Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Review Article

Recommendations for Bioinformatic Tools in lncRNA Research

Author(s): Rebecca Distefano, Mirolyuba Ilieva, Sarah Rennie* and Shizuka Uchida*

Volume 19, Issue 1, 2024

Published on: 27 July, 2023

Page: [14 - 20] Pages: 7

DOI: 10.2174/1574893618666230707103956

Price: $65

Abstract

Long non-coding RNAs (lncRNAs) typically refer to non-protein coding RNAs that are longer than 200 nucleotides. Historically dismissed as junk DNA, over two decades of research have revealed that lncRNAs bind to other macromolecules (e.g., DNA, RNA, and/or proteins) to modulate signaling pathways and maintain organism viability. Their discovery has been significantly aided by the development of bioinformatics tools in recent years. However, the diversity of tools for lncRNA discovery and functional prediction can present a challenge for researchers, especially bench scientists and clinicians. This Perspective article aims to navigate the current landscape of bioinformatic tools suitable for both protein-coding and lncRNA genes. It aims to provide a guide for bench scientists and clinicians to select the appropriate tools for their research questions and experimental designs.

[1]
Palazzo AF, Koonin EV. Functional long non-coding RNAs Evolve from junk transcripts. Cell 2020; 183(5): 1151-61.
[http://dx.doi.org/10.1016/j.cell.2020.09.047 ] [PMID: 33068526]
[2]
Miller HE, Ilieva M, Bishop AJR, Uchida S. Current status of epitranscriptomic marks affecting lncRNA structures and functions. Noncoding RNA 2022; 8(2): 23.
[http://dx.doi.org/10.3390/ncrna8020023 ] [PMID: 35447886]
[3]
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22(2): 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9 ] [PMID: 33353982]
[4]
Lee H, Zhang Z, Krause HM. Long noncoding RNAs and repetitive elements: Junk or intimate evolutionary partners? Trends Genet 2019; 35(12): 892-902.
[http://dx.doi.org/10.1016/j.tig.2019.09.006 ] [PMID: 31662190]
[5]
Shabalina SA, Spiridonov NA. The mammalian transcriptome and the function of non-coding DNA sequences. Genome Biol 2004; 5(4): 105.
[http://dx.doi.org/10.1186/gb-2004-5-4-105 ] [PMID: 15059247]
[6]
Ezkurdia I, Juan D, Rodriguez JM, et al. Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes. Hum Mol Genet 2014; 23(22): 5866-78.
[http://dx.doi.org/10.1093/hmg/ddu309 ] [PMID: 24939910]
[7]
Zhao L, Wang J, Li Y, et al. NONCODEV6: an updated database dedicated to long non-coding RNA annotation in both animals and plants. Nucleic Acids Res 2021; 49(D1): D165-71.
[http://dx.doi.org/10.1093/nar/gkaa1046 ] [PMID: 33196801]
[8]
Snyder M, Iraola-Guzmán S, Saus E, Gabaldón T. Discovery and validation of clinically relevant long non-coding RNAs in colorectal cancer. Cancers (Basel) 2022; 14(16): 3866.
[http://dx.doi.org/10.3390/cancers14163866 ] [PMID: 36010859]
[9]
Chakraborty C, Sharma AR, Sharma G, Lee SS. Therapeutic advances of miRNAs: A preclinical and clinical update. J Adv Res 2021; 28: 127-38.
[http://dx.doi.org/10.1016/j.jare.2020.08.012 ] [PMID: 33364050]
[10]
Liang L, He X. A narrative review of microRNA therapeutics: understanding the future of microRNA research. Precis Cancer Med 2021; 4: 33.
[http://dx.doi.org/10.21037/pcm-21-28]
[11]
Ponting CP, Haerty W. Genome-wide analysis of human long noncoding RNAs: A provocative review. Annu Rev Genomics Hum Genet 2022; 23(1): 153-72.
[http://dx.doi.org/10.1146/annurev-genom-112921-123710 ] [PMID: 35395170]
[12]
Chen Y, Li Z, Chen X, Zhang S. Long non-coding RNAs: From disease code to drug role. Acta Pharm Sin B 2021; 11(2): 340-54.
[http://dx.doi.org/10.1016/j.apsb.2020.10.001 ] [PMID: 33643816]
[13]
Galaxy C. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res 2022; 50(W1): W345-51.
[14]
Quinn TP, Crowley TM, Richardson MF. Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods. BMC Bioinformatics 2018; 19(1): 274.
[http://dx.doi.org/10.1186/s12859-018-2261-8 ] [PMID: 30021534]
[15]
Teng M, Love MI, Davis CA, et al. A benchmark for RNA-seq quantification pipelines. Genome Biol 2016; 17(1): 74.
[http://dx.doi.org/10.1186/s13059-016-0940-1 ] [PMID: 27107712]
[16]
Han H, Men K. How does normalization impact RNA-seq disease diagnosis? J Biomed Inform 2018; 85: 80-92.
[http://dx.doi.org/10.1016/j.jbi.2018.07.016 ] [PMID: 30041017]
[17]
Baruzzo G, Hayer KE, Kim EJ, Di Camillo B, FitzGerald GA, Grant GR. Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat Methods 2017; 14(2): 135-9.
[http://dx.doi.org/10.1038/nmeth.4106 ] [PMID: 27941783]
[18]
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34(17): i884-90.
[http://dx.doi.org/10.1093/bioinformatics/bty560 ] [PMID: 30423086]
[19]
A quality control tool for high throughput sequence data. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
[20]
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15-21.
[http://dx.doi.org/10.1093/bioinformatics/bts635 ] [PMID: 23104886]
[21]
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 2019; 37(8): 907-15.
[http://dx.doi.org/10.1038/s41587-019-0201-4 ] [PMID: 31375807]
[22]
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013; 14(4): R36.
[http://dx.doi.org/10.1186/gb-2013-14-4-r36 ] [PMID: 23618408]
[23]
Cunningham F, Allen JE, Allen J, et al. Ensembl 2022. Nucleic Acids Res 2022; 50(D1): D988-95.
[http://dx.doi.org/10.1093/nar/gkab1049 ] [PMID: 34791404]
[24]
Weirick T, Militello G, Uchida S. Long non-coding RNAs in endothelial biology. Front Physiol 2018; 9: 522.
[http://dx.doi.org/10.3389/fphys.2018.00522 ] [PMID: 29867565]
[25]
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26(1): 139-40.
[http://dx.doi.org/10.1093/bioinformatics/btp616 ] [PMID: 19910308]
[26]
Lawrence M, Huber W, Pagès H, et al. Software for computing and annotating genomic ranges. PLOS Comput Biol 2013; 9(8): e1003118.
[http://dx.doi.org/10.1371/journal.pcbi.1003118 ] [PMID: 23950696]
[27]
Ginestet C. Elegant graphics for data analysis. Jroyal stat soc ser A 2011; 174: 245-5.
[28]
Distefano R, Ilieva M, Madsen JH, Uchida S, Crohn DB. CrohnDB: A web database for expression profiling of protein-coding and long non-coding RNA genes in crohn disease. Computation (Basel) 2023; 11(6): 105.
[http://dx.doi.org/10.3390/computation11060105]
[29]
Distefano R, Ilieva M, Madsen JH, et al. T2DB: A web database for long non-coding RNA genes in type II diabetes. Noncoding RNA 2023; 9(3): 30.
[http://dx.doi.org/10.3390/ncrna9030030 ] [PMID: 37218990]
[30]
Ilieva M, Dao J, Miller HE, et al. Systematic analysis of long non-coding RNA genes in nonalcoholic fatty liver disease. Noncoding RNA 2022; 8(4): 56.
[http://dx.doi.org/10.3390/ncrna8040056 ] [PMID: 35893239]
[31]
Ilieva M, Miller HE, Agarwal A, et al. FibroDB: Expression analysis of protein-coding and long non-coding RNA genes in fibrosis. Noncoding RNA 2022; 8(1): 13.
[http://dx.doi.org/10.3390/ncrna8010013 ] [PMID: 35202087]
[32]
Zhao S, Ye Z, Stanton R. Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA 2020; 26(8): 903-9.
[http://dx.doi.org/10.1261/rna.074922.120 ] [PMID: 32284352]
[33]
Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 2012; 28(8): 1086-92.
[http://dx.doi.org/10.1093/bioinformatics/bts094 ] [PMID: 22368243]
[34]
Xie Y, Wu G, Tang J, et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 2014; 30(12): 1660-6.
[http://dx.doi.org/10.1093/bioinformatics/btu077 ] [PMID: 24532719]
[35]
Shumate A, Wong B, Pertea G, Pertea M. Improved transcriptome assembly using a hybrid of long and short reads with StringTie. PLOS Comput Biol 2022; 18(6): e1009730.
[http://dx.doi.org/10.1371/journal.pcbi.1009730 ] [PMID: 35648784]
[36]
Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011; 29(7): 644-52.
[http://dx.doi.org/10.1038/nbt.1883 ] [PMID: 21572440]
[37]
Raghavan V, Kraft L, Mesny F, Rigerte L. A simple guide to de novo transcriptome assembly and annotation. Brief Bioinform 2022; 23(2): bbab563.
[http://dx.doi.org/10.1093/bib/bbab563 ] [PMID: 35076693]
[38]
Hölzer M, Marz M. De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers. Gigascience 2019; 8(5): giz039.
[http://dx.doi.org/10.1093/gigascience/giz039 ] [PMID: 31077315]
[39]
Yang L, Duff MO, Graveley BR, Carmichael GG, Chen LL. Genomewide characterization of non-polyadenylated RNAs. Genome Biol 2011; 12(2): R16.
[http://dx.doi.org/10.1186/gb-2011-12-2-r16 ] [PMID: 21324177]
[40]
Zhang Y, Yang L, Chen LL. Life without A tail: New formats of long noncoding RNAs. Int J Biochem Cell Biol 2014; 54: 338-49.
[http://dx.doi.org/10.1016/j.biocel.2013.10.009 ] [PMID: 24513732]
[41]
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4(1): 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211 ] [PMID: 19131956]
[42]
Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37(1): 1-13.
[http://dx.doi.org/10.1093/nar/gkn923 ] [PMID: 19033363]
[43]
Kolberg L, Raudvere U, Kuzmin I, Vilo J, Peterson H. gprofiler2 -- an R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler. F1000 Res 2020; 9: ELIXIR-709.
[44]
Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 2019; 47(W1): W234-41.
[http://dx.doi.org/10.1093/nar/gkz240 ] [PMID: 30931480]
[45]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303 ] [PMID: 14597658]
[46]
Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at UCSC. Genome Res 2002; 12(6): 996-1006.
[http://dx.doi.org/10.1101/gr.229102 ] [PMID: 12045153]
[47]
Jonas K, Calin GA, Pichler M. RNA-binding proteins as important regulators of long non-coding RNAs in cancer. Int J Mol Sci 2020; 21(8): 2969.
[http://dx.doi.org/10.3390/ijms21082969 ] [PMID: 32340118]
[48]
Yao ZT, Yang YM, Sun MM, et al. New insights into the interplay between long non‐coding RNAs and RNA‐binding proteins in cancer. Cancer Commun (Lond) 2022; 42(2): 117-40.
[http://dx.doi.org/10.1002/cac2.12254 ] [PMID: 35019235]
[49]
López-Urrutia E, Bustamante Montes LP, Ladrón de Guevara Cervantes D, Pérez-Plasencia C, Campos-Parra AD. Crosstalk Between long non-coding RNAs, micro-RNAs and mRNAs: Deciphering molecular mechanisms of master regulators in cancer. Front Oncol 2019; 9: 669.
[http://dx.doi.org/10.3389/fonc.2019.00669 ] [PMID: 31404273]
[50]
Furió-Tarí P, Tarazona S, Gabaldón T, Enright AJ, Conesa A. spongeScan: A web for detecting microRNA binding elements in lncRNA sequences. Nucleic Acids Res 2016; 44(W1): W176-80.
[http://dx.doi.org/10.1093/nar/gkw443 ] [PMID: 27198221]
[51]
Militello G, Weirick T, John D, Döring C, Dimmeler S, Uchida S. Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief Bioinform 2017; 18(5): 780-8.
[PMID: 27373735]
[52]
Bugnon LA, Edera AA, Prochetto S, et al. Secondary structure prediction of long noncoding RNA: review and experimental comparison of existing approaches. Brief Bioinform 2022; 23(4): bbac205.
[http://dx.doi.org/10.1093/bib/bbac205 ] [PMID: 35692094]
[53]
Chillón I, Marcia M. The molecular structure of long non-coding RNAs: emerging patterns and functional implications. Crit Rev Biochem Mol Biol 2020; 55(6): 662-90.
[http://dx.doi.org/10.1080/10409238.2020.1828259 ] [PMID: 33043695]
[54]
Vicens Q, Kieft JS. Thoughts on how to think (and talk) about RNA structure. Proc Natl Acad Sci USA 2022; 119(17): e2112677119.
[http://dx.doi.org/10.1073/pnas.2112677119 ] [PMID: 35439059]
[55]
Schroeder R, Barta A, Semrad K. Strategies for RNA folding and assembly. Nat Rev Mol Cell Biol 2004; 5(11): 908-19.
[http://dx.doi.org/10.1038/nrm1497 ] [PMID: 15520810]
[56]
Li Y, Sun H, Feng S, Zhang Q, Han S, Du W. Capsule-LPI: a LncRNA–protein interaction predicting tool based on a capsule network. BMC Bioinformatics 2021; 22(1): 246.
[http://dx.doi.org/10.1186/s12859-021-04171-y ] [PMID: 33985444]
[57]
Peng L, Liu F, Yang J, et al. Probing lncRNA–Protein Interactions: Data Repositories, Models, and Algorithms. Front Genet 2020; 10: 1346.
[http://dx.doi.org/10.3389/fgene.2019.01346 ] [PMID: 32082358]
[58]
Pinkney HR, Wright BM, Diermeier SD. The lncRNA toolkit: databases and in silico tools for lncRNA analysis. Noncoding RNA 2020; 6(4): 49.
[http://dx.doi.org/10.3390/ncrna6040049 ] [PMID: 33339309]
[59]
Rincón-Riveros A, Morales D, Rodríguez JA, Villegas VE, López-Kleine L. Bioinformatic tools for the analysis and prediction of ncRNA interactions. Int J Mol Sci 2021; 22(21): 11397.
[http://dx.doi.org/10.3390/ijms222111397 ] [PMID: 34768830]
[60]
Sun S, Yang J, Zhang Z. RNALigands: a database and web server for RNA–ligand interactions. RNA 2022; 28(2): 115-22.
[http://dx.doi.org/10.1261/rna.078889.121 ] [PMID: 34732566]
[61]
Berman H, Henrick K, Nakamura H. Announcing the worldwide Protein Data Bank. Nat Struct Mol Biol 2003; 10(12): 980.
[http://dx.doi.org/10.1038/nsb1203-980 ] [PMID: 14634627]
[62]
Morgan BS, Sanaba BG, Donlic A, et al. R-BIND: An interactive database for exploring and developing RNA-targeted chemical probes. ACS Chem Biol 2019; 14(12): 2691-700.
[http://dx.doi.org/10.1021/acschembio.9b00631 ] [PMID: 31589399]
[63]
Kalvari I, Nawrocki EP, Ontiveros-Palacios N, et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res 2021; 49(D1): D192-200.
[http://dx.doi.org/10.1093/nar/gkaa1047 ] [PMID: 33211869]
[64]
Li Z, Liu L, Feng C, et al. LncBook 2.0: integrating human long non-coding RNAs with multi-omics annotations. Nucleic Acids Res 2023; 51(D1): D186-91.
[http://dx.doi.org/10.1093/nar/gkac999 ] [PMID: 36330950]
[65]
Sweeney BA, Petrov AI, Burkov B, et al. RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Res 2019; 47(D1): D221-9.
[http://dx.doi.org/10.1093/nar/gky1034 ] [PMID: 30395267]
[66]
Stelzer G, Rosen N, Plaschkes I, et al. The genecards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 2016; 54: 30-3.
[67]
Weirick T, Militello G, Ponomareva Y, et al. Logic programming to infer complex RNA expression patterns from RNA-seq data. Brief Bioinform 2018; 19(2): 199-209.
[PMID: 28011754]
[68]
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011; 17(1): 3.
[http://dx.doi.org/10.14806/ej.17.1.200]
[69]
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011; 27(6): 863-4.
[http://dx.doi.org/10.1093/bioinformatics/btr026 ] [PMID: 21278185]
[70]
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30(15): 2114-20.
[http://dx.doi.org/10.1093/bioinformatics/btu170 ] [PMID: 24695404]
[71]
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 2016; 34(5): 525-7.
[http://dx.doi.org/10.1038/nbt.3519 ] [PMID: 27043002]
[72]
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25(9): 1105-11.
[http://dx.doi.org/10.1093/bioinformatics/btp120 ] [PMID: 19289445]
[73]
Martin J, Bruno VM, Fang Z, et al. Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics 2010; 11(1): 663.
[http://dx.doi.org/10.1186/1471-2164-11-663 ] [PMID: 21106091]
[74]
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15(12): 550.
[http://dx.doi.org/10.1186/s13059-014-0550-8 ] [PMID: 25516281]
[75]
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47.
[http://dx.doi.org/10.1093/nar/gkv007 ] [PMID: 25605792]
[76]
Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021; 2(3): 100141.
[http://dx.doi.org/10.1016/j.xinn.2021.100141 ] [PMID: 34557778]
[77]
Sergushichev AA. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv 2016; 060012.
[78]
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545-50.
[http://dx.doi.org/10.1073/pnas.0506580102 ] [PMID: 16199517]
[79]
Baik B, Yoon S, Nam D. Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data. PLoS One 2020; 15(4): e0232271.
[http://dx.doi.org/10.1371/journal.pone.0232271 ] [PMID: 32353015]
[80]
Łabaj PP, Kreil DP. Sensitivity, specificity, and reproducibility of RNA-Seq differential expression calls. Biol Direct 2016; 11(1): 66.
[http://dx.doi.org/10.1186/s13062-016-0169-7] [PMID: 27993156]
[81]
Bushmanova E, Antipov D, Lapidus A, Suvorov V, Prjibelski AD. rnaQUAST: a quality assessment tool for de novo transcriptome assemblies. Bioinformatics 2016; 32(14): 2210-2.
[http://dx.doi.org/10.1093/bioinformatics/btw218 ] [PMID: 27153654]
[82]
Chandramohan R, Wu PY, Phan JH, Wang MD. Benchmarking RNA-Seq quantification tools. Annu Int Conf IEEE Eng Med Biol Soc 2013; 2013: 647-50.
[PMID: 24109770]
[83]
Conesa A, Madrigal P, Tarazona S, et al. A survey of best practices for RNA-seq data analysis. Genome Biol 2016; 17(1): 13.
[http://dx.doi.org/10.1186/s13059-016-0881-8 ] [PMID: 26813401]
[84]
Moreton J, Izquierdo A, Emes RD. Assembly, Assessment, and availability of de novo generated eukaryotic transcriptomes. Front Genet 2016; 6: 361.
[http://dx.doi.org/10.3389/fgene.2015.00361 ] [PMID: 26793234]
[85]
Ilieva M, Uchida S. Perspectives of LncRNAs for therapy. Cell Biol Toxicol 2022; 38(6): 915-7.
[http://dx.doi.org/10.1007/s10565-022-09779-1 ] [PMID: 36399196]
[86]
Pan J, Wang R, Shang F, Ma R, Rong Y, Zhang Y. Functional micropeptides encoded by long non-coding RNAs: A comprehensive review. Front Mol Biosci 2022; 9: 817517.
[http://dx.doi.org/10.3389/fmolb.2022.817517 ] [PMID: 35769907]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy