Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Malignant Middle Cerebral Artery Infarction during Early versus Late Endovascular Treatment in Acute Ischemic Stroke

Author(s): Wenting Guo, Ning Li, Jiali Xu, Jin Ma, Sijie Li, Changhong Ren, Jian Chen, Jiangang Duan, Qingfeng Ma, Haiqing Song, Wenbo Zhao* and Xunming Ji*

Volume 20, Issue 2, 2023

Published on: 03 August, 2023

Page: [254 - 260] Pages: 7

DOI: 10.2174/1567202620666230710114443

Price: $65

Abstract

Introduction: Endovascular treatment (EVT) performed in the early time window has been shown to decrease the incidence of malignant middle cerebral artery infarction (MMI). However, the incidence of MMI in patients undergoing EVT during the late time window is unclear. This study aimed to investigate the prevalence of MMI in patients undergoing late EVT and compare it with that in patients undergoing early EVT.

Methods: We retrospectively analyzed consecutive patients with anterior large vessel occlusion stroke who underwent EVT at Xuanwu Hospital between January 2013 and June 2021. Eligible patients were divided into early EVT (within 6 h) and late EVT (6-24 h) groups according to the time from their stroke onset to puncture and compared. The occurrence of MMI post-EVT was the primary outcome.

Results: A total of 605 patients were recruited, of whom 300 (50.4%) underwent EVT within 6 h and 305 (49.6%) underwent EVT within 6-24 h. A total of 119 patients (19.7%) developed MMI. 68 patients (22.7%) in the early EVT group and 51 patients (16.7 %) in the late EVT group developed MMI (p = 0.066). After adjusting for covariate variables, late EVT was independently associated with a lower incidence of MMI (odds ratio, 0.404; 95% confidence interval, 0.242-0.675; p = 0.001).

Conclusion: MMI is not an uncommon phenomenon in the modern thrombectomy era. Compared with the early time window, patients selected by stricter radiological criteria to undergo EVT in the late time window are independently associated with a lower incidence of MMI.

[1]
Albers GW, Marks MP, Kemp S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 2018; 378(8): 708-18.
[http://dx.doi.org/10.1056/NEJMoa1713973] [PMID: 29364767]
[2]
Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016; 387(10029): 1723-31.
[http://dx.doi.org/10.1016/S0140-6736(16)00163-X] [PMID: 26898852]
[3]
Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 2018; 378(1): 11-21.
[http://dx.doi.org/10.1056/NEJMoa1706442] [PMID: 29129157]
[4]
Taylor BS, Patel S, Hilden P, et al. The weekend effect on mechanical thrombectomy: A nationwide analysis before and after the pivotal 2015 trials. Brain Circ 2022; 8(3): 137-45.
[http://dx.doi.org/10.4103/bc.bc_23_22] [PMID: 36267433]
[5]
Kurisu K, Sakurai J, Wada H, Takebayashi S, Kobayashi T, Takizawa K. Effects of clinical outcomes by modification of patient selection protocol based on premorbid independence for mechanical thrombectomy in older adult patients. Brain Circ 2022; 8(1): 24-30.
[http://dx.doi.org/10.4103/bc.bc_73_21] [PMID: 35372721]
[6]
Foerch C, Otto B, Singer OC, et al. Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion. Stroke 2004; 35(9): 2160-4.
[http://dx.doi.org/10.1161/01.STR.0000138730.03264.ac] [PMID: 15297628]
[7]
Shimoyama T, Kimura K, Uemura J, et al. The DASH score: A simple score to assess risk for development of malignant middle cerebral artery infarction. J Neurol Sci 2014; 338(1-2): 102-6.
[http://dx.doi.org/10.1016/j.jns.2013.12.024] [PMID: 24423583]
[8]
Berrouschot J, Sterker M, Bettin S, Köster J, Schneider D. Mortality of space-occupying (‘malignant’) middle cerebral artery infarction under conservative intensive care. Intensive Care Med 1998; 24(6): 620-3.
[http://dx.doi.org/10.1007/s001340050625] [PMID: 9681786]
[9]
Bai X, Wang C, Wang L, et al. Association between neutrophil to lymphocyte ratio and malignant brain edema in patients with large hemispheric infarction. Curr Neurovasc Res 2020; 17(4): 429-36.
[http://dx.doi.org/10.2174/1567202617666200517110509] [PMID: 32416677]
[10]
Sabben C, Desilles JP, Charbonneau F, et al. Early successful reperfusion after endovascular therapy reduces malignant middle cerebral artery infarction occurrence in young patients with large diffusion‐weighted imaging lesions. Eur J Neurol 2020; 27(10): 1988-95.
[http://dx.doi.org/10.1111/ene.14330] [PMID: 32431009]
[11]
Kimberly WT, Dutra BG, Boers AMM, et al. Association of reperfusion with brain edema in patients with acute ischemic stroke. JAMA Neurol 2018; 75(4): 453-61.
[http://dx.doi.org/10.1001/jamaneurol.2017.5162] [PMID: 29365017]
[12]
Davoli A, Motta C, Koch G, et al. Pretreatment predictors of malignant evolution in patients with ischemic stroke undergoing mechanical thrombectomy. J Neurointerv Surg 2018; 10(4): 340-4.
[http://dx.doi.org/10.1136/neurintsurg-2017-013224] [PMID: 28798267]
[13]
Du M, Huang X, Li S, et al. A Nomogram model to predict malignant cerebral edema in ischemic stroke patients treated with endovascular thrombectomy: An observational study. Neuropsychiatr Dis Treat 2020; 16: 2913-20.
[http://dx.doi.org/10.2147/NDT.S279303] [PMID: 33293816]
[14]
Huang X, Yang Q, Shi X, et al. Predictors of malignant brain edema after mechanical thrombectomy for acute ischemic stroke. J Neurointerv Surg 2019; 11(10): 994-8.
[http://dx.doi.org/10.1136/neurintsurg-2018-014650] [PMID: 30798266]
[15]
Tracol C, Vannier S, Hurel C, Tuffier S, Eugene F, Le Reste PJ. Predictors of malignant middle cerebral artery infarction after mechanical thrombectomy. Rev Neurol 2020; 176(7-8): 619-25.
[http://dx.doi.org/10.1016/j.neurol.2020.01.352] [PMID: 32624178]
[16]
Durukan A, Tatlisumak T. Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 2007; 87(1): 179-97.
[http://dx.doi.org/10.1016/j.pbb.2007.04.015] [PMID: 17521716]
[17]
Gartshore G, Patterson J, Macrae IM. Influence of ischemia and reperfusion on the course of brain tissue swelling and blood-brain barrier permeability in a rodent model of transient focal cerebral ischemia. Exp Neurol 1997; 147(2): 353-60.
[http://dx.doi.org/10.1006/exnr.1997.6635] [PMID: 9344560]
[18]
Pillai DR, Dittmar MS, Baldaranov D, et al. Cerebral ischemia-reperfusion injury in rats--a 3 T MRI study on biphasic blood-brain barrier opening and the dynamics of edema formation. J Cereb Blood Flow Metab 2009; 29(11): 1846-55.
[http://dx.doi.org/10.1038/jcbfm.2009.106] [PMID: 19654585]
[19]
Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019; 50(12): e344-418.
[http://dx.doi.org/10.1161/STR.0000000000000211] [PMID: 31662037]
[20]
Oppenheim C, Samson Y, Manaï R, et al. Prediction of malignant middle cerebral artery infarction by diffusion-weighted imaging. Stroke 2000; 31(9): 2175-81.
[http://dx.doi.org/10.1161/01.STR.31.9.2175] [PMID: 10978048]
[21]
Thomalla G, Hartmann F, Juettler E, et al. Prediction of malignant middle cerebral artery infarction by magnetic resonance imaging within 6 hours of symptom onset: A prospective multicenter observational study. Ann Neurol 2010; 68(4): 435-45.
[http://dx.doi.org/10.1002/ana.22125] [PMID: 20865766]
[22]
Zhao W, Che R, Shang S, et al. Low-dose tirofiban improves functional outcome in acute ischemic stroke patients treated with endovascular thrombectomy. Stroke 2017; 48(12): 3289-94.
[http://dx.doi.org/10.1161/STROKEAHA.117.019193] [PMID: 29127270]
[23]
Hacke W, Kaste M, Fieschi C, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. JAMA 1995; 274(13): 1017-25.
[http://dx.doi.org/10.1001/jama.1995.03530130023023] [PMID: 7563451]
[24]
Powers WJ, Derdeyn CP, Biller J, et al. 2015 American heart association/american stroke association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment. Stroke 2015; 46(10): 3020-35.
[http://dx.doi.org/10.1161/STR.0000000000000074] [PMID: 26123479]
[25]
Fisher M, Xiong Y. Evaluating patients for thrombectomy. Brain Circ 2018; 4(4): 153-9.
[http://dx.doi.org/10.4103/bc.bc_27_18] [PMID: 30693341]
[26]
Vahedi K, Hofmeijer J, Juettler E, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: A pooled analysis of three randomised controlled trials. Lancet Neurol 2007; 6(3): 215-22.
[http://dx.doi.org/10.1016/S1474-4422(07)70036-4] [PMID: 17303527]
[27]
Jiang Q, Yu S, Dong X, et al. Predictors and dynamic nomogram to determine the individual risk of malignant brain edema after endovascular thrombectomy in acute ischemic stroke. J Clin Neurol 2022; 18(3): 298-307.
[http://dx.doi.org/10.3988/jcn.2022.18.3.298] [PMID: 35196752]
[28]
Huang X, Xu J, Yang K, et al. Blood pressure after endovascular thrombectomy and malignant cerebral edema in large vessel occlusion stroke. Front Neurol 2021; 12: 707275.
[http://dx.doi.org/10.3389/fneur.2021.707275] [PMID: 34744962]
[29]
Kauw F, Bernsen MLE, Dankbaar JW, et al. Cerebrospinal fluid volume improves prediction of malignant edema after endovascular treatment of stroke. Int J Stroke 2023; 18(2): 187-92.
[http://dx.doi.org/10.1177/17474930221094693] [PMID: 35373655]
[30]
Han W, Song Y, Rocha M, Shi Y. Ischemic brain edema: Emerging cellular mechanisms and therapeutic approaches. Neurobiol Dis 2023; 178: 106029.
[http://dx.doi.org/10.1016/j.nbd.2023.106029] [PMID: 36736599]
[31]
Sheth SA, Liebeskind DS. Collaterals in endovascular therapy for stroke. Curr Opin Neurol 2015; 28(1): 10-5.
[http://dx.doi.org/10.1097/WCO.0000000000000166] [PMID: 25514251]
[32]
Bhan C, Koehler TJ, Elisevich L, et al. Mechanical thrombectomy for acute stroke: Early versus late time window outcomes. J Neuroimaging 2020; 30(3): 315-20.
[http://dx.doi.org/10.1111/jon.12698] [PMID: 32072729]
[33]
Nighoghossian N, Cornut L, Amaz C, et al. Impact of collateral status on neuroprotective effect of cyclosporine a in acute ischemic stroke. Curr Neurovasc Res 2019; 16(2): 173-7.
[http://dx.doi.org/10.2174/1567202616666190618094014] [PMID: 31244424]
[34]
Nagarajan K, Chatterjee D, Narayan S, Narasimhan RL. Regional leptomeningeal collateral score by computed tomographic angiography correlates with 3-month clinical outcome in acute ischemic stroke. Brain Circ 2020; 6(2): 107-15.
[http://dx.doi.org/10.4103/bc.bc_55_19] [PMID: 33033780]
[35]
Jovin TG, Saver JL, Ribo M, et al. Diffusion-weighted imaging or computerized tomography perfusion assessment with clinical mismatch in the triage of wake up and late presenting strokes undergoing neurointervention with Trevo (DAWN) trial methods. Int J Stroke 2017; 12(6): 641-52.
[http://dx.doi.org/10.1177/1747493017710341] [PMID: 28569123]
[36]
Rebello LC, Bouslama M, Haussen DC, et al. Stroke etiology and collaterals: Atheroembolic strokes have greater collateral recruitment than cardioembolic strokes. Eur J Neurol 2017; 24(6): 762-7.
[http://dx.doi.org/10.1111/ene.13287] [PMID: 28432712]
[37]
Lee PH, Oh SH, Bang OY, Joo IS, Huh K. Isolated middle cerebral artery disease: Clinical and neuroradiological features depending on the pathogenesis. J Neurol Neurosurg Psychiatry 2004; 75(5): 727-32.
[http://dx.doi.org/10.1136/jnnp.2003.022574] [PMID: 15090568]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy