Abstract
Background: In order to harvest triboelectric energy for self-powered devices, triboelectric nanogenerator technology (TENG) is used. It converts mechanical energy into electrical energy using materials' contact motion.
Objective: The purpose of this study is to produce electrical energy for different material pairs and under various contact frequencies using triboelectric separation mode.
Methods: To produce electricity through triboelectric separation mode, a vibratory exciter was used to provide the contact frequency between the pairs of materials which were connected to an oscilloscope by a capacitive electric circuit containing a diode bridge. The studied materials are: Mica, Polyamide (Nylon), Polytetrafluoroethylene (PTFE), Polyvinylidene fluoride (PVDF), and Polyethylene terephthalate (PET). Mica and Nylon are positive charge materials, while PTFE, PVDF, and PET are negative charge materials. The material pairs are then: Nylon-PVC, Mica-PVC, Nylon-PET, Mica-PET, Nylon- PTFE, and Mica-PTFE.
Results: The increase of the contact frequency improves the recovered electrical energy for all the material pairs. The produced electrical energy can reach 5μJ which allows supply for low consumption devices.
Conclusion: The research results lead to identify favorable configurations of material pairs and contact frequencies, allowing to recover enough electrical energy supply to low-power devices.
[http://dx.doi.org/10.1109/IOTM.004.2100182]
[http://dx.doi.org/10.3390/agronomy12010127] [http://dx.doi.org/10.3390/agronomy12010127]
[http://dx.doi.org/10.3390/s23052528] [PMID: 36904732]
[http://dx.doi.org/10.2174/1872212114999200531171217]
[http://dx.doi.org/10.2174/2352096514999210104144312]
[http://dx.doi.org/10.1145/3561056]
[http://dx.doi.org/10.1007/s11998-022-00690-2]
[http://dx.doi.org/10.2174/1872212113666191209091947]
[http://dx.doi.org/10.2174/2352096508666150520003049]
[http://dx.doi.org/10.2174/1872212113666190624120121]
[http://dx.doi.org/10.2174/2352096514666210322154506]
[http://dx.doi.org/10.2174/2212797612666191127100146]
[http://dx.doi.org/10.2174/2212797609666160118234638]
[http://dx.doi.org/10.2174/2212797611666181009153110]
[http://dx.doi.org/10.2174/9781681085227117010003]
[http://dx.doi.org/10.3390/app12147298] [http://dx.doi.org/10.3390/app12147298]
[http://dx.doi.org/10.1016/j.rser.2022.112213]
[http://dx.doi.org/10.1016/j.ijmecsci.2021.106962]
[http://dx.doi.org/10.1016/j.enconman.2019.111973]
[http://dx.doi.org/10.3390/electronics9091345]
[http://dx.doi.org/10.1038/s43016-021-00449-9] [PMID: 37117953]
[http://dx.doi.org/10.2174/1872212114999200514100129]
[http://dx.doi.org/10.2174/1872212110666161026154442]
[http://dx.doi.org/10.1016/j.ymssp.2022.109402]
[http://dx.doi.org/10.3390/s19092170] [PMID: 31083331]
[http://dx.doi.org/10.1038/s41467-022-29962-6] [PMID: 35508534]
[http://dx.doi.org/10.1080/14686996.2019.1693880] [PMID: 32002085]
[http://dx.doi.org/10.1109/JMEMS.2022.3194859]
[http://dx.doi.org/10.1038/s41586-019-1803-1] [PMID: 31827292]
[http://dx.doi.org/10.1038/s42254-022-00468-w]
[http://dx.doi.org/10.1016/j.nanoen.2022.107178]
[http://dx.doi.org/10.1038/s41427-019-0125-y]
[http://dx.doi.org/10.1016/j.nanoen.2022.107719]
[http://dx.doi.org/10.1021/nl300988z] [PMID: 22577731]
[http://dx.doi.org/10.2174/18744648113066660021]
[http://dx.doi.org/10.1016/j.nanoen.2012.01.004]
[http://dx.doi.org/10.1016/j.nanoen.2018.06.075]
[http://dx.doi.org/10.1021/nl404819w] [PMID: 24479730]
[http://dx.doi.org/10.1021/acsnano.8b08533] [PMID: 30707552]
[http://dx.doi.org/10.1002/adma.201803968] [PMID: 30091484]
[http://dx.doi.org/10.1016/j.nanoen.2017.06.035]
[http://dx.doi.org/10.1002/aenm.201702649]
[http://dx.doi.org/10.1002/adma.201801210] [PMID: 30117201]
[http://dx.doi.org/10.1016/j.physrep.2018.11.001]
[http://dx.doi.org/10.1016/j.xcrp.2022.101108]
[http://dx.doi.org/10.1016/j.nanoen.2019.02.035]
[http://dx.doi.org/10.3390/ma13214980] [PMID: 33167460]
[http://dx.doi.org/10.1016/j.elstat.2004.05.005]