Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Epigenetic Effects of Psychoactive Drugs

Author(s): Rania Ahmed, Kenneth Blum and Panayotis K. Thanos*

Volume 29, Issue 27, 2023

Published on: 17 July, 2023

Page: [2124 - 2139] Pages: 16

DOI: 10.2174/1381612829666230706143026

Price: $65

Abstract

Currently, and globally, we are facing the worst epidemic of psychoactive drug abuse resulting in the loss of hundreds of thousands of lives annually. Besides alcohol and opioid use and misuse, there has been an increase in illicit abuse of psychostimulants. Epigenetics is a relatively novel area of research that studies heritable alterations in gene expression. Long-term administration of psychoactive drugs may lead to transcriptional changes in brain regions related to drug-seeking behaviors and rewards that can be passed down transgenerationally. Epigenetic biomarkers such as DNA methylation and histone modifications contribute to disease diagnoses. This review aims to look at the epigenetic modifications brought forth by psychoactive drug abuse.

[1]
Weinhold B. Epigenetics: The science of change. Environ Health Perspect 2006; 114(3): A160-7.
[http://dx.doi.org/10.1289/ehp.114-a160] [PMID: 16507447]
[2]
Jawaid A, Roszkowski M, Mansuy IM. Transgenerational epigenetics of traumatic stress. Prog Mol Biol Transl Sci 2018; 158: 273-98.
[http://dx.doi.org/10.1016/bs.pmbts.2018.03.003] [PMID: 30072057]
[3]
Hamza M, Halayem S, Bourgou S, Daoud M, Charfi F, Belhadj A. Epigenetics and ADHD: Toward an integrative approach of the disorder pathogenesis. J Atten Disord 2019; 23(7): 655-64.
[http://dx.doi.org/10.1177/1087054717696769] [PMID: 28665177]
[4]
Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab 2019; 29(5): 1028-44.
[http://dx.doi.org/10.1016/j.cmet.2019.03.009] [PMID: 30982733]
[5]
De Sa Nogueira D, Merienne K, Befort K. Neuroepigenetics and addictive behaviors: Where do we stand? Neurosci Biobehav Rev 2019; 106: 58-72.
[http://dx.doi.org/10.1016/j.neubiorev.2018.08.018] [PMID: 30205119]
[6]
Law PP, Holland ML. DNA methylation at the crossroads of gene and environment interactions. Essays Biochem 2019; 63(6): 717-26.
[http://dx.doi.org/10.1042/EBC20190031] [PMID: 31782496]
[7]
Li C. DNA demethylation pathways: Recent insights. Genet Epigenet 2013; 5: GEG.S12143.
[http://dx.doi.org/10.4137/GEG.S12143] [PMID: 25512706]
[8]
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38(1): 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[9]
Mahna D, Puri S, Sharma S. DNA methylation signatures: Biomarkers of drug and alcohol abuse. Mutat Res Rev Mutat Res 2018; 777: 19-28.
[http://dx.doi.org/10.1016/j.mrrev.2018.06.002] [PMID: 30115428]
[10]
Jang H, Shin W, Lee J, Do J. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes 2017; 8(6): 148.
[http://dx.doi.org/10.3390/genes8060148] [PMID: 28545252]
[11]
Bogdanović O, Lister R. DNA methylation and the preservation of cell identity. Curr Opin Genet Dev 2017; 46: 9-14.
[http://dx.doi.org/10.1016/j.gde.2017.06.007] [PMID: 28651214]
[12]
Sivalingam K, Samikkannu T. Neuroprotective effect of piracetam against cocaine-induced neuro epigenetic modification of DNA methylation in astrocytes. Brain Sci 2020; 10(9): 611.
[http://dx.doi.org/10.3390/brainsci10090611] [PMID: 32899583]
[13]
Kulis M, Esteller M. DNA methylation and cancer. Adv Genet 2010; 70: 27-56.
[http://dx.doi.org/10.1016/B978-0-12-380866-0.60002-2] [PMID: 20920744]
[14]
Dawson MA, Kouzarides T. Cancer epigenetics: From mechanism to therapy. Cell 2012; 150(1): 12-27.
[http://dx.doi.org/10.1016/j.cell.2012.06.013] [PMID: 22770212]
[15]
Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet 2021; 37(11): 1012-27.
[http://dx.doi.org/10.1016/j.tig.2021.05.002] [PMID: 34120771]
[16]
Meng H, Cao Y, Qin J, et al. DNA methylation, its mediators and genome integrity. Int J Biol Sci 2015; 11(5): 604-17.
[http://dx.doi.org/10.7150/ijbs.11218] [PMID: 25892967]
[17]
Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature 2019; 571(7766): 489-99.
[http://dx.doi.org/10.1038/s41586-019-1411-0] [PMID: 31341302]
[18]
Bajrami E, Spiroski M. Genomic Imprinting. Open Access Maced J Med Sci 2016; 4(1): 181-4.
[http://dx.doi.org/10.3889/oamjms.2016.028] [PMID: 27275355]
[19]
Cassidy SB, Schwartz S. Prader-Willi and Angelman syndromes. Disorders of genomic imprinting. Medicine 1998; 77(2): 140-51.
[http://dx.doi.org/10.1097/00005792-199803000-00005] [PMID: 9556704]
[20]
Liu C, Jiao C, Wang K, Yuan N. DNA methylation and psychiatric disorders. Prog Mol Biol Transl Sci 2018; 157: 175-232.
[http://dx.doi.org/10.1016/bs.pmbts.2018.01.006] [PMID: 29933950]
[21]
Zhang X, Fu R, Yu J, Wu X. DNA demethylation: Where genetics meets epigenetics. Curr Pharm Des 2014; 20(11): 1625-31.
[http://dx.doi.org/10.2174/13816128113199990546] [PMID: 23888938]
[22]
Bochtler M, Kolano A, Xu GL. DNA demethylation pathways: Additional players and regulators. BioEssays 2017; 39(1): e201600178.
[http://dx.doi.org/10.1002/bies.201600178] [PMID: 27859411]
[23]
Kafer GR, Li X, Horii T, et al. 5-Hydroxymethylcytosine marks sites of dna damage and promotes genome stability. Cell Rep 2016; 14(6): 1283-92.
[http://dx.doi.org/10.1016/j.celrep.2016.01.035] [PMID: 26854228]
[24]
Chen Z, Riggs AD. DNA methylation and demethylation in mammals. J Biol Chem 2011; 286(21): 18347-53.
[http://dx.doi.org/10.1074/jbc.R110.205286] [PMID: 21454628]
[25]
Wu X, Zhang Y. TET-mediated active DNA demethylation: Mechanism, function and beyond. Nat Rev Genet 2017; 18(9): 517-34.
[http://dx.doi.org/10.1038/nrg.2017.33] [PMID: 28555658]
[26]
Ross SE, Bogdanovic O. TET enzymes, DNA demethylation and pluripotency. Biochem Soc Trans 2019; 47(3): 875-85.
[http://dx.doi.org/10.1042/BST20180606] [PMID: 31209155]
[27]
An J, González-Avalos E, Chawla A, et al. Acute loss of TET function results in aggressive myeloid cancer in mice. Nat Commun 2015; 6(1): 10071.
[http://dx.doi.org/10.1038/ncomms10071] [PMID: 26607761]
[28]
Dalton SR, Bellacosa A. DNA demethylation by TDG. Epigenomics 2012; 4(4): 459-67.
[http://dx.doi.org/10.2217/epi.12.36] [PMID: 22920184]
[29]
Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 2013; 20(3): 259-66.
[http://dx.doi.org/10.1038/nsmb.2470] [PMID: 23463310]
[30]
Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 2014; 15(11): 703-8.
[http://dx.doi.org/10.1038/nrm3890] [PMID: 25315270]
[31]
Stillman B. Histone modifications: Insights into their influence on gene expression. Cell 2018; 175(1): 6-9.
[http://dx.doi.org/10.1016/j.cell.2018.08.032] [PMID: 30217360]
[32]
Zhao Z, Shilatifard A. Epigenetic modifications of histones in cancer. Genome Biol 2019; 20(1): 245.
[http://dx.doi.org/10.1186/s13059-019-1870-5] [PMID: 31747960]
[33]
Gräff J, Tsai LH. Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 2013; 14(2): 97-111.
[http://dx.doi.org/10.1038/nrn3427] [PMID: 23324667]
[34]
Hyland EM, Cosgrove MS, Molina H, et al. Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25(22): 10060-70.
[http://dx.doi.org/10.1128/MCB.25.22.10060-10070.2005] [PMID: 16260619]
[35]
Varela RB, Resende WR, Dal-Pont GC, et al. Role of epigenetic regulatory enzymes in animal models of mania induced by amphetamine and paradoxical sleep deprivation. Eur J Neurosci 2021; 53(2): 649-62.
[http://dx.doi.org/10.1111/ejn.14922] [PMID: 32735698]
[36]
Kim S, Kaang BK. Epigenetic regulation and chromatin remodeling in learning and memory. Exp Mol Med 2017; 49(1): e281.
[http://dx.doi.org/10.1038/emm.2016.140] [PMID: 28082740]
[37]
Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem 2009; 78(1): 273-304.
[http://dx.doi.org/10.1146/annurev.biochem.77.062706.153223] [PMID: 19355820]
[38]
Han P, Hang CT, Yang J, Chang CP. Chromatin remodeling in cardiovascular development and physiology. Circ Res 2011; 108(3): 378-96.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.224287] [PMID: 21293009]
[39]
Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: Background, mechanisms, and therapeutic approaches. Physiol Rev 2016; 96(4): 1297-325.
[http://dx.doi.org/10.1152/physrev.00041.2015] [PMID: 27535639]
[40]
Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 2006; 15(Spec No 1) (Suppl. 1): R17-29.
[http://dx.doi.org/10.1093/hmg/ddl046] [PMID: 16651366]
[41]
Augier E, Barbier E, Dulman RS, et al. A molecular mechanism for choosing alcohol over an alternative reward. Science 2018; 360(6395): 1321-6.
[http://dx.doi.org/10.1126/science.aao1157] [PMID: 29930131]
[42]
Blum K, Brodie M, Pandey S, et al. Researching mitigation of alcohol binge drinking in polydrug abuse: KCNK13 and RASGRF2 Gene(s) risk polymorphisms coupled with genetic addiction risk severity (GARS) guiding precision pro-dopamine regulation. J Pers Med 2022; 12(6): 1009.
[http://dx.doi.org/10.3390/jpm12061009] [PMID: 35743793]
[43]
Solanki N, Abijo T, Galvao C, Darius P, Blum K, Gondré-Lewis MC. Administration of a putative pro-dopamine regulator, a neuronutrient, mitigates alcohol intake in alcohol-preferring rats. Behav Brain Res 2020; 385: 112563.
[http://dx.doi.org/10.1016/j.bbr.2020.112563] [PMID: 32070691]
[44]
Verhulst B, Neale MC, Kendler KS. The heritability of alcohol use disorders: A meta-analysis of twin and adoption studies. Psychol Med 2015; 45(5): 1061-72.
[http://dx.doi.org/10.1017/S0033291714002165] [PMID: 25171596]
[45]
Tulisiak CT, Harris RA, Ponomarev I. DNA modifications in models of alcohol use disorders. Alcohol 2017; 60: 19-30.
[http://dx.doi.org/10.1016/j.alcohol.2016.11.004] [PMID: 27865607]
[46]
Blum K, Han D, Gupta A, et al. Statistical validation of risk alleles in genetic addiction risk severity (gars) test: Early identification of risk for alcohol use disorder (AUD) in 74,566 case–control subjects. J Pers Med 2022; 12(9): 1385.
[http://dx.doi.org/10.3390/jpm12091385] [PMID: 36143170]
[47]
Schuckit MA. Alcohol-use disorders. Lancet 2009; 373(9662): 492-501.
[http://dx.doi.org/10.1016/S0140-6736(09)60009-X] [PMID: 19168210]
[48]
Preuss UW, Schaefer M, Born C, Grunze H. Bipolar disorder and comorbid use of illicit substances. Medicina 2021; 57(11): 1256.
[http://dx.doi.org/10.3390/medicina57111256] [PMID: 34833474]
[49]
Sakharkar AJ, Kyzar EJ, Gavin DP, et al. Altered amygdala DNA methylation mechanisms after adolescent alcohol exposure contribute to adult anxiety and alcohol drinking. Neuropharmacology 2019; 157: 107679.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107679] [PMID: 31229451]
[50]
Bohnsack JP, Pandey SC. Histone modifications, DNA methylation, and the epigenetic code of alcohol use disorder. Int Rev Neurobiol 2021; 156: 1-62.
[http://dx.doi.org/10.1016/bs.irn.2020.08.005] [PMID: 33461661]
[51]
Pandey SC, Ugale R, Zhang H, Tang L, Prakash A. Brain chromatin remodeling: A novel mechanism of alcoholism. J Neurosci 2008; 28(14): 3729-37.
[http://dx.doi.org/10.1523/JNEUROSCI.5731-07.2008] [PMID: 18385331]
[52]
Torres JL, Novo-Veleiro I, Manzanedo L, et al. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World J Gastroenterol 2018; 24(36): 4104-18.
[http://dx.doi.org/10.3748/wjg.v24.i36.4104] [PMID: 30271077]
[53]
Renthal W, Nestler EJ. Histone acetylation in drug addiction. Semin Cell Dev Biol 2009; 20(4): 387-94.
[http://dx.doi.org/10.1016/j.semcdb.2009.01.005] [PMID: 19560043]
[54]
Sakharkar AJ, Zhang H, Tang L, et al. Effects of histone deacetylase inhibitors on amygdaloid histone acetylation and neuropeptide Y expression: A role in anxiety-like and alcohol-drinking behaviours. Int J Neuropsychopharmacol 2014; 17(8): 1207-20.
[http://dx.doi.org/10.1017/S1461145714000054] [PMID: 24528596]
[55]
Blum K, Noble EP, Sheridan PJ, et al. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA 1990; 263(15): 2055-60.
[http://dx.doi.org/10.1001/jama.1990.03440150063027] [PMID: 1969501]
[56]
Hillemacher T, Rhein M, Burkert A, et al. DNA-methylation of the dopamin receptor 2 gene is altered during alcohol withdrawal. Eur Neuropsychopharmacol 2019; 29(11): 1250-7.
[http://dx.doi.org/10.1016/j.euroneuro.2019.09.002] [PMID: 31530416]
[57]
Hagerty SL, YorkWilliams SL, Bidwell LC, et al. DRD2 methylation is associated with executive control network connectivity and severity of alcohol problems among a sample of polysubstance users. Addict Biol 2020; 25(1): e12684.
[http://dx.doi.org/10.1111/adb.12684] [PMID: 30370960]
[58]
Yu JT, Hu XW, Chen HY, et al. DNA methylation of FTO promotes renal inflammation by enhancing m6A of PPAR-α in alcohol-induced kidney injury. Pharmacol Res 2021; 163: 105286.
[http://dx.doi.org/10.1016/j.phrs.2020.105286] [PMID: 33157234]
[59]
Glahn A, Riera Knorrenschild R, Rhein M, et al. Alcohol-induced changes in methylation status of individual CpG sites, and serum levels of vasopressin and atrial natriuretic peptide in alcohol-dependent patients during detoxification treatment. Eur Addict Res 2014; 20(3): 143-50.
[http://dx.doi.org/10.1159/000357473] [PMID: 24356727]
[60]
Barbier E, Tapocik JD, Juergens N, et al. DNA methylation in the medial prefrontal cortex regulates alcohol-induced behavior and plasticity. J Neurosci 2015; 35(15): 6153-64.
[http://dx.doi.org/10.1523/JNEUROSCI.4571-14.2015] [PMID: 25878287]
[61]
Blum K, Steinberg B, Gondré-Lewis MC, et al. A review of DNA risk alleles to determine epigenetic repair of mRNA expression to prove therapeutic effectiveness in reward deficiency syndrome (RDS): Embracing “precision behavioral management”. Psychol Res Behav Manag 2021; 14: 2115-34.
[http://dx.doi.org/10.2147/PRBM.S292958] [PMID: 34949945]
[62]
Niinep K, Anier K, Eteläinen T, Piepponen P, Kalda A. Repeated ethanol exposure alters DNA methylation status and dynorphin/kappa-opioid receptor expression in nucleus accumbens of alcohol-preferring AA rats. Front Genet 2021; 12: 750142.
[http://dx.doi.org/10.3389/fgene.2021.750142] [PMID: 34899839]
[63]
Rumgay H, Murphy N, Ferrari P, Soerjomataram I. Alcohol and cancer: Epidemiology and biological mechanisms. Nutrients 2021; 13(9): 3173.
[http://dx.doi.org/10.3390/nu13093173] [PMID: 34579050]
[64]
Varela-Rey M, Woodhoo A, Martinez-Chantar ML, Mato JM, Lu SC. Alcohol, DNA methylation, and cancer. Alcohol Res 2013; 35(1): 25-35.
[PMID: 24313162]
[65]
Wilson LE, Xu Z, Harlid S, et al. Alcohol and DNA methylation: An epigenome-wide association study in blood and normal breast tissue. Am J Epidemiol 2019; 188(6): 1055-65.
[http://dx.doi.org/10.1093/aje/kwz032] [PMID: 30938765]
[66]
Zhang H, Gelernter J. Review: DNA methylation and alcohol use disorders: Progress and challenges. Am J Addict 2017; 26(5): 502-15.
[http://dx.doi.org/10.1111/ajad.12465] [PMID: 27759945]
[67]
Zhang H, Aryeh IH, Henry RK, et al. Array-based profiling of DNA methylation changes associated with alcohol dependence. Alcohol Clin Exp Res 2013; 37(S1): E108-15.
[http://dx.doi.org/10.1111/j.1530-0277.2012.01928.x]
[68]
Blum K, Baron D, Lott L, et al. In search of reward deficiency syndrome (RDS)-free controls: The “Holy Grail” in genetic addiction risk testing. Curr Psychopharmacol 2020; 9(1): 7-21.
[http://dx.doi.org/10.2174/2211556008666191111103152] [PMID: 32432025]
[69]
Dalterio S, Bartke A, Blum K, Sweeney C. Marihuana and alcohol: Perinatal effects on development of male reproductive functions in mice. Prog Biochem Pharmacol 1981; 18: 143-54.
[PMID: 6273925]
[70]
Abbott CW, Rohac DJ, Bottom RT, Patadia S, Huffman KJ. Prenatal ethanol exposure and neocortical development: A transgenerational model of FASD. Cereb Cortex 2018; 28(8): 2908-21.
[http://dx.doi.org/10.1093/cercor/bhx168] [PMID: 29106518]
[71]
Basavarajappa B, Subbanna S. Epigenetic mechanisms in developmental alcohol-induced neurobehavioral deficits. Brain Sci 2016; 6(2): 12.
[http://dx.doi.org/10.3390/brainsci6020012] [PMID: 27070644]
[72]
Mandal C, Halder D, Jung KH, Chai YG. Gestational alcohol exposure altered DNA methylation status in the developing fetus. Int J Mol Sci 2017; 18(7): 1386.
[http://dx.doi.org/10.3390/ijms18071386] [PMID: 28657590]
[73]
Öztürk NC, Resendiz M, Öztürk H, Zhou FC. DNA Methylation program in normal and alcohol-induced thinning cortex. Alcohol 2017; 60: 135-47.
[http://dx.doi.org/10.1016/j.alcohol.2017.01.006] [PMID: 28433420]
[74]
Chen Y, Ozturk NC, Zhou FC. DNA methylation program in developing hippocampus and its alteration by alcohol. PLoS One 2013; 8(3): e60503.
[http://dx.doi.org/10.1371/journal.pone.0060503] [PMID: 23544149]
[75]
Ouko LA, Shantikumar K, Knezovich J, Haycock P, Schnugh DJ, Ramsay M. Effect of alcohol consumption on CpG methylation in the differentially methylated regions of H19 and IG-DMR in male gametes: Implications for fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2009; 33(9): 1615-27.
[http://dx.doi.org/10.1111/j.1530-0277.2009.00993.x] [PMID: 19519716]
[76]
Lussier AA, Morin AM, MacIsaac JL, et al. DNA methylation as a predictor of fetal alcohol spectrum disorder. Clin Epigenetics 2018; 10(1): 5.
[http://dx.doi.org/10.1186/s13148-018-0439-6] [PMID: 29344313]
[77]
Longley MJ, Lee J, Jung J, Lohoff FW. Epigenetics of alcohol use disorder—A review of recent advances in DNA methylation profiling. Addict Biol 2021; 26(6): e13006.
[http://dx.doi.org/10.1111/adb.13006] [PMID: 33538087]
[78]
Marjonen H, Sierra A, Nyman A, et al. Early maternal alcohol consumption alters hippocampal DNA methylation, gene expression and volume in a mouse model. PLoS One 2015; 10(5): e0124931.
[http://dx.doi.org/10.1371/journal.pone.0124931] [PMID: 25970770]
[79]
Kolodny A, Courtwright DT, Hwang CS, et al. The prescription opioid and heroin crisis: a public health approach to an epidemic of addiction. Annu Rev Public Health 2015; 36(1): 559-74.
[http://dx.doi.org/10.1146/annurev-publhealth-031914-122957] [PMID: 25581144]
[80]
Blum K, Jacobs W, Modestino EJ, et al. Insurance companies fighting the peer review empire without any validity: The case for addiction and pain modalities in the face of an american drug epidemic. SEJ Surg Pain 2018; 1(1): 1-11.
[PMID: 29911684]
[81]
Azadfard M, Huecker MR, Leaming JM. Opioid Addiction. Treasure Island (FL): StatPearls 2020.
[82]
Liu A, Dai Y, Mendez EF, et al. Genome-wide correlation of DNA methylation and gene expression in postmortem brain tissues of opioid use disorder patients. Int J Neuropsychopharmacol 2021; 24(11): 879-91.
[http://dx.doi.org/10.1093/ijnp/pyab043] [PMID: 34214162]
[83]
Hill E, Han D, Dumouchel P, et al. Long term Suboxone™ emotional reactivity as measured by automatic detection in speech. PLoS One 2013; 8(7): e69043.
[http://dx.doi.org/10.1371/journal.pone.0069043] [PMID: 23874860]
[84]
Browne CJ, Godino A, Salery M, Nestler EJ. Epigenetic mechanisms of opioid addiction. Biol Psychiatry 2020; 87(1): 22-33.
[http://dx.doi.org/10.1016/j.biopsych.2019.06.027] [PMID: 31477236]
[85]
Doke M, Pendyala G, Samikkannu T. Psychostimulants and opioids differentially influence the epigenetic modification of histone acetyltransferase and histone deacetylase in astrocytes. PLoS One 2021; 16(6): e0252895.
[http://dx.doi.org/10.1371/journal.pone.0252895] [PMID: 34115777]
[86]
Sivalingam K, Doke M, Khan MA, Samikkannu T. Influence of psychostimulants and opioids on epigenetic modification of class III histone deacetylase (HDAC)-sirtuins in glial cells. Sci Rep 2021; 11(1): 21335.
[http://dx.doi.org/10.1038/s41598-021-00836-z] [PMID: 34716387]
[87]
Viet CT, Dang D, Aouizerat BE, et al. OPRM1 methylation contributes to opioid tolerance in cancer patients. J Pain 2017; 18(9): 1046-59.
[http://dx.doi.org/10.1016/j.jpain.2017.04.001] [PMID: 28456745]
[88]
Montalvo-Ortiz JL, Cheng Z, Kranzler HR, Zhang H, Gelernter J. Genomewide study of epigenetic biomarkers of opioid dependence in european- american women. Sci Rep 2019; 9(1): 4660.
[http://dx.doi.org/10.1038/s41598-019-41110-7] [PMID: 30874594]
[89]
Blackwood CA, Cadet JL. Epigenetic and genetic factors associated with opioid use disorder: Are these relevant to african american populations. Front Pharmacol 2021; 12: 798362.
[http://dx.doi.org/10.3389/fphar.2021.798362] [PMID: 35002733]
[90]
Kozlenkov A, Jaffe A, Timashpolsky A, et al. DNA methylation profiling of human prefrontal cortex neurons in heroin users shows significant difference between genomic contexts of hyper- and hypomethylation and a younger epigenetic age. Genes (Basel) 2017; 8(6): 152.
[http://dx.doi.org/10.3390/genes8060152] [PMID: 28556790]
[91]
Schoenbaum G, Shaham Y. The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biol Psychiatry 2008; 63(3): 256-62.
[http://dx.doi.org/10.1016/j.biopsych.2007.06.003] [PMID: 17719014]
[92]
Sandoval-Sierra JV, Salgado García FI, Brooks JH, Derefinko KJ, Mozhui K. Effect of short-term prescription opioids on DNA methylation of the OPRM1 promoter. Clin Epigenetics 2020; 12(1): 76.
[http://dx.doi.org/10.1186/s13148-020-00868-8] [PMID: 32493461]
[93]
Shu C, Sosnowski DW, Tao R, et al. Epigenome-wide study of brain DNA methylation following acute opioid intoxication. Drug Alcohol Depend 2021; 221: 108658.
[http://dx.doi.org/10.1016/j.drugalcdep.2021.108658] [PMID: 33667780]
[94]
Ebrahimi G, Asadikaram G, Akbari H, et al. Elevated levels of DNA methylation at the OPRM1 promoter region in men with opioid use disorder. Am J Drug Alcohol Abuse 2018; 44(2): 193-9.
[http://dx.doi.org/10.1080/00952990.2016.1275659] [PMID: 28121474]
[95]
Odegaard KE, Schaal VL, Clark AR, et al. Characterization of the intergenerational impact of in utero and postnatal oxycodone exposure. Transl Psychiatry 2020; 10(1): 329.
[http://dx.doi.org/10.1038/s41398-020-01012-z] [PMID: 32968044]
[96]
Vassoler FM, David JO, Cristina W, et al. Transgenerational attenuation of opioid self-administration as a consequence of adolescent morphine exposure. Neuropharmacology 2017; 113(Pt A): 271-80.
[http://dx.doi.org/10.1016/j.neuropharm.2016.10.006]
[97]
Gerra MC, Dallabona C, Arendt-Nielsen L. Epigenetic alterations in prescription opioid misuse: New strategies for precision pain management. Genes 2021; 12(8): 1226.
[http://dx.doi.org/10.3390/genes12081226] [PMID: 34440400]
[98]
McLaughlin P, Mactier H, Gillis C, et al. Increased DNA methylation of ABCB1, CYP2D6, and OPRM1 genes in newborn infants of methadone-maintained opioid-dependent mothers. J Pediatr 2017; 190: 180-184.e1.
[http://dx.doi.org/10.1016/j.jpeds.2017.07.026] [PMID: 28867064]
[99]
Moran M, Blum K, Ponce JV, et al. High genetic addiction risk score (GARS) in chronically prescribed severe chronic opioid probands attending multi-pain clinics: an open clinical pilot trial. Mol Neurobiol 2021; 58(7): 3335-46.
[http://dx.doi.org/10.1007/s12035-021-02312-1] [PMID: 33683627]
[100]
Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 2018; 87: 255-70.
[http://dx.doi.org/10.1016/j.neubiorev.2018.02.001] [PMID: 29428394]
[101]
Lappin JM, Sara GE. Psychostimulant use and the brain. Addiction 2019; 114(11): 2065-77.
[http://dx.doi.org/10.1111/add.14708] [PMID: 31321819]
[102]
Schmidt HD, McGinty JF, West AE, Sadri-Vakili G. Epigenetics and psychostimulant addiction. Cold Spring Harb Perspect Med 2013; 3(3): a012047.
[http://dx.doi.org/10.1101/cshperspect.a012047] [PMID: 23359110]
[103]
Hamilton PJ, Nestler EJ. Epigenetics and addiction. Curr Opin Neurobiol 2019; 59: 128-36.
[http://dx.doi.org/10.1016/j.conb.2019.05.005] [PMID: 31255844]
[104]
Coelho-Santos V, Cardoso FL, Magalhães A, et al. Effect of chronic methylphenidate treatment on hippocampal neurovascular unit and memory performance in late adolescent rats. Eur Neuropsychopharmacol 2019; 29(2): 195-210.
[http://dx.doi.org/10.1016/j.euroneuro.2018.12.007] [PMID: 30554860]
[105]
Blum K, Cadet JL, Gold MS. Psychostimulant use disorder emphasizing methamphetamine and the opioid -dopamine connection: Digging out of a hypodopaminergic ditch. J Neurol Sci 2021; 420: 117252.
[http://dx.doi.org/10.1016/j.jns.2020.117252] [PMID: 33279726]
[106]
Noble EP, Blum K, Khalsa ME, et al. Allelic association of the D2 dopamine receptor gene with cocaine dependence. Drug Alcohol Depend 1993; 33(3): 271-85.
[http://dx.doi.org/10.1016/0376-8716(93)90113-5] [PMID: 8261891]
[107]
Wright KN, Hollis F, Duclot F, et al. Methyl supplementation attenuates cocaine-seeking behaviors and cocaine-induced c-Fos activation in a DNA methylation-dependent manner. J Neurosci 2015; 35(23): 8948-58.
[http://dx.doi.org/10.1523/JNEUROSCI.5227-14.2015] [PMID: 26063926]
[108]
Pérez-Cadahía B, Drobic B, Davie JR. Activation and function of immediate-early genes in the nervous system. Biochem Cell Biol 2011; 89(1): 61-73.
[PMID: 21326363]
[109]
Engmann O, Labonté B, Mitchell A, et al. Cocaine-induced chromatin modifications associate with increased expression and three-dimensional looping of auts2. Biol Psychiatry 2017; 82(11): 794-805.
[http://dx.doi.org/10.1016/j.biopsych.2017.04.013] [PMID: 28577753]
[110]
Blum K, Gold MS, Cadet JL, et al. Dopaminylation in psychostimulant use disorder protects against psychostimulant seeking behavior by normalizing nucleus accumbens (NAc) dopamine expression. Curr Psychopharmacol 2022; 11(1): 11-7.
[http://dx.doi.org/10.2174/2211556009666210108112737] [PMID: 36046837]
[111]
Dahlgren A, Wargelius HL, Berglund KJ, et al. Do alcohol-dependent individuals with DRD2 A1 allele have an increased risk of relapse? A pilot study. Alcohol Alcohol 2011; 46(5): 509-13.
[http://dx.doi.org/10.1093/alcalc/agr045] [PMID: 21613303]
[112]
Nestler EJ. Molecular mechanisms of drug addiction. Neuropharmacology 2004; 47(S1): 24-32.
[http://dx.doi.org/10.1016/j.neuropharm.2004.06.031] [PMID: 15464123]
[113]
Vaillancourt K, Ernst C, Mash D, Turecki G. DNA methylation dynamics and cocaine in the brain: Progress and prospects. Genes 2017; 8(5): 138.
[http://dx.doi.org/10.3390/genes8050138] [PMID: 28498318]
[114]
Fonteneau M, Filliol D, Anglard P, Befort K, Romieu P, Zwiller J. Inhibition of DNA methyltransferases regulates cocaine self-administration by rats: A genome-wide DNA methylation study. Genes Brain Behav 2017; 16(3): 313-27.
[http://dx.doi.org/10.1111/gbb.12354] [PMID: 27762100]
[115]
Massart R, Barnea R, Dikshtein Y, et al. Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving. J Neurosci 2015; 35(21): 8042-58.
[http://dx.doi.org/10.1523/JNEUROSCI.3053-14.2015] [PMID: 26019323]
[116]
Willuhn I, Burgeno LM, Groblewski PA, Phillips PEM. Excessive cocaine use results from decreased phasic dopamine signaling in the striatum. Nat Neurosci 2014; 17(5): 704-9.
[http://dx.doi.org/10.1038/nn.3694] [PMID: 24705184]
[117]
Urb M, Niinep K, Matsalu T, et al. The role of DNA methyltransferase activity in cocaine treatment and withdrawal in the nucleus accumbens of mice. Addict Biol 2020; 25(1): e12720.
[http://dx.doi.org/10.1111/adb.12720] [PMID: 30730091]
[118]
LaPlant Q, Vialou V, Covington HE III, et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 2010; 13(9): 1137-43.
[http://dx.doi.org/10.1038/nn.2619] [PMID: 20729844]
[119]
Vaher K, Anier K, Jürgenson M, Harro J, Kalda A. Cocaine-induced changes in behaviour and DNA methylation in rats are influenced by inter-individual differences in spontaneous exploratory activity. J Psychopharmacol 2020; 34(6): 680-92.
[http://dx.doi.org/10.1177/0269881120916137] [PMID: 32338111]
[120]
Lobo MK, Nestler EJ. The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat 2011; 5: 41.
[http://dx.doi.org/10.3389/fnana.2011.00041] [PMID: 21811439]
[121]
Vaillancourt K, Yang J, Chen GG, et al. Cocaine-related DNA methylation in caudate neurons alters 3D chromatin structure of the IRXA gene cluster. Mol Psychiatry 2021; 26(7): 3134-51.
[http://dx.doi.org/10.1038/s41380-020-00909-x] [PMID: 33046833]
[122]
Cates HM, Heller EA, Lardner CK, et al. Transcription factor E2F3a in nucleus accumbens affects cocaine action via transcription and alternative splicing. Biol Psychiatry 2018; 84(3): 167-79.
[http://dx.doi.org/10.1016/j.biopsych.2017.11.027] [PMID: 29397901]
[123]
Feng J, Wilkinson M, Liu X, et al. Chronic cocaine-regulated epigenomic changes in mouse nucleus accumbens. Genome Biol 2014; 15(4): R65.
[http://dx.doi.org/10.1186/gb-2014-15-4-r65] [PMID: 24758366]
[124]
Raponi M, Baralle D. Alternative splicing: Good and bad effects of translationally silent substitutions. FEBS J 2010; 277(4): 836-40.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07519.x] [PMID: 20082637]
[125]
Gandal MJ, Zhang P, Hadjimichael E, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 2018; 362(6420): eaat8127.
[http://dx.doi.org/10.1126/science.aat8127] [PMID: 30545856]
[126]
Doke M, Jeganathan V, McLaughlin JP, Samikkannu T. HIV-1 Tat and cocaine impact mitochondrial epigenetics: effects on DNA methylation. Epigenetics 2021; 16(9): 980-99.
[http://dx.doi.org/10.1080/15592294.2020.1834919] [PMID: 33100130]
[127]
Shu C, Justice AC, Zhang X, et al. DNA methylation mediates the effect of cocaine use on HIV severity. Clin Epigenetics 2020; 12(1): 140.
[http://dx.doi.org/10.1186/s13148-020-00934-1] [PMID: 32928285]
[128]
Fuchs RA, Evans KA, Ledford CC, et al. The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 2005; 30(2): 296-309.
[http://dx.doi.org/10.1038/sj.npp.1300579] [PMID: 15483559]
[129]
Gajewski PA, Eagle AL, Williams ES, et al. Epigenetic regulation of hippocampal Fosb expression controls behavioral responses to cocaine. J Neurosci 2019; 39(42): 8305-14.
[http://dx.doi.org/10.1523/JNEUROSCI.0800-19.2019] [PMID: 31477569]
[130]
Stewart AF, Fulton SL, Maze I. Epigenetics of drug addiction. Cold Spring Harb Perspect Med 2021; 11(7): a040253.
[http://dx.doi.org/10.1101/cshperspect.a040253] [PMID: 32513670]
[131]
Hollander JA, Im HI, Amelio AL, et al. Striatal microRNA controls cocaine intake through CREB signalling. Nature 2010; 466(7303): 197-202.
[http://dx.doi.org/10.1038/nature09202] [PMID: 20613834]
[132]
Bastle RM, Oliver RJ, Gardiner AS, et al. In silico identification and in vivo validation of miR-495 as a novel regulator of motivation for cocaine that targets multiple addiction-related networks in the nucleus accumbens. Mol Psychiatry 2018; 23(2): 434-43.
[http://dx.doi.org/10.1038/mp.2016.238] [PMID: 28044061]
[133]
Guo ML, Periyasamy P, Liao K, et al. Cocaine-mediated downregulation of microglial miR-124 expression involves promoter DNA methylation. Epigenetics 2016; 11(11): 819-30.
[http://dx.doi.org/10.1080/15592294.2016.1232233] [PMID: 27786595]
[134]
Anier K, Malinovskaja K, Aonurm-Helm, et al. DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacol 2010; 35: 2450-61.
[http://dx.doi.org/10.1038/npp.2010.128]
[135]
Cadet JL, Jayanthi S. Epigenetic landscape of methamphetamine use disorder. Curr Neuropharmacol 2021; 19(12): 2060-6.
[http://dx.doi.org/10.2174/1570159X19666210524111915] [PMID: 34030618]
[136]
Limanaqi F, Gambardella S, Biagioni F, Busceti CL, Fornai F. Epigenetic effects induced by methamphetamine and methamphetamine-dependent oxidative stress. Oxid Med Cell Longev 2018; 2018: 1-28.
[http://dx.doi.org/10.1155/2018/4982453] [PMID: 30140365]
[137]
Desplats P, Dumaop W, Cronin P, et al. Epigenetic alterations in the brain associated with HIV-1 infection and methamphetamine dependence. PLoS One 2014; 9(7): e102555.
[http://dx.doi.org/10.1371/journal.pone.0102555] [PMID: 25054922]
[138]
Jayanthi S, McCoy MT, Chen B, et al. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biol Psychiatry 2014; 76(1): 47-56.
[http://dx.doi.org/10.1016/j.biopsych.2013.09.034] [PMID: 24239129]
[139]
Godino A, Jayanthi S, Cadet JL. Epigenetic landscape of amphetamine and methamphetamine addiction in rodents. Epigenetics 2015; 10(7): 574-80.
[http://dx.doi.org/10.1080/15592294.2015.1055441] [PMID: 26023847]
[140]
Walker DM, Cates HM, Heller EA, Nestler EJ. Regulation of chromatin states by drugs of abuse. Curr Opin Neurobiol 2015; 30: 112-21.
[http://dx.doi.org/10.1016/j.conb.2014.11.002] [PMID: 25486626]
[141]
Arent CO, Valvassori SS, Fries GR, et al. Neuroanatomical profile of antimaniac effects of histone deacetylases inhibitors. Mol Neurobiol 2011; 43(3): 207-14.
[http://dx.doi.org/10.1007/s12035-011-8178-0] [PMID: 21424678]
[142]
Jayanthi S, McCoy MT, Cadet JL. Epigenetic regulatory dynamics in models of methamphetamine-use disorder. Genes 2021; 12(10): 1614.
[http://dx.doi.org/10.3390/genes12101614] [PMID: 34681009]
[143]
Oni-Orisan OO, Dansereau LM, Marsit CJ, et al. DNA methylation in children with prenatal methamphetamine exposure and environmental adversity. Pediatr Res 2021; 89(5): 1152-6.
[http://dx.doi.org/10.1038/s41390-020-1058-4] [PMID: 32663835]
[144]
Numachi Y, Shen H, Yoshida S, et al. Methamphetamine alters expression of DNA methyltransferase 1 mRNA in rat brain. Neurosci Lett 2007; 414(3): 213-7.
[http://dx.doi.org/10.1016/j.neulet.2006.12.052] [PMID: 17254711]
[145]
González B, Jayanthi S, Gomez N, et al. Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82: 1-11.
[http://dx.doi.org/10.1016/j.pnpbp.2017.12.009] [PMID: 29247759]
[146]
Li X, Rubio FJ, Zeric T, et al. Incubation of methamphetamine craving is associated with selective increases in expression of Bdnf and trkb, glutamate receptors, and epigenetic enzymes in cue-activated fos-expressing dorsal striatal neurons. J Neurosci 2015; 35(21): 8232-44.
[http://dx.doi.org/10.1523/JNEUROSCI.1022-15.2015] [PMID: 26019338]
[147]
Heal DJ, Smith SL, Gosden J, Nutt DJ. Amphetamine, past and present – a pharmacological and clinical perspective. J Psychopharmacol 2013; 27(6): 479-96.
[http://dx.doi.org/10.1177/0269881113482532] [PMID: 23539642]
[148]
McCowan TJ, Dhasarathy A, Carvelli L. The epigenetic mechanisms of amphetamine. J Addict Prev 2015; 2015(S1): 10.13188/2330-2178.S100001.
[http://dx.doi.org/10.13188/2330-2178.S100001]
[149]
Blum K, Chen TJH, Morse S, et al. Overcoming qEEG abnormalities and reward gene deficits during protracted abstinence in male psychostimulant and polydrug abusers utilizing putative dopamine D2 agonist therapy: Part 2. Postgrad Med 2010; 122(6): 214-26.
[http://dx.doi.org/10.3810/pgm.2010.11.2237] [PMID: 21084796]
[150]
Nestler EJ, Barrot M, Self DW. x394;FosB: A sustained molecular switch for addiction. Proceedings of the National Academy of Sciences. 11042-6.
[151]
Renthal W, Carle TL, Maze I, et al. Delta FosB mediates epigenetic desensitization of the c-fos gene after chronic amphetamine exposure. J Neurosci 2008; 28(29): 7344-9.
[http://dx.doi.org/10.1523/JNEUROSCI.1043-08.2008] [PMID: 18632938]
[152]
Rotllant D, Armario A. Brain pattern of histone H3 phosphorylation after acute amphetamine administration: Its relationship to brain c-fos induction is strongly dependent on the particular brain area. Neuropharmacology 2012; 62(2): 1073-81.
[http://dx.doi.org/10.1016/j.neuropharm.2011.10.019] [PMID: 22063717]
[153]
Bonito-Oliva A, Södersten E, Spigolon G, et al. Differential regulation of the phosphorylation of Trimethyl-lysine27 histone H3 at serine 28 in distinct populations of striatal projection neurons. Neuropharmacology 2016; 107: 89-99.
[http://dx.doi.org/10.1016/j.neuropharm.2016.02.037] [PMID: 26947946]
[154]
Mychasiuk R, Muhammad A, Ilnytskyy S, Kolb B. Persistent gene expression changes in NAc, mPFC, and OFC associated with previous nicotine or amphetamine exposure. Behav Brain Res 2013; 256: 655-61.
[http://dx.doi.org/10.1016/j.bbr.2013.09.006] [PMID: 24021241]
[155]
Deng JV, Rodriguiz RM, Hutchinson AN, Kim IH, Wetsel WC, West AE. MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nat Neurosci 2010; 13(9): 1128-36.
[http://dx.doi.org/10.1038/nn.2614] [PMID: 20711186]
[156]
Stertz L, Fries GR, Aguiar BW, et al. Histone deacetylase activity and brain-derived neurotrophic factor (BDNF) levels in a pharmacological model of mania. Rev Bras Psiquiatr 2013; 36(1): 39-46.
[http://dx.doi.org/10.1590/1516-4446-2013-1094] [PMID: 24346357]
[157]
Werner CT, Altshuler RD, Shaham Y, Li X. Epigenetic mechanisms in drug relapse. Biol Psychiatry 2021; 89(4): 331-8.
[http://dx.doi.org/10.1016/j.biopsych.2020.08.005] [PMID: 33066961]
[158]
Kalda A, Heidmets LT, Shen HY, Zharkovsky A, Chen JF. Histone deacetylase inhibitors modulates the induction and expression of amphetamine-induced behavioral sensitization partially through an associated learning of the environment in mice. Behav Brain Res 2007; 181(1): 76-84.
[http://dx.doi.org/10.1016/j.bbr.2007.03.027] [PMID: 17477979]
[159]
Gharipour M, Mani A, Amini Baghbahadorani M, et al. How are epigenetic modifications related to cardiovascular disease in older adults? Int J Mol Sci 2021; 22(18): 9949.
[http://dx.doi.org/10.3390/ijms22189949] [PMID: 34576113]
[160]
Reyes C, Cornelis M. Caffeine in the diet: Country-level consumption and guidelines. Nutrients 2018; 10(11): 1772.
[http://dx.doi.org/10.3390/nu10111772] [PMID: 30445721]
[161]
Timms JA, Relton CL, Rankin J, Strathdee G, McKay JA. DNA methylation as a potential mediator of environmental risks in the development of childhood acute lymphoblastic leukemia. Epigenomics 2016; 8(4): 519-36.
[http://dx.doi.org/10.2217/epi-2015-0011] [PMID: 27035209]
[162]
Ping J, Wang J, Liu L, et al. Prenatal caffeine ingestion induces aberrant DNA methylation and histone acetylation of steroidogenic factor 1 and inhibits fetal adrenal steroidogenesis. Toxicology 2014; 321: 53-61.
[http://dx.doi.org/10.1016/j.tox.2014.03.011] [PMID: 24717552]
[163]
Tan Y, Lu , Li J, et al. Prenatal caffeine exprosure increases adult female offspring rat’s susceptibility to osteoarthritis via low-functional programming of cartilage IGF-1 with histone acetylation. Toxicol Lett 2018; 295: 229-36.
[http://dx.doi.org/10.1016/j.toxlet.2018.06.1221] [PMID: 29966748]
[164]
Li J, Xiao H, Luo H, et al. GR/HDAC2/TGFβR1 pathway contributes to prenatal caffeine induced-osteoarthritis susceptibility in male adult offspring rats. Food Chem Toxicol 2020; 140: 111279.
[http://dx.doi.org/10.1016/j.fct.2020.111279] [PMID: 32199975]
[165]
Luo H, Deng Z, Liu L, et al. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats. Toxicol Appl Pharmacol 2014; 274(3): 383-92.
[http://dx.doi.org/10.1016/j.taap.2013.11.020] [PMID: 24321341]
[166]
Xu D, Zhang B, Liang G, et al. Caffeine-induced activated glucocorticoid metabolism in the hippocampus causes hypothalamic-pituitary-adrenal axis inhibition in fetal rats. PLoS One 2012; 7(9): e44497.
[http://dx.doi.org/10.1371/journal.pone.0044497] [PMID: 22970234]
[167]
Fang X, Mei W, Barbazuk WB, Rivkees SA, Wendler CC. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes. Am J Physiol Regul Integr Comp Physiol 2014; 307(12): R1471-87.
[http://dx.doi.org/10.1152/ajpregu.00307.2014] [PMID: 25354728]
[168]
Buscariollo DL, Fang X, Greenwood V, Xue H, Rivkees SA, Wendler CC. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice. PLoS One 2014; 9(1): e87547.
[http://dx.doi.org/10.1371/journal.pone.0087547] [PMID: 24475304]
[169]
Blum K, Baron D, Badgaiyan RD, Gold MS. Can chronic consumption of caffeine by increasing D2/D3 receptors offer benefit to carriers of the drd2 a1 allele in cocaine abuse? EC Psychol Psychiatr 2019; 8(5): 318-21.
[PMID: 31276119]
[170]
Lepelletier F-X, Tauber C, Nicolas C, et al. Prenatal exposure to methylphenidate affects the dopamine system and the reactivity to natural reward in adulthood in rats. Int J Neuropsychopharmacol 2014; 18(4): pyu044.
[PMID: 25522388]
[171]
Verghese C, Abdijadid S. Methylphenidate. Treasure Island (FL): StatPearls Publishing 2022.
[172]
Vaughan RA, Foster JD. Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol Sci 2013; 34(9): 489-96.
[http://dx.doi.org/10.1016/j.tips.2013.07.005] [PMID: 23968642]
[173]
Wiers CE, Lohoff FW, Lee J, et al. Methylation of the dopamine transporter gene in blood is associated with striatal dopamine transporter availability in ADHD: A preliminary study. Eur J Neurosci 2018; 48(3): 1884-95.
[http://dx.doi.org/10.1111/ejn.14067] [PMID: 30033547]
[174]
Robison LS, Mala A, Michael H, et al. Chronic oral methylphenidate treatment reversibly increases striatal dopamine transporter and dopamine type 1 receptor binding in rats. J Neural Transm 2017; 124(5): 655-67.
[http://dx.doi.org/10.1007/s00702-017-1680-4]
[175]
Pitzianti MB, Spiridigliozzi S, Bartolucci E, Esposito S, Pasini A. New insights on the effects of methylphenidate in attention deficit hyperactivity disorder. Front Psychiatry 2020; 11: 531092.
[http://dx.doi.org/10.3389/fpsyt.2020.531092] [PMID: 33132928]
[176]
Phillips NLH, Roth TL. Animal models and their contribution to our understanding of the relationship between environments, epigenetic modifications, and behavior. Genes (Basel) 2019; 10(1): 47.
[http://dx.doi.org/10.3390/genes10010047] [PMID: 30650619]
[177]
Weber-Stadlbauer U, Richetto J, Labouesse MA, Bohacek J, Mansuy IM, Meyer U. Transgenerational transmission and modification of pathological traits induced by prenatal immune activation. Mol Psychiatry 2017; 22(1): 102-12.
[http://dx.doi.org/10.1038/mp.2016.41] [PMID: 27021823]
[178]
Blum K, Dennen CA, Braverman ER, et al. Hypothesizing that pediatric autoimmune neuropsychiatric associated streptococcal (pandas) causes rapid onset of reward deficiency syndrome (RDS) behaviors and may require induction of “dopamine homeostasis”. Open J Immunol 2022; 12(3): 65-75.
[http://dx.doi.org/10.4236/oji.2022.123004] [PMID: 36407790]
[179]
Sproson EJ, Chantrey J, Hollis C, Marsden CA, Fone KCF. Effect of repeated methylphenidate administration on presynaptic dopamine and behaviour in young adult rats. J Psychopharmacol 2001; 15(2): 67-75.
[http://dx.doi.org/10.1177/026988110101500202] [PMID: 11448090]
[180]
Volkow ND, Wang GJ, Tomasi D, et al. Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder. J Neurosci 2012; 32(3): 841-9.
[http://dx.doi.org/10.1523/JNEUROSCI.4461-11.2012] [PMID: 22262882]
[181]
Ding K, Yang J, Reynolds GP, et al. DAT1 methylation is associated with methylphenidate response on oppositional and hyperactive-impulsive symptoms in children and adolescents with ADHD. World J Biol Psychiatry 2017; 18(4): 291-9.
[http://dx.doi.org/10.1080/15622975.2016.1224928] [PMID: 27676100]
[182]
Kim JI, Kim JW, Shin I, Kim BN. Effects of interaction between DRD4 methylation and prenatal maternal stress on methylphenidate-induced changes in continuous performance test performance in youth with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 2018; 28(8): 562-70.
[http://dx.doi.org/10.1089/cap.2018.0054] [PMID: 29905488]
[183]
Curatolo P, Paloscia C, D’Agati E, Moavero R, Pasini A. The neurobiology of attention deficit/hyperactivity disorder. Eur J Paediatr Neurol 2009; 13(4): 299-304.
[http://dx.doi.org/10.1016/j.ejpn.2008.06.003] [PMID: 18644740]
[184]
Wu T, Chen C, Yang L, et al. Distinct lncRNA expression profiles in the prefrontal cortex of SD rats after exposure to methylphenidate. Biomed Pharmacother 2015; 70: 239-47.
[http://dx.doi.org/10.1016/j.biopha.2015.01.023] [PMID: 25776507]
[185]
Andersen SL, Sonntag KC. Juvenile methylphenidate reduces prefrontal cortex plasticity via D3 receptor and BDNF in adulthood. Front Synaptic Neurosci 2014; 6(1): 1.
[http://dx.doi.org/10.3389/fnsyn.2014.00001] [PMID: 24478696]
[186]
Sadasivan S, Pond BB, Pani AK, Qu C, Jiao Y, Smeyne RJ. Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice. PLoS One 2012; 7(3): e33693-3.
[http://dx.doi.org/10.1371/journal.pone.0033693] [PMID: 22470460]
[187]
Milatovic D, Zaja-Milatovic S, Rich MB, et al. Neuroinflammation and oxidative injury in developmental neurotoxicity. In: Gupta RC, Ed. Reproductive and Developmental Toxicology. San Diego: Academic Press 2011; pp. 847-54.
[http://dx.doi.org/10.1016/B978-0-12-382032-7.10064-5]
[188]
Carlier J, Giorgetti R, Varì MR, Pirani F, Ricci G, Busardò FP. Use of cognitive enhancers: methylphenidate and analogs. Eur Rev Med Pharmacol Sci 2019; 23(1): 3-15.
[PMID: 30657540]
[189]
Schmitz F, Pierozan P, Rodrigues AF, et al. Methylphenidate causes behavioral impairments and neuron and astrocyte loss in the hippocampus of juvenile rats. Mol Neurobiol 2017; 54(6): 4201-16.
[http://dx.doi.org/10.1007/s12035-016-9987-y] [PMID: 27324900]
[190]
Blum K, Badgaiyan RD, Dunston GM, et al. The DRD2 Taq1A A1 allele may magnify the risk of alzheimer’s in aging African-Americans. Mol Neurobiol 2018; 55(7): 5526-36.
[http://dx.doi.org/10.1007/s12035-017-0758-1] [PMID: 28965318]
[191]
Banihabib N. The effect of oral administration of methylphenidate on hippocampal tissue in adult male rats. Neurosurg Q 2016; 26(4)
[http://dx.doi.org/10.1097/WNQ.0000000000000190]
[192]
Fageera W, Chaumette B, Fortier MÈ, et al. Association between COMT methylation and response to treatment in children with ADHD. J Psychiatr Res 2021; 135: 86-93.
[http://dx.doi.org/10.1016/j.jpsychires.2021.01.008] [PMID: 33453563]
[193]
Blum K, Chen TJH, Meshkin B, et al. Manipulation of catechol-O-methyl-transferase (COMT) activity to influence the attenuation of substance seeking behavior, a subtype of Reward Deficiency Syndrome (RDS), is dependent upon gene polymorphisms: A hypothesis. Med Hypotheses 2007; 69(5): 1054-60.
[http://dx.doi.org/10.1016/j.mehy.2006.12.062] [PMID: 17467918]
[194]
Taylor S. Association between COMT Val158Met and psychiatric disorders: A comprehensive meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2018; 177(2): 199-210.
[http://dx.doi.org/10.1002/ajmg.b.32556] [PMID: 28608575]
[195]
Carlezon WA Jr, Mague SD, Andersen SL. Enduring behavioral effects of early exposure to methylphenidate in rats. Biol Psychiatry 2003; 54(12): 1330-7.
[http://dx.doi.org/10.1016/j.biopsych.2003.08.020] [PMID: 14675796]
[196]
Csoka AB, Szyf M. Epigenetic side-effects of common pharmaceuticals: A potential new field in medicine and pharmacology. Med Hypotheses 2009; 73(5): 770-80.
[http://dx.doi.org/10.1016/j.mehy.2008.10.039] [PMID: 19501473]
[197]
Blum K, Febo M, Smith DE, et al. Neurogenetic and epigenetic correlates of adolescent predisposition to and risk for addictive behaviors as a function of prefrontal cortex dysregulation. J Child Adolesc Psychopharmacol 2015; 25(4): 286-92.
[http://dx.doi.org/10.1089/cap.2014.0146] [PMID: 25919973]
[198]
Gold MS, Blum K, Oscar-Berman M, Braverman ER. Low dopamine function in attention deficit/hyperactivity disorder: should genotyping signify early diagnosis in children? Postgrad Med 2014; 126(1): 153-77.
[http://dx.doi.org/10.3810/pgm.2014.01.2735] [PMID: 24393762]
[199]
Blum K, Bowirrat A, Lewis MCG, et al. Exploration of epigenetic state hyperdopaminergia (Surfeit) and genetic trait hypodopaminergia (Deficit) during adolescent brain development. Curr Psychopharmacol 2021; 10(3): 181-96.
[http://dx.doi.org/10.2174/2211556010666210215155509] [PMID: 34707969]
[200]
Dang LC, Samanez-Larkin GR, Castrellon JJ, Perkins SF, Cowan RL, Zald DH. Associations between dopamine D2 receptor availability and BMI depend on age. Neuroimage 2016; 138: 176-83.
[http://dx.doi.org/10.1016/j.neuroimage.2016.05.044] [PMID: 27208860]
[201]
Yang PB, Swann AC, Dafny N. Acute and chronic methylphenidate dose–response assessment on three adolescent male rat strains. Brain Res Bull 2006; 71(1-3): 301-10.
[http://dx.doi.org/10.1016/j.brainresbull.2006.09.019] [PMID: 17113960]
[202]
Blum K, McLaughlin T, Bowirrat A, et al. Reward deficiency syndrome (RDS) surprisingly is evolutionary and found everywhere: Is it “blowin’ in the wind”? J Pers Med 2022; 12(2): 321.
[http://dx.doi.org/10.3390/jpm12020321] [PMID: 35207809]
[203]
Wenthur CJ. Classics in chemical neuroscience: Methylphenidate. ACS Chem Neurosci 2016; 7(8): 1030-40.
[http://dx.doi.org/10.1021/acschemneuro.6b00199] [PMID: 27409720]
[204]
van der Marel K, Klomp A, Meerhoff GF, et al. Long-term oral methylphenidate treatment in adolescent and adult rats: Differential effects on brain morphology and function. Neuropsychopharmacology 2014; 39(2): 263-73.
[http://dx.doi.org/10.1038/npp.2013.169] [PMID: 23851400]
[205]
Loureiro-Vieira S, Costa VM, Lourdes Bastos M, Carvalho F, Capela JP. Methylphenidate effects in the young brain: friend or foe? Int J Dev Neurosci 2017; 60(1): 34-47.
[http://dx.doi.org/10.1016/j.ijdevneu.2017.04.002] [PMID: 28412445]
[206]
Senior D, Ahmed R, Arnavut E, et al. Behavioral, neurochemical and developmental effects of chronic oral methylphenidate: A review. J Pers Med 2023; 13(4): 574.
[http://dx.doi.org/10.3390/jpm13040574] [PMID: 37108960]
[207]
Archer T, Oscar BM, Blum K. Epigenetics in developmental disorder: ADHD and endophenotypes. J Genet Syndr Gene Ther 2011; 2(1): 1000104.
[http://dx.doi.org/10.4172/2157-7412.1000104] [PMID: 22224195]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy