Thompson, P.R. Kinase consensus sequences: A breeding ground for crosstalk. ACS Chem. Biol., 2011, 6(9), 881-892.
[http://dx.doi.org/10.1021/cb200171d] [PMID: 21721511]
[8]
Brobbey, C.; Liu, L.; Yin, S.; Gan, W. The role of protein arginine methyltransferases in DNA damage response. Int. J. Mol. Sci., 2022, 23(17), 9780.
[http://dx.doi.org/10.3390/ijms23179780] [PMID: 36077176]
[9]
Wolf, S.S. The protein arginine methyltransferase family: An update about function, new perspectives and the physiological role in humans. Cell. Mol. Life Sci., 2009, 66(13), 2109-2121.
[http://dx.doi.org/10.1007/s00018-009-0010-x] [PMID: 19300908]
[10]
Gayatri, S.; Bedford, M.T. Readers of histone methylarginine marks. Biochim. Biophys. Acta. Gene Regul. Mech., 2014, 1839(8), 702-710.
[http://dx.doi.org/10.1016/j.bbagrm.2014.02.015] [PMID: 24583552]
[11]
Jahan, S. Protein arginine methyltransferases (PRMTs): Role in chromatin organization. Adv. Biol. Regul., 2015, 57, 173-184.
[http://dx.doi.org/10.1016/j.jbior.2014.09.003]
[12]
Antonysamy, S. The structure and function of the PRMT5: MEP50 complex. Subcell Biochem., 2017, 83, 185-194.
[http://dx.doi.org/10.1007/978-3-319-46503-6_7]
[13]
Eddershaw, A.R.; Stubbs, C.J.; Edwardes, L.V.; Underwood, E.; Hamm, G.R.; Davey, P.R.J.; Clarkson, P.N.; Syson, K. Characterization of the kinetic mechanism of human protein arginine methyltransferase 5. Biochemistry, 2020, 59(50), 4775-4786.
[http://dx.doi.org/10.1021/acs.biochem.0c00554] [PMID: 33274632]
[14]
Wang, Y.; Hu, W.; Yuan, Y. Protein arginine methyltransferase 5 (PRMT5) as an anticancer target and its inhibitor discovery. J. Med. Chem., 2018, 61(21), 9429-9441.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00598] [PMID: 29870258]
[15]
Yang, Y.; Bedford, M.T. Protein arginine methyltransferases and cancer. Nat. Rev. Cancer, 2013, 13(1), 37-50.
[http://dx.doi.org/10.1038/nrc3409] [PMID: 23235912]
[16]
Feng, Y.; Maity, R.; Whitelegge, J.P.; Hadjikyriacou, A.; Li, Z.; Zurita-Lopez, C.; Al-Hadid, Q.; Clark, A.T.; Bedford, M.T.; Masson, J.Y.; Clarke, S.G. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J. Biol. Chem., 2013, 288(52), 37010-37025.
[http://dx.doi.org/10.1074/jbc.M113.525345] [PMID: 24247247]
[17]
Motolani, A.; Martin, M.; Sun, M.; Lu, T. The Structure and Functions of PRMT5 in Human Diseases. Life, 2021, 11(10), 1074.
[http://dx.doi.org/10.3390/life11101074] [PMID: 34685445]
[18]
Ho, M.C.; Wilczek, C.; Bonanno, J.B.; Xing, L.; Seznec, J.; Matsui, T.; Carter, L.G.; Onikubo, T.; Kumar, P.R.; Chan, M.K.; Brenowitz, M.; Cheng, R.H.; Reimer, U.; Almo, S.C.; Shechter, D. Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity. PLoS One, 2013, 8(2), e57008.
[http://dx.doi.org/10.1371/journal.pone.0057008] [PMID: 23451136]
[19]
Antonysamy, S.; Bonday, Z.; Campbell, R.M.; Doyle, B.; Druzina, Z.; Gheyi, T.; Han, B.; Jungheim, L.N.; Qian, Y.; Rauch, C.; Russell, M.; Sauder, J.M.; Wasserman, S.R.; Weichert, K.; Willard, F.S.; Zhang, A.; Emtage, S. Crystal structure of the human PRMT5:MEP50 complex. Proc. Natl. Acad. Sci. USA, 2012, 109(44), 17960-17965.
[http://dx.doi.org/10.1073/pnas.1209814109] [PMID: 23071334]
[20]
Migliori, V.; Mapelli, M.; Guccione, E. On WD40 proteins: Propelling our knowledge of transcriptional control? Epigenetics, 2012, 7(8), 815-822.
[http://dx.doi.org/10.4161/epi.21140] [PMID: 22810296]
[21]
Smith, T.F.; Gaitatzes, C.; Saxena, K.; Neer, E.J. The WD repeat: A common architecture for diverse functions. Trends Biochem. Sci., 1999, 24(5), 181-185.
[http://dx.doi.org/10.1016/S0968-0004(99)01384-5] [PMID: 10322433]
[22]
Stirnimann, C.U.; Petsalaki, E.; Russell, R.B.; Müller, C.W. WD40 proteins propel cellular networks. Trends Biochem. Sci., 2010, 35(10), 565-574.
[http://dx.doi.org/10.1016/j.tibs.2010.04.003] [PMID: 20451393]
[23]
Xu, C.; Min, J. Structure and function of WD40 domain proteins. Protein Cell, 2011, 2(3), 202-214.
[http://dx.doi.org/10.1007/s13238-011-1018-1] [PMID: 21468892]
[24]
Burgos, E.S.; Wilczek, C.; Onikubo, T.; Bonanno, J.B.; Jansong, J.; Reimer, U.; Shechter, D. Histone H2A and H4 N-terminal tails are positioned by the MEP50 WD repeat protein for efficient methylation by the PRMT5 arginine methyltransferase. J. Biol. Chem., 2015, 290(15), 9674-9689.
[http://dx.doi.org/10.1074/jbc.M115.636894] [PMID: 25713080]
[25]
Koh, C.M.; Bezzi, M.; Guccione, E. The where and the how of PRMT5. Curr. Mol. Biol. Rep., 2015, 1(1), 19-28.
[http://dx.doi.org/10.1007/s40610-015-0003-5]
[26]
Tee, W.W.; Pardo, M.; Theunissen, T.W.; Yu, L.; Choudhary, J.S.; Hajkova, P.; Surani, M.A. Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes Dev., 2010, 24(24), 2772-2777.
[http://dx.doi.org/10.1101/gad.606110] [PMID: 21159818]
[27]
Tanaka, H.; Fujita, N.; Tsuruo, T. 3-Phosphoinositide-dependent protein kinase-1-mediated IkappaB kinase beta (IkkB) phosphorylation activates NF-kappaB signaling. J. Biol. Chem., 2005, 280(49), 40965-40973.
[http://dx.doi.org/10.1074/jbc.M506235200] [PMID: 16207722]
[28]
Litzler, L.C.; Zahn, A.; Meli, A.P.; Hébert, S.; Patenaude, A.M.; Methot, S.P.; Sprumont, A.; Bois, T.; Kitamura, D.; Costantino, S.; King, I.L.; Kleinman, C.L.; Richard, S.; Di Noia, J.M. PRMT5 is essential for B cell development and germinal center dynamics. Nat. Commun., 2019, 10(1), 22.
[http://dx.doi.org/10.1038/s41467-018-07884-6] [PMID: 30604754]
[29]
Scaglione, A.; Patzig, J.; Liang, J.; Frawley, R.; Bok, J.; Mela, A.; Yattah, C.; Zhang, J.; Teo, S.X.; Zhou, T.; Chen, S.; Bernstein, E.; Canoll, P.; Guccione, E.; Casaccia, P. PRMT5-mediated regulation of developmental myelination. Nat. Commun., 2018, 9(1), 2840.
[http://dx.doi.org/10.1038/s41467-018-04863-9] [PMID: 30026560]
[30]
Tan, D.Q.; Li, Y.; Yang, C.; Li, J.; Tan, S.H.; Chin, D.W.L.; Nakamura-Ishizu, A.; Yang, H.; Suda, T. PRMT5 modulates splicing for genome integrity and preserves proteostasis of hematopoietic stem cells. Cell Rep., 2019, 26(9), 2316-2328.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.02.001] [PMID: 30811983]
[31]
Zhu, F.; Guo, H.; Bates, P.D.; Zhang, S.; Zhang, H.; Nomie, K.J.; Li, Y.; Lu, L.; Seibold, K.R.; Wang, F.; Rumball, I.; Cameron, H.; Hoang, N.M.; Yang, D.T.; Xu, W.; Zhang, L.; Wang, M.; Capitini, C.M.; Rui, L. PRMT5 is upregulated by B-cell receptor signaling and forms a positive-feedback loop with PI3K/AKT in lymphoma cells. Leukemia, 2019, 33(12), 2898-2911.
[http://dx.doi.org/10.1038/s41375-019-0489-6] [PMID: 31123343]
[32]
Wang, X.; Qiu, T.; Wu, Y.; Yang, C.; Li, Y.; Du, G.; He, Y.; Liu, W.; Liu, R.; Chen, C.; Shi, Y.; Pan, J.; Zhou, J.; Jiang, D.; Chen, C. Arginine methyltransferase PRMT5 methylates and stabilizes KLF5 via decreasing its phosphorylation and ubiquitination to promote basal-like breast cancer. Cell Death Differ., 2021, 28(10), 2931-2945.
[http://dx.doi.org/10.1038/s41418-021-00793-0] [PMID: 33972717]
[33]
Huang, J.; Zheng, Y.; Zheng, X.; Qian, B.; Yin, Q.; Lu, J. PRMT5 promotes EMT through regulating Akt activity in human lung cancer. Cell Transplant., 2021, 30, 9636897211001772.
[http://dx.doi.org/10.1177/09636897211001772]
[34]
Zhang, S.; Ma, Y.; Hu, X.; Zheng, Y.; Chen, X. Targeting PRMT5/Akt signalling axis prevents human lung cancer cell growth. J. Cell. Mol. Med., 2019, 23(2), 1333-1342.
[http://dx.doi.org/10.1111/jcmm.14036] [PMID: 30461193]
[35]
Li, Y.; Yang, Y.; Liu, X.; Long, Y.; Zheng, Y. PRMT5 promotes human lung cancer cell apoptosis via akt/gsk3β signaling induced by resveratrol. Cell Transplant., 2019, 28(12), 1664-1673.
[http://dx.doi.org/10.1177/0963689719885083] [PMID: 31665911]
[36]
Hartley, A.V.; Wang, B.; Mundade, R.; Jiang, G.; Sun, M.; Wei, H.; Sun, S.; Liu, Y.; Lu, T. PRMT5-mediated methylation of YBX1 regulates NF-κB activity in colorectal cancer. Sci. Rep., 2020, 10(1), 15934.
[http://dx.doi.org/10.1038/s41598-020-72942-3] [PMID: 32985589]
[37]
Sachamitr, P.; Ho, J.C.; Ciamponi, F.E.; Ba-Alawi, W.; Coutinho, F.J.; Guilhamon, P.; Kushida, M.M.; Cavalli, F.M.G.; Lee, L.; Rastegar, N.; Vu, V.; Sánchez-Osuna, M.; Coulombe-Huntington, J.; Kanshin, E.; Whetstone, H.; Durand, M.; Thibault, P.; Hart, K.; Mangos, M.; Veyhl, J.; Chen, W.; Tran, N.; Duong, B.C.; Aman, A.M.; Che, X.; Lan, X.; Whitley, O.; Zaslaver, O.; Barsyte-Lovejoy, D.; Richards, L.M.; Restall, I.; Caudy, A.; Röst, H.L.; Bonday, Z.Q.; Bernstein, M.; Das, S.; Cusimano, M.D.; Spears, J.; Bader, G.D.; Pugh, T.J.; Tyers, M.; Lupien, M.; Haibe-Kains, B.; Artee Luchman, H.; Weiss, S.; Massirer, K.B.; Prinos, P.; Arrowsmith, C.H.; Dirks, P.B. PRMT5 inhibition disrupts splicing and stemness in glioblastoma. Nat. Commun., 2021, 12(1), 979.
[http://dx.doi.org/10.1038/s41467-021-21204-5] [PMID: 33579912]
[38]
Feustel, K.; Falchook, G.S. Protein Arginine Methyltransferase 5 (PRMT5) Inhibitors in Oncology Clinical Trials: A review. Journal of Immunotherapy and Precision Oncology, 2022, 5(3), 58-67.
[http://dx.doi.org/10.36401/JIPO-22-1] [PMID: 36034581]
[39]
Chan-Penebre, E.; Kuplast, K.G.; Majer, C.R.; Boriack-Sjodin, P.A.; Wigle, T.J.; Johnston, L.D.; Rioux, N.; Munchhof, M.J.; Jin, L.; Jacques, S.L.; West, K.A.; Lingaraj, T.; Stickland, K.; Ribich, S.A.; Raimondi, A.; Scott, M.P.; Waters, N.J.; Pollock, R.M.; Smith, J.J.; Barbash, O.; Pappalardi, M.; Ho, T.F.; Nurse, K.; Oza, K.P.; Gallagher, K.T.; Kruger, R.; Moyer, M.P.; Copeland, R.A.; Chesworth, R.; Duncan, K.W. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat. Chem. Biol., 2015, 11(6), 432-437.
[http://dx.doi.org/10.1038/nchembio.1810] [PMID: 25915199]
[40]
Duncan, K.W.; Rioux, N.; Boriack-Sjodin, P.A.; Munchhof, M.J.; Reiter, L.A.; Majer, C.R.; Jin, L.; Johnston, L.D.; Chan-Penebre, E.; Kuplast, K.G.; Porter Scott, M.; Pollock, R.M.; Waters, N.J.; Smith, J.J.; Moyer, M.P.; Copeland, R.A.; Chesworth, R. Structure and Property Guided Design in the Identification of PRMT5 Tool Compound EPZ015666. ACS Med. Chem. Lett., 2016, 7(2), 162-166.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00380] [PMID: 26985292]
[41]
Chen, Y.; Shao, X.; Zhao, X.; Ji, Y.; Liu, X.; Li, P.; Zhang, M.; Wang, Q. Targeting protein arginine methyltransferase 5 in cancers: Roles, inhibitors and mechanisms. Biomed Pharmacother., 2021, 144, 12252.
[http://dx.doi.org/10.1016/j.biopha.2021.112252]
[42]
Gullà, A.; Hideshima, T.; Bianchi, G.; Fulciniti, M.; Kemal Samur, M.; Qi, J.; Tai, Y-T.; Harada, T.; Morelli, E.; Amodio, N.; Carrasco, R.; Tagliaferri, P.; Munshi, N.C.; Tassone, P.; Anderson, K.C. Protein arginine methyltransferase 5 has prognostic relevance and is a druggable target in multiple myeloma. Leukemia, 2018, 32(4), 996-1002.
[http://dx.doi.org/10.1038/leu.2017.334] [PMID: 29158558]
[43]
Chaturvedi, N.K.; Mahapatra, S.; Kesherwani, V.; Kling, M.J.; Shukla, M.; Ray, S.; Kanchan, R.; Perumal, N.; McGuire, T.R.; Sharp, J.G.; Joshi, S.S.; Coulter, D.W. Role of protein arginine methyltransferase 5 in group 3 (MYC-driven) Medulloblastoma. BMC Cancer, 2019, 19(1), 1056.
[http://dx.doi.org/10.1186/s12885-019-6291-z] [PMID: 31694585]
[44]
Lin, H.; Luengo, J.I. Nucleoside protein arginine methyltransferase 5 (PRMT5) inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(11), 1264-1269.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.042] [PMID: 30956011]
[45]
Gerhart, S.V.; Kellner, W.A.; Thompson, C.; Pappalardi, M.B.; Zhang, X.P.; Montes de Oca, R.; Penebre, E.; Duncan, K.; Boriack-Sjodin, A.; Le, B.; Majer, C.; McCabe, M.T.; Carpenter, C.; Johnson, N.; Kruger, R.G.; Barbash, O. Activation of the p53-MDM4 regulatory axis defines the anti-tumour response to PRMT5 inhibition through its role in regulating cellular splicing. Sci. Rep., 2018, 8(1), 9711.
[http://dx.doi.org/10.1038/s41598-018-28002-y] [PMID: 29946150]
[46]
Shao, J.; Zhu, K.; Du, D.; Zhang, Y.; Tao, H.; Chen, Z.; Jiang, H.; Chen, K.; Luo, C. Discovery of 2-substituted-N-(3-(3,4-dihydroisoquinolin-2(1H)-yl)-2-hydroxypropyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxamide as potent and selective protein arginine methyltransferases 5 inhibitors: Design, synthesis and biological evaluation. Eur J Med Chem., 2019, 164, 317-33.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.065]
[47]
Zheng, B.N.; Ding, C.H.; Chen, S.J.; Zhu, K.; Shao, J.; Feng, J.; Xu, W.P.; Cai, L.Y.; Zhu, C.P.; Duan, W.; Ding, J.; Zhang, X.; Luo, C.; Xie, W.F. Targeting PRMT5 Activity Inhibits the Malignancy of Hepatocellular Carcinoma by Promoting the Transcription of HNF4α. Theranostics, 2019, 9(9), 2606-2617.
[http://dx.doi.org/10.7150/thno.32344] [PMID: 31131056]
[48]
Barczak, W.; Jin, L.; Carr, S.M.; Munro, S.; Ward, S.; Kanapin, A.; Samsonova, A.; La Thangue, N.B. PRMT5 promotes cancer cell migration and invasion through the E2F pathway. Cell Death Dis., 2020, 11(7), 572.
[http://dx.doi.org/10.1038/s41419-020-02771-9] [PMID: 32709847]
[49]
Zhu, K.; Song, J.L.; Tao, H.R.; Cheng, Z.Q.; Jiang, C.S.; Zhang, H. Discovery of new potent protein arginine methyltransferase 5 (PRMT5) inhibitors by assembly of key pharmacophores from known inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3693-3699.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.026] [PMID: 30366617]
[50]
Mao, R.; Shao, J.; Zhu, K.; Zhang, Y.; Ding, H.; Zhang, C.; Shi, Z.; Jiang, H.; Sun, D.; Duan, W.; Luo, C. Potent, Selective, and Cell Active Protein Arginine Methyltransferase 5 (PRMT5) Inhibitor Developed by Structure-Based Virtual Screening and Hit Optimization. J. Med. Chem., 2017, 60(14), 6289-6304.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00587] [PMID: 28650658]
[51]
Zhu, K.; Shao, J.; Tao, H.; Yan, X.; Luo, C.; Zhang, H.; Duan, W. Rational Design, synthesis and biological evaluation of novel triazole derivatives as potent and selective PRMT5 inhibitors with antitumor activity. J. Comput. Aided Mol. Des., 2019, 33(8), 775-785.
[http://dx.doi.org/10.1007/s10822-019-00214-y] [PMID: 31312965]
[52]
Tang, Y.; Huang, S.; Chen, X.; Huang, J.; Lin, Q.; Huang, L.; Wang, S.; Zhu, Q.; Xu, Y.; Zou, Y. Design, Synthesis and Biological Evaluation of Novel and Potent Protein Arginine Methyltransferases 5 Inhibitors for Cancer Therapy. Molecules, 2022, 27(19), 6637.
[http://dx.doi.org/10.3390/molecules27196637] [PMID: 36235174]
[53]
Ye, F.; Zhang, W.; Ye, X.; Jin, J.; Lv, Z.; Luo, C. Identification of Selective, Cell Active Inhibitors of Protein Arginine Methyltransferase 5 through Structure-Based Virtual Screening and Biological Assays. J. Chem. Inf. Model., 2018, 58(5), 1066-1073.
[http://dx.doi.org/10.1021/acs.jcim.8b00050] [PMID: 29672052]
[54]
Ji, S.; Ma, S.; Wang, W.J.; Huang, S.Z.; Wang, T.; Xiang, R.; Hu, Y.G.; Chen, Q.; Li, L.L.; Yang, S.Y. Discovery of selective protein arginine methyltransferase 5 inhibitors and biological evaluations. Chem. Biol. Drug Des., 2017, 89(4), 585-598.
[http://dx.doi.org/10.1111/cbdd.12881] [PMID: 27714957]
[55]
Ye, Y.; Zhang, B.; Mao, R.; Zhang, C.; Wang, Y.; Xing, J.; Liu, Y.C.; Luo, X.; Ding, H.; Yang, Y.; Zhou, B.; Jiang, H.; Chen, K.; Luo, C.; Zheng, M. Discovery and optimization of selective inhibitors of protein arginine methyltransferase 5 by docking-based virtual screening. Org. Biomol. Chem., 2017, 15(17), 3648-3661.
[http://dx.doi.org/10.1039/C7OB00070G] [PMID: 28397890]
[56]
Zhu, K.; Jiang, C.; Tao, H.; Liu, J.; Zhang, H.; Luo, C. Identification of a novel selective small-molecule inhibitor of protein arginine methyltransferase 5 (PRMT5) by virtual screening, resynthesis and biological evaluations. Bioorg. Med. Chem. Lett., 2018, 28(9), 1476-1483.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.087] [PMID: 29628326]
[57]
Wang, Q.; Xu, J.; Li, Y.; Huang, J.; Jiang, Z.; Wang, Y.; Liu, L.; Leung, E.L.H. Identification of a novel protein arginine methyltransferase 5 inhibitor in non-small cell lung cancer by structure-based virtual screening. Front Pharmacol., 2018, 9, 173.
[http://dx.doi.org/10.3389/fphar.2018.00173]
[58]
Tao, H.; Yan, X.; Zhu, K.; Zhang, H. Discovery of Novel PRMT5 Inhibitors by Virtual Screening and Biological Evaluations. Chem. Pharm. Bull. (Tokyo), 2019, 67(4), 382-388.
[http://dx.doi.org/10.1248/cpb.c18-00980] [PMID: 30930442]
[59]
Bai, X.; Zhai, Z.; Zhao, X.; Li, R.; Liang, L.; Jin, Y.; Yin, Y. Discovery of novel PRMT5 inhibitors bearing a methylpiperazinyl moiety. Future Med. Chem., 2022, 14(14), 1071-1086.
[http://dx.doi.org/10.4155/fmc-2021-0244] [PMID: 35748226]
[60]
Zhang, Q.; Zhang, L.; Jin, J.; Fan, Y.; Wang, X.; Hu, H.; Ye, X.; Wang, L.; Cao, C.; Ye, F. Identification of PRMT5 inhibitors with novel scaffold structures through virtual screening and biological evaluations. J. Mol. Model., 2022, 28(7), 184.
[http://dx.doi.org/10.1007/s00894-022-05125-8] [PMID: 35680707]
[61]
Chen, Y.; Zhang, M.; Wu, A.; Yao, X.; Wang, Q. Structure-Based Discovery and Biological Assays of a Novel PRMT5 Inhibitor for Non-Small Cell Lung Cancer. Molecules, 2022, 27(21), 7436.
[http://dx.doi.org/10.3390/molecules27217436] [PMID: 36364261]
[62]
Prabhu, L.; Chen, L.; Wei, H.; Demir, Ö.; Safa, A.; Zeng, L.; Amaro, R.E.; O’Neil, B.H.; Zhang, Z.Y.; Lu, T. Development of an AlphaLISA high throughput technique to screen for small molecule inhibitors targeting protein arginine methyltransferases. Mol. Biosyst., 2017, 13(12), 2509-2520.
[http://dx.doi.org/10.1039/C7MB00391A] [PMID: 29099132]
[63]
Kong, G.M.; Yu, M.; Gu, Z.; Chen, Z.; Xu, R.M.; O’Bryant, D.; Wang, Z. Selective small-chemical inhibitors of protein arginine methyltransferase 5 with anti-lung cancer activity. PLoS One, 2017, 12(8), e0181601.
[http://dx.doi.org/10.1371/journal.pone.0181601] [PMID: 28806746]
[64]
Liu, S.; Liu, Z.; Piao, C.; Zhang, Z.; Kong, C.; Yin, L.; Liu, X. Flavokawain A is a natural inhibitor of PRMT5 in bladder cancer. J. Exp. Clin. Cancer Res., 2022, 41(1), 293.
[http://dx.doi.org/10.1186/s13046-022-02500-4] [PMID: 36199122]
[65]
Chikkanna, D.; Panigrahi, S.K.; Rajagopalan, S.; Sammeta, S.R.; Chawla, D. Preclinical in vivo evaluation of efficacy, pharmacokinetics and pharmacodynamics of novel PRMT5 inhibitors in multiple tumor models. Cancer Res., 2018, 78(13), 1392-1392.
[http://dx.doi.org/10.1158/1538-7445.AM2018-1392]
[66]
Sivanandhan, D.; Garapaty, S.; Vadivelu, S.; Seerapu, G.P.K.; Das, R.; Kar, R.; Singh, A.K.; Venkateshappa, V.A.; Tamizharasan, N.; Swamy, I.N.; Nagaraju, N.; Kanagaraj, S.; Sarkar, S.; Tibhe, J.D. Abstract 4856: Novel, small-molecule PRMT5 inhibitors for treatment of cancer. Cancer Res., 2018, 78(13), 4856-4856.
[http://dx.doi.org/10.1158/1538-7445.AM2018-4856]
[67]
Weickhmann, A.K.; Keller, H.; Wurm, J.P.; Strebitzer, E.; Juen, M.A.; Kremser, J.; Weinberg, Z.; Kreutz, C.; Duchardt-Ferner, E.; Wöhnert, J. The structure of the SAM/SAH-binding riboswitch. Nucleic Acids Res., 2019, 47(5), 2654-2665.
[http://dx.doi.org/10.1093/nar/gky1283] [PMID: 30590743]
[68]
Bonday, Z.Q.; Cortez, G.S.; Grogan, M.J.; Antonysamy, S.; Weichert, K.; Bocchinfuso, W.P.; Li, F.; Kennedy, S.; Li, B.; Mader, M.M.; Arrowsmith, C.H.; Brown, P.J.; Eram, M.S.; Szewczyk, M.M.; Barsyte-Lovejoy, D.; Vedadi, M.; Guccione, E.; Campbell, R.M. LLY-283, a Potent and Selective Inhibitor of Arginine Methyltransferase 5, PRMT5, with Antitumor Activity. ACS Med. Chem. Lett., 2018, 9(7), 612-617.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00014] [PMID: 30034588]
[69]
Snyder, K.J.; Zitzer, N.C.; Gao, Y.; Choe, H.K.; Sell, N.E.; Neidemire-Colley, L.; Ignaci, A.; Kale, C.; Devine, R.D.; Abad, M.G.; Pietrzak, M.; Wang, M.; Lin, H.; Zhang, Y.W.; Behbehani, G.K.; Jackman, J.E.; Garzon, R.; Vaddi, K.; Baiocchi, R.A.; Ranganathan, P. PRMT5 regulates T cell interferon response and is a target for acute graft-versus-host disease. JCI Insight, 2020, 5(8), e131099.
[http://dx.doi.org/10.1172/jci.insight.131099] [PMID: 32191634]
[70]
Mcalpine, I.J.; Tatlock, J.; Billitti, J.; Braganza, J.; Brooun, A.; Ya-Li, D.; Hirakawa, B.; Jensen-Pergakes, K.; Kumpf, R.; Liu, W.; Maegley, K.; McTigue, M.; Patman, R.; Rui, E.; Scales, S.; Spiegel, N.; Tran-Dubé, M.; Wang, F.; Wang, Z.; Yamazaki, S.; Zhang, T.; Wythes, M. Abstract 4857: Discovery of PF-06855800, a SAM competitive PRMT5 inhibitor with potent antitumor activity. Cancer Res., 2018, 78(13_Supplement), 4857-4857.
[http://dx.doi.org/10.1158/1538-7445.AM2018-4857]
[71]
Ferreira de Freitas, R.; Ivanochko, D.; Schapira, M. Methyltransferase Inhibitors: Competing with, or Exploiting the Bound Cofactor. Molecules, 2019, 24(24), 4492.
[http://dx.doi.org/10.3390/molecules24244492] [PMID: 31817960]
[72]
Jensen-Pergakes, K.; Tatlock, J.; Maegley, K.A.; McAlpine, I.J.; McTigue, M.; Xie, T.; Dillon, C.P.; Wang, Y.; Yamazaki, S.; Spiegel, N.; Shi, M.; Nemeth, A.; Miller, N.; Hendrickson, E.; Lam, H.; Sherrill, J.; Chung, C.Y.; McMillan, E.A.; Bryant, S.K.; Palde, P.; Braganza, J.; Brooun, A.; Deng, Y.L.; Goshtasbi, V.; Kephart, S.E.; Kumpf, R.A.; Liu, W.; Patman, R.L.; Rui, E.; Scales, S.; Tran-Dube, M.; Wang, F.; Wythes, M.; Paul, T.A. SAM-Competitive PRMT5 Inhibitor PF-06939999 Demonstrates Antitumor Activity in Splicing Dysregulated NSCLC with Decreased Liability of Drug Resistance. Mol. Cancer Ther., 2022, 21(1), 3-15.
[http://dx.doi.org/10.1158/1535-7163.MCT-21-0620] [PMID: 34737197]
[73]
Verhoeven, J.; De Vleeschouwer, F.; Kong, H.; Van Hecke, K.; Pande, V.; Sun, W.; Vos, A.; Wu, T.; Meerpoel, L.; Thuring, J.W.; Verniest, G. Preparation of 4′‐Spirocyclobutyl Nucleoside Analogues as Novel and Versatile Adenosine Scaffolds. Chemistry, 2019, 25(67), 15419-15423.
[http://dx.doi.org/10.1002/chem.201904574] [PMID: 31609050]
[74]
Jouffroy, L.; Verhoeven, J.; Brambilla, M.; Verniest, G.; Kong, H.; Zhao, Y.; Wang, W.; Meerpoel, L.; Thuring, J.W.; Winne, J.M. Regio- and Stereoselective Synthesis of C-4′ Spirocyclobutyl Ribofuranose Scaffolds and Their Use as Biologically Active Nucleoside Analogues. Org. Lett., 2021, 23(22), 8828-8833.
[http://dx.doi.org/10.1021/acs.orglett.1c03334] [PMID: 34730365]
[75]
Candito, D.A.; Ye, Y.; Quiroz, R.V.; Reutershan, M.H.; Witter, D.; Gadamsetty, S.B.; Li, H.; Saurí, J.; Schneider, S.E.; Lam, Y.; Palte, R.L. Development of a Flexible and Robust Synthesis of Tetrahydrofuro[3,4- b ]furan Nucleoside Analogues. J. Org. Chem., 2021, 86(7), 5142-5151.
[http://dx.doi.org/10.1021/acs.joc.0c02969] [PMID: 33755465]
[76]
Pugh, C.S.; Borchardt, R.T.; Stone, H.O. Sinefungin, a potent inhibitor of virion mRNA(guanine-7-)-methyltransferase, mRNA(nucleoside-2′-)-methyltransferase, and viral multiplication. J. Biol. Chem., 1978, 253(12), 4075-4077.
[http://dx.doi.org/10.1016/S0021-9258(17)34682-3] [PMID: 659406]
[77]
Borchardt, R.T. S-Adenosyl-L-methionine-dependent macromolecule methyltransferases: Potential targets for the design of chemotherapeutic agents. J. Med. Chem., 1980, 23(4), 347-357.
[http://dx.doi.org/10.1021/jm00178a001] [PMID: 6991690]
[78]
Lin, H.; Wang, M.; Zhang, Y.W.; Tong, S.; Leal, R.A.; Shetty, R.; Vaddi, K.; Luengo, J.I. Discovery of Potent and Selective Covalent Protein Arginine Methyltransferase 5 (PRMT5) Inhibitors. ACS Med. Chem. Lett., 2019, 10(7), 1033-1038.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00074] [PMID: 31312404]
[79]
Kryukov, G.V.; Wilson, F.H.; Ruth, J.R.; Paulk, J.; Tsherniak, A.; Marlow, S.E.; Vazquez, F.; Weir, B.A.; Fitzgerald, M.E.; Tanaka, M.; Bielski, C.M.; Scott, J.M.; Dennis, C.; Cowley, G.S.; Boehm, J.S.; Root, D.E.; Golub, T.R.; Clish, C.B.; Bradner, J.E.; Hahn, W.C.; Garraway, L.A. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science, 2016, 351(6278), 1214-1218.
[http://dx.doi.org/10.1126/science.aad5214] [PMID: 26912360]
[80]
Kawamura, S.; Palte, R.L.; Kim, H.Y.; Sauri, J.; Sondey, C.; Mansueto, M.S.; Altman, M.D.; Machacek, M.R. Design and synthesis of unprecedented 9- and 10-membered cyclonucleosides with PRMT5 inhibitory activity. Bioorg Med Chem, 2022, 66, 116820.
[http://dx.doi.org/10.1016/j.bmc.2022.116820]
[81]
Smil, D.; Eram, M.S.; Li, F.; Kennedy, S.; Szewczyk, M.M.; Brown, P.J.; Barsyte-Lovejoy, D.; Arrowsmith, C.H.; Vedadi, M.; Schapira, M. Discovery of a Dual PRMT5–PRMT7 Inhibitor. ACS Med. Chem. Lett., 2015, 6(4), 408-412.
[http://dx.doi.org/10.1021/ml500467h] [PMID: 25893041]
[82]
Rong, D.; Zhou, K.; Fang, W.; Yang, H.; Zhang, Y.; Shi, Q.; Huang, Y.; Li, J.; Dong, H.; Li, L.; Ding, J.; Huang, X.; Wang, Y. Structure-Aided Design, Synthesis, and Biological Evaluation of Potent and Selective Non-Nucleoside Inhibitors Targeting Protein Arginine Methyltransferase 5. J. Med. Chem., 2022, 65(11), 7854-7875.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00398] [PMID: 35612488]
[83]
Zhu, K.; Tao, H.; Song, J.L.; Jin, L.; Zhang, Y.; Liu, J.; Chen, Z.; Jiang, C.S.; Luo, C. Identification of 5-benzylidene-2-phenylthiazolones as potent PRMT5 inhibitors by virtual screening, structural optimization and biological evaluations. Bioorg. Chem., 2018, 81, 289-298.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.021]
[84]
Bajbouj, K.; Ramakrishnan, R.K.; Saber-Ayad, M.; Omar, H.A.; Saheb Sharif-Askari, N.; Shafarin, J.; Elmoselhi, A.B.; Ihmaid, A.; AlHaj Ali, S.; Alalool, A.; Abdullah, R.; Hamid, Q. PRMT5 Selective Inhibitor Enhances Therapeutic Efficacy of Cisplatin in Lung Cancer Cells. Int. J. Mol. Sci., 2021, 22(11), 6131.
[http://dx.doi.org/10.3390/ijms22116131] [PMID: 34200178]
[85]
Cheng, D.; Yadav, N.; King, R.W.; Swanson, M.S.; Weinstein, E.J.; Bedford, M.T. Small molecule regulators of protein arginine methyltransferases. J. Biol. Chem., 2004, 279(23), 23892-23899.
[http://dx.doi.org/10.1074/jbc.M401853200] [PMID: 15056663]
[86]
Alinari, L.; Mahasenan, K.V.; Yan, F.; Karkhanis, V.; Chung, J.H.; Smith, E.M.; Quinion, C.; Smith, P.L.; Kim, L.; Patton, J.T.; Lapalombella, R.; Yu, B.; Wu, Y.; Roy, S.; De Leo, A.; Pileri, S.; Agostinelli, C.; Ayers, L.; Bradner, J.E.; Chen-Kiang, S.; Elemento, O.; Motiwala, T.; Majumder, S.; Byrd, J.C.; Jacob, S.; Sif, S.; Li, C.; Baiocchi, R.A. Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation. Blood, 2015, 125(16), 2530-2543.
[http://dx.doi.org/10.1182/blood-2014-12-619783] [PMID: 25742700]
[87]
Jin, Y.; Zhou, J.; Xu, F.; Jin, B.; Cui, L.; Wang, Y.; Du, X.; Li, J.; Li, P.; Ren, R.; Pan, J. Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J. Clin. Invest., 2016, 126(10), 3961-3980.
[http://dx.doi.org/10.1172/JCI85239] [PMID: 27643437]
[88]
Tarighat, S.S.; Santhanam, R.; Frankhouser, D.; Radomska, H.S.; Lai, H.; Anghelina, M.; Wang, H.; Huang, X.; Alinari, L.; Walker, A.; Caligiuri, M.A.; Croce, C.M.; Li, L.; Garzon, R.; Li, C.; Baiocchi, R.A.; Marcucci, G. The dual epigenetic role of PRMT5 in acute myeloid leukemia: Gene activation and repression via histone arginine methylation. Leukemia, 2016, 30(4), 789-799.
[http://dx.doi.org/10.1038/leu.2015.308] [PMID: 26536822]
[89]
Zhang, Y.; Lin, H.; Wang, M.; Angelis, D.; Hawkins, M.; Rominger, D.; Emm, T.; Luengo, J.; Ruggeri, B.; Scherle, P.; Vaddi, K. Abstract 2919: Discovery of PRT811, a potent, selective, and orally bioavailable brain penetrant PRMT5 Inhibitor for the treatment of brain tumors. Cancer Res., 2020, 80(16_Supplement)(Suppl.), 2919-2919.
[http://dx.doi.org/10.1158/1538-7445.AM2020-2919] [PMID: 32586981]
[90]
Bhagwat, N.; Zhang, Y.; Lin, H.; Wang, M.; Rominger, D.; Emm, T.; Chugani-Mahtani, D.; Angelis, D.; Shetty, R.; Leal, R.; Gowen-MacDonald, W.; Grego, A.; Luengo, J.; Manshouri, T.; Pastore, F.; Levine, R.L.; Verstovsek, S.; Ruggeri, B.; Scherle, P.; Vaddi, K. Abstract 2915: Preclinical characterization of PRT543, a potent and selective inhibitor of protein arginine methyltransferase 5 (PRMT5), with broad antitumor activity in in vitro and in vivo models. Cancer Res., 2020, 80(16_Supplement)(Suppl.), 2915-2915.
[http://dx.doi.org/10.1158/1538-7445.AM2020-2915]
[91]
Carter, J.; Ito, K.; Thodima, V.; Sivakumar, M.; Hulse, M.; Rager, J.; Vykuntam, K.; Bhagwat, N.; Vaddi, K.; Ruggeri, B. PRMT5 inhibitor PRT543 displays potent antitumor activity in U2AF1S34F and RBM10LOF spliceosome-mutant non-small cell lung cancer in vitro and in vivo. Cancer Res., 2022, 82(16_Supplement), 2159.
[http://dx.doi.org/10.1158/1538-7445.AM2022-2159]
[92]
Lee, F.Y.F.; Wu, W.L.; Yang, Z.; Tan, J. Abstract 1145: AGX323 - A SAM-competitive, orally available inhibitor of protein arginine methyltransferase 5 (PRMT5) with potent cellular antiproliferative and in vivo antitumor activity against selected solid cancer types. Cancer Res., 2021, 81(13_Supplement)(Suppl.), 1145-1145.
[http://dx.doi.org/10.1158/1538-7445.AM2021-1145]
[93]
Brehmer, D.; Beke, L.; Wu, T.; Millar, H.J.; Moy, C.; Sun, W.; Mannens, G.; Pande, V.; Boeckx, A.; van Heerde, E.; Nys, T.; Gustin, E.M.; Verbist, B.; Zhou, L.; Fan, Y.; Bhargava, V.; Safabakhsh, P.; Vinken, P.; Verhulst, T.; Gilbert, A.; Rai, S.; Graubert, T.A.; Pastore, F.; Fiore, D.; Gu, J.; Johnson, A.; Philippar, U.; Morschhäuser, B.; Walker, D.; De Lange, D.; Keersmaekers, V.; Viellevoye, M.; Diels, G.; Schepens, W.; Thuring, J.W.; Meerpoel, L.; Packman, K.; Lorenzi, M.V.; Laquerre, S. Discovery and Pharmacological Characterization of JNJ-64619178, a Novel Small-Molecule Inhibitor of PRMT5 with Potent Antitumor Activity. Mol. Cancer Ther., 2021, 20(12), 2317-2328.
[http://dx.doi.org/10.1158/1535-7163.MCT-21-0367] [PMID: 34583982]
[94]
Quiroz, R.V.; Reutershan, M.H.; Schneider, S.E.; Sloman, D.; Lacey, B.M.; Swalm, B.M.; Yeung, C.S.; Gibeau, C.; Spellman, D.S.; Rankic, D.A.; Chen, D.; Witter, D.; Linn, D.; Munsell, E.; Feng, G.; Xu, H.; Hughes, J.M.E.; Lim, J.; Saurí, J.; Geddes, K.; Wan, M.; Mansueto, M.S.; Follmer, N.E.; Fier, P.S.; Siliphaivanh, P.; Daublain, P.; Palte, R.L.; Hayes, R.P.; Lee, S.; Kawamura, S.; Silverman, S.; Sanyal, S.; Henderson, T.J.; Ye, Y.; Gao, Y.; Nicholson, B.; Machacek, M.R. The Discovery of Two Novel Classes of 5,5-Bicyclic Nucleoside-Derived PRMT5 Inhibitors for the Treatment of Cancer. J. Med. Chem., 2021, 64(7), 3911-3939.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02083] [PMID: 33755451]
[95]
Al-Hamashi, A.A.; Chen, D.; Deng, Y.; Dong, G.; Huang, R. Discovery of a potent and dual-selective bisubstrate inhibitor for protein arginine methyltransferase 4/5. Acta Pharm. Sin. B, 2021, 11(9), 2709-2718.
[http://dx.doi.org/10.1016/j.apsb.2020.10.013] [PMID: 34589391]
[96]
Pande, V.; Sun, W.; Beke, L.; Berthelot, D.; Brehmer, D.; Brown, D.; Corbera, J.; Irving, S.; Meerpoel, L.; Nys, T.; Parade, M.; Robinson, C.; Sommen, C.; Viellevoye, M.; Wu, T.; Thuring, J.W. A Chemical Probe for the Methyl Transferase PRMT5 with a Novel Binding Mode. ACS Med. Chem. Lett., 2020, 11(11), 2227-2231.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00355] [PMID: 33214833]
[97]
Yang, Z.; Xiao, T.; Li, Z.; Zhang, J.; Chen, S. Novel Chemicals Derived from Tadalafil Exhibit PRMT5 Inhibition and Promising Activities against Breast Cancer. Int. J. Mol. Sci., 2022, 23(9), 4806.
[http://dx.doi.org/10.3390/ijms23094806] [PMID: 35563196]
[98]
Prabhu, L.; Wei, H.; Chen, L.; Demir, Ö.; Sandusky, G.; Sun, E.; Wang, J.; Mo, J.; Zeng, L.; Fishel, M.; Safa, A.; Amaro, R.; Korc, M.; Zhang, Z.Y.; Lu, T. Adapting AlphaLISA high throughput screen to discover a novel small-molecule inhibitor targeting protein arginine methyltransferase 5 in pancreatic and colorectal cancers. Oncotarget, 2017, 8(25), 39963-39977.
[http://dx.doi.org/10.18632/oncotarget.18102] [PMID: 28591716]
[99]
Shen, Y.; Li, F.; Szewczyk, M.M.; Halabelian, L.; Chau, I.; Eram, M.S.; Dela Seña, C.; Park, K.S.; Meng, F.; Chen, H.; Zeng, H.; Dong, A.; Wu, H.; Trush, V.V.; McLeod, D.; Zepeda-Velázquez, C.A.; Campbell, R.M.; Mader, M.M.; Watson, B.M.; Schapira, M.; Arrowsmith, C.H.; Al-Awar, R.; Barsyte-Lovejoy, D.; Kaniskan, H.Ü.; Brown, P.J.; Vedadi, M.; Jin, J. A First-in-Class, Highly Selective and Cell-Active Allosteric Inhibitor of Protein Arginine Methyltransferase 6. J. Med. Chem., 2021, 64(7), 3697-3706.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02160] [PMID: 33591753]
[100]
Palte, R.L.; Schneider, S.E.; Altman, M.D.; Hayes, R.P.; Kawamura, S.; Lacey, B.M.; Mansueto, M.S.; Reutershan, M.; Siliphaivanh, P.; Sondey, C.; Xu, H.; Xu, Z.; Ye, Y.; Machacek, M.R. Allosteric Modulation of Protein Arginine Methyltransferase 5 (PRMT5). ACS Med. Chem. Lett., 2020, 11(9), 1688-1693.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00525] [PMID: 32944135]
[101]
Wang, Z.; Xiong, L.; Xiong, Q. Purification and Identification of Natural Inhibitors of Protein Arginine Methyltransferases from Plants. Mol. Cell. Biol., 2022, 42(4), e00523-21.
[http://dx.doi.org/10.1128/mcb.00523-21] [PMID: 35311588]
[102]
Shen, Y.; Gao, G.; Yu, X.; Kim, H.; Wang, L.; Xie, L.; Schwarz, M.; Chen, X.; Guccione, E.; Liu, J.; Bedford, M.T.; Jin, J. Discovery of First-in-Class Protein Arginine Methyltransferase 5 (PRMT5) Degraders. J. Med. Chem., 2020, 63(17), 9977-9989.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01111] [PMID: 32787082]
[103]
Mavrakis, K.J.; McDonald, E.R., III; Schlabach, M.R.; Billy, E.; Hoffman, G.R.; deWeck, A.; Ruddy, D.A.; Venkatesan, K.; Yu, J.; McAllister, G.; Stump, M.; deBeaumont, R.; Ho, S.; Yue, Y.; Liu, Y.; Yan-Neale, Y.; Yang, G.; Lin, F.; Yin, H.; Gao, H.; Kipp, D.R.; Zhao, S.; McNamara, J.T.; Sprague, E.R.; Zheng, B.; Lin, Y.; Cho, Y.S.; Gu, J.; Crawford, K.; Ciccone, D.; Vitari, A.C.; Lai, A.; Capka, V.; Hurov, K.; Porter, J.A.; Tallarico, J.; Mickanin, C.; Lees, E.; Pagliarini, R.; Keen, N.; Schmelzle, T.; Hofmann, F.; Stegmeier, F.; Sellers, W.R. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science, 2016, 351(6278), 1208-1213.
[http://dx.doi.org/10.1126/science.aad5944] [PMID: 26912361]
[104]
Smith, C.R.; Aranda, R.; Bobinski, T.P.; Briere, D.M.; Burns, A.C.; Christensen, J.G.; Clarine, J.; Engstrom, L.D.; Gunn, R.J.; Ivetac, A.; Jean-Baptiste, R.; Ketcham, J.M.; Kobayashi, M.; Kuehler, J.; Kulyk, S.; Lawson, J.D.; Moya, K.; Olson, P.; Rahbaek, L.; Thomas, N.C.; Wang, X.; Waters, L.M.; Marx, M.A. Fragment-Based Discovery of MRTX1719, a Synthetic Lethal Inhibitor of the PRMT5•MTA Complex for the Treatment of MTAP -Deleted Cancers. J. Med. Chem., 2022, 65(3), 1749-1766.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01900] [PMID: 35041419]
[105]
Smith, C.R.; Kulyk, S.; Lawson, J.D.; Engstrom, L.D.; Aranda, R.; Briere, D.M.; Gunn, R.; Moya, K.; Rahbaek, L.; Waters, L.; Ivetac, A.; Christensen, J.G.; Olson, P.; Marx, M.A. Abstract LB003: Fragment based discovery of MRTX9768, a synthetic lethal-based inhibitor designed to bind the PRMT5-MTA complex and selectively target MTAP/CDKN2A-deleted tumors. Cancer Res., 2021, 81(13_Supplement)(Suppl.), LB003-LB003.
[http://dx.doi.org/10.1158/1538-7445.AM2021-LB003]
[106]
Briggs, K.J.; Cottrell, K.M.; Tonini, M.R.; Wilker, E.W.; Gu, L.; Davis, C.B.; Zhang, M.J.; Whittington, D.; Gotur, D.; Goldstein, M.J.; DiBenedetto, H.; Rudoltz, M.S.; Huang, A. Abstract 3941: TNG908 is an MTAPnull-selective PRMT5 inhibitor that drives tumor regressions in MTAP-deleted xenograft models across multiple histologies. Cancer Res., 2022, 82(12_Supplement), 3941.
[http://dx.doi.org/10.1158/1538-7445.AM2022-3941]
[107]
Briggs, K.; Corriea, G.; Tsai, A.; Zhang, M.; Tonini, M.R.; Wilker, E.W.; Davis, C.B.; Cottrell, K.M.; Maxwell, J.P.; Huang, A. 24P Evidence for synergy between TNG908, an MTAPnull-selective PRMT5 inhibitor, and sotorasib in an MTAPnull/KRASG12C xenograft model. Ann. Oncol., 2022, 33(S12), S12.
[http://dx.doi.org/10.1016/j.annonc.2022.01.032]
[108]
Zhou, F.; Yang, G.; Tang, F.; Xue, L.; Yang, W.; Chen, P. Abstract 2157: SCR-6277, a potent and high selective arginine methyltransferase 5 (PRMT5) inhibitor with high tumor/plasma distribution ratio demonstrated robust anti-tumor activities and decreased hematological toxicities. Cancer Res., 2022, 82(12_Supplement), 2157.
[http://dx.doi.org/10.1158/1538-7445.AM2022-2157]
[109]
Belmontes, B.; Policheni, A.; Liu, S.; Slemmons, K.; Moriguchi, J.; Ma, H.; Aiello, D.; Yang, Y.; Vestergaard, M.; Cowland, S.; Anderson, J.; Sarvary, I.; Tamayo, N.; Pettus, L.; Mukund, S.; Pope, L.; Allen, J.R.; Glad, S.; Bourbeau, M. Abstract 1807: The discovery and preclinical characterization of the MTA cooperative PRMT5 inhibitor AM-9747. Cancer Res., 2022, 82(12_Supplement), 1807.
[http://dx.doi.org/10.1158/1538-7445.AM2022-1807]
[110]
Guderian, G.; Peter, C.; Wiesner, J.; Sickmann, A.; Schulze-Osthoff, K.; Fischer, U.; Grimmler, M. RioK1, a new interactor of protein arginine methyltransferase 5 (PRMT5), competes with pICln for binding and modulates PRMT5 complex composition and substrate specificity. J. Biol. Chem., 2011, 286(3), 1976-1986.
[http://dx.doi.org/10.1074/jbc.M110.148486] [PMID: 21081503]
[111]
Friesen, W.J.; Paushkin, S.; Wyce, A.; Massenet, S.; Pesiridis, G.S.; Van Duyne, G.; Rappsilber, J.; Mann, M.; Dreyfuss, G. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol. Cell. Biol., 2001, 21(24), 8289-8300.
[http://dx.doi.org/10.1128/MCB.21.24.8289-8300.2001] [PMID: 11713266]
[112]
Pesiridis, G.S.; Diamond, E.; Van Duyne, G.D. Role of pICLn in methylation of Sm proteins by PRMT5. J. Biol. Chem., 2009, 284(32), 21347-21359.
[http://dx.doi.org/10.1074/jbc.M109.015578] [PMID: 19520849]
[113]
Lacroix, M.; Messaoudi, S.E.; Rodier, G.; Le Cam, A.; Sardet, C.; Fabbrizio, E. The histone‐binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. EMBO Rep., 2008, 9(5), 452-458.
[http://dx.doi.org/10.1038/embor.2008.45] [PMID: 18404153]
[114]
Asberry, A.M.; Cai, X.; Deng, X.; Santiago, U.; Liu, S.; Sims, H.S.; Liang, W.; Xu, X.; Wan, J.; Jiang, W.; Camacho, C.J.; Dai, M.; Hu, C.D. Discovery and Biological Characterization of PRMT5:MEP50 Protein–Protein Interaction Inhibitors. J. Med. Chem., 2022, 65(20), 13793-13812.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01000] [PMID: 36206451]
[115]
McKinney, D.C.; McMillan, B.J.; Ranaghan, M.J.; Moroco, J.A.; Brousseau, M.; Mullin-Bernstein, Z.; O’Keefe, M.; McCarren, P.; Mesleh, M.F.; Mulvaney, K.M.; Robinson, F.; Singh, R.; Bajrami, B.; Wagner, F.F.; Hilgraf, R.; Drysdale, M.J.; Campbell, A.J.; Skepner, A.; Timm, D.E.; Porter, D.; Kaushik, V.K.; Sellers, W.R.; Ianari, A. Discovery of a first-in-class inhibitor of the prmt5–substrate adaptor interaction. J. Med. Chem., 2021, 64(15), 11148-11168.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00507] [PMID: 34342224]
[116]
McKinney, D.; Ranaghan, M.; McMillan, B.; Brousseau, M.; O’Keefe, M.; Moroco, J.; Singh, R.; Besnik, B.; McCarren, P.; Mulvaney, K.; Sellers, W. Discovery of covalently-bound, first-in- class allosteric inhibitor of PRMT5. J. Med. Chem., 2020, 138(05–16)(Suppl.2), 35.
[http://dx.doi.org/10.1016/S0959-8049(20)31075-3]
[117]
Krzyzanowski, A.; Esser, L.M.; Willaume, A.; Prudent, R.; Peter, C.; ’t Hart, P.; Waldmann, H. Development of Macrocyclic PRMT5–Adaptor Protein Interaction Inhibitors. J. Med. Chem., 2022, 65(22), 15300-15311.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01273] [PMID: 36378254]
[118]
Zhou, Z.; Feng, Z.; Hu, D.; Yang, P.; Gur, M.; Bahar, I.; Cristofanilli, M.; Gradishar, W.J.; Xie, X.-q. A novel small-molecule antagonizes PRMT5-mediated KLF4 methylation for targeted therapy. EBioMedicine, 2019, 44(22), 94-111.
[http://dx.doi.org/10.1016/j.ebiom.2019.05.011]
[119]
Falk, H.; Foitzik, R.C.; Allan, E.; deSilva, M.; Yang, H.; Bozikis, Y.E.; Nikac, M.; Walker, S.R.; Camerino, M.A.; Morrow, B.J.; Stupple, A.E.; Lagiakos, R.; Pinson, J.A.; Lessene, R.; Kersten, W.J.A.; Ganame, D.G.; Holmes, I.P.; Lunniss, G.E.; Chung, M.; Hermans, S.J.; Parker, M.W.; Thistlethwaite, A.; White, K.; Charman, S.A.; Monahan, B.J.; Pilling, P.; Grusovin, J.; Peat, T.S.; Sonderegger, S.; Toulmin, E.; Jane, S.M.; Curtis, D.J.; Stupple, P.A.; Street, I.P. Abstract 5371: PRMT5 inhibitors as novel treatment for cancers. Cancer Res., 2015, 75(15_Supplement), 5371-5371.
[http://dx.doi.org/10.1158/1538-7445.AM2015-5371]
[120]
Gonzalvez, F.; Vandyck, K.; Debing, Y.; Gupta, K.; Misner, D.; Zhang, Q.L.; Liu, J.; Stoycheva, A.; Stevens, S.; Symons, J.; Beigelman, L.; Raboisson, P.; Deval, J. Discovery of novel potent and selective inhibitors of PRMT5 with anti-tumor activity in hepatocellular carcinoma and lung pre-clinical models. Cancer Res., 2020, 80(16_Supplement), 1758.
[http://dx.doi.org/10.1158/1538-7445.AM2020-1758]
[121]
Siu, L.L.; Rasco, D.W.; Vinay, S.P.; Romano, P.M.; Menis, J.; Opdam, F.L.; Heinhuis, K.M.; Egger, J.L.; Gorman, S.A.; Parasrampuria, R.; Wang, K.; Kremer, B.E. METEOR-1: A phase I study of GSK3326595, a first-in-class protein arginine methyltransferase 5 (PRMT5) inhibitor, in advanced solid tumours. Ann. Oncol., 2019, 30(SUPPLEMENT 5), v159.
[http://dx.doi.org/10.1093/annonc/mdz244]
[122]
Postel-Vinay, S.; Italiano, A.; Martin Romano, P.; Cassier, P.A.; Siu, L.L.; Lossos, I.S.; Hilton, J.F.; McKean, M.A.; Strauss, J.; Falchook, G.S.; De Jonge, M.J.A.; Opdam, F.L.; Rasco, D.; Vermaat, J.S.; Crossman, T.; Zajac, M.; Hainline, A.; Kremer, B.; Barbash, O. A phase I study of the safety and efficacy of the protein arginine methyltransferase 5 (PRMT5) inhibitor GSK3326595 in advanced solid tumors. Ann. Oncol., 2022, 33, S746-S747.
[http://dx.doi.org/10.1016/j.annonc.2022.07.585]
[123]
Kim, H.; Kim, H.; Feng, Y.; Li, Y.; Tamiya, H.; Tocci, S.; Ronai, Z.A. PRMT5 control of cGAS/STING and NLRC5 pathways defines melanoma response to antitumor immunity. Sci. Transl. Med., 2020, 12(551), eaaz5683.
[http://dx.doi.org/10.1126/scitranslmed.aaz5683] [PMID: 32641491]
[124]
Nagai, Y.; Ji, M.Q.; Zhu, F.; Xiao, Y.; Tanaka, Y.; Kambayashi, T.; Fujimoto, S.; Goldberg, M.M.; Zhang, H.; Li, B.; Ohtani, T. PRMT5 Associates With the FOXP3 Homomer and When Disabled Enhances Targeted p185erbB2/neu Tumor Immunotherapy. Front Immunol., 2019, 10, 174.
[http://dx.doi.org/10.3389/fimmu.2019.00174]
[125]
Fedoriw, A.; Rajapurkar, S.R.; O’Brien, S.; Gerhart, S.V.; Mitchell, L.H.; Adams, N.D.; Rioux, N.; Lingaraj, T.; Ribich, S.A.; Pappalardi, M.B.; Shah, N.; Laraio, J.; Liu, Y.; Butticello, M.; Carpenter, C.L.; Creasy, C.; Korenchuk, S.; McCabe, M.T.; McHugh, C.F.; Nagarajan, R.; Wagner, C.; Zappacosta, F.; Annan, R.; Concha, N.O.; Thomas, R.A.; Hart, T.K.; Smith, J.J.; Copeland, R.A.; Moyer, M.P.; Campbell, J.; Stickland, K.; Mills, J.; Jacques-O’Hagan, S.; Allain, C.; Johnston, D.; Raimondi, A.; Porter Scott, M.; Waters, N.; Swinger, K.; Boriack-Sjodin, A.; Riera, T.; Shapiro, G.; Chesworth, R.; Prinjha, R.K.; Kruger, R.G.; Barbash, O.; Mohammad, H.P. Anti-tumor Activity of the Type I PRMT Inhibitor, GSK3368715, Synergizes with PRMT5 Inhibition through MTAP Loss. Cancer Cell, 2019, 36(1), 100-114.e25.
[http://dx.doi.org/10.1016/j.ccell.2019.05.014] [PMID: 31257072]
[126]
Je, E.M.; Yoo, N.J.; Kim, Y.J.; Kim, M.S.; Lee, S.H. Mutational analysis of splicing machinery genes SF3B1, U2AF1 and SRSF2 in myelodysplasia and other common tumors. Int. J. Cancer, 2013, 133(1), 260-265.
[http://dx.doi.org/10.1002/ijc.28011] [PMID: 23280334]
[127]
Maguire, S.L.; Leonidou, A.; Wai, P.; Marchiò, C.; Ng, C.K.Y.; Sapino, A.; Salomon, A.V.; Reis-Filho, J.S.; Weigelt, B.; Natrajan, R.C. SF3B1 mutations constitute a novel therapeutic target in breast cancer. J. Pathol., 2015, 235(4), 571-580.
[http://dx.doi.org/10.1002/path.4483] [PMID: 25424858]
[128]
Thol, F.; Kade, S.; Schlarmann, C.; Löffeld, P.; Morgan, M.; Krauter, J.; Wlodarski, M.W.; Kölking, B.; Wichmann, M.; Görlich, K.; Göhring, G.; Bug, G.; Ottmann, O.; Niemeyer, C.M.; Hofmann, W.K.; Schlegelberger, B.; Ganser, A.; Heuser, M. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood, 2012, 119(15), 3578-3584.
[http://dx.doi.org/10.1182/blood-2011-12-399337] [PMID: 22389253]
[129]
Bejar, R. Splicing factor mutations in cancer. Adv Exp Med Biol, 2016, 907, 215-28.
[http://dx.doi.org/10.1007/978-3-319-29073-7_9]
[130]
Harada, G.; Falcon, C.J.; Santini, F.C.; Chang, J.C.; Yang, S.R.; Arcila, M.E.; Rekhtman, N. Splicing factor mutations in cancer. Cancer Res, 2022, 82(12_Supplement), 868.
[http://dx.doi.org/10.1158/1538-7445.AM2022-868]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy