Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Research Article

Experimental Study of Triboelectric Energy Harvesting for Different Pairs of Materials and under Various Contact Frequencies

Author(s): Amine Ben Alaya*, Férid Kourda and Charfeddine Mrad

Volume 16, Issue 4, 2023

Published on: 21 August, 2023

Page: [251 - 260] Pages: 10

DOI: 10.2174/2212797616666230705165134

Price: $65

Abstract

Background: In order to harvest triboelectric energy for self-powered devices, triboelectric nanogenerator technology (TENG) is used. It converts mechanical energy into electrical energy using materials' contact motion.

Objective: The purpose of this study is to produce electrical energy for different material pairs and under various contact frequencies using triboelectric separation mode.

Methods: To produce electricity through triboelectric separation mode, a vibratory exciter was used to provide the contact frequency between the pairs of materials which were connected to an oscilloscope by a capacitive electric circuit containing a diode bridge. The studied materials are: Mica, Polyamide (Nylon), Polytetrafluoroethylene (PTFE), Polyvinylidene fluoride (PVDF), and Polyethylene terephthalate (PET). Mica and Nylon are positive charge materials, while PTFE, PVDF, and PET are negative charge materials. The material pairs are then: Nylon-PVC, Mica-PVC, Nylon-PET, Mica-PET, Nylon- PTFE, and Mica-PTFE.

Results: The increase of the contact frequency improves the recovered electrical energy for all the material pairs. The produced electrical energy can reach 5μJ which allows supply for low consumption devices.

Conclusion: The research results lead to identify favorable configurations of material pairs and contact frequencies, allowing to recover enough electrical energy supply to low-power devices.

[1]
Zhang T, Gao L, He C, Zhang M, Krishnamachari B, Avestimehr AS. Federated learning for the internet of things: Applications, challenges, and opportunities. IEEE Internet of Things Magazine 2022; 5(1): 24-9.
[http://dx.doi.org/10.1109/IOTM.004.2100182]
[2]
Rehman A, Saba T, Kashif M, Fati SM, Bahaj SA, Chaudhry H. A revisit of internet of things technologies for monitoring and control strategies in smart agriculture. Agronomy 2022; 12(1): 127.
[http://dx.doi.org/10.3390/agronomy12010127] [http://dx.doi.org/10.3390/agronomy12010127]
[3]
Zou X, Liu W, Huo Z, et al. Current status and prospects of research on sensor fault diagnosis of agricultural internet of things. Sensors 2023; 23(5): 2528.
[http://dx.doi.org/10.3390/s23052528] [PMID: 36904732]
[4]
Gupta BB, Harish SA. Conceptual framework to mitigate internet of things-ddos attacks using fog nodes. Recent Pat Eng 2021; 15(4): e210421182383.
[http://dx.doi.org/10.2174/1872212114999200531171217]
[5]
Zhu Y, Wang Y, Liang W. Research on fog resource scheduling based on cloud-fog collaboration technology in the electric internet of things. Rec AdvElec ElectEng 2021; 14(3): 347-59.
[http://dx.doi.org/10.2174/2352096514999210104144312]
[6]
Cheng X, Sha M. Autonomous traffic-aware scheduling for industrial wireless sensor-actuator networks. ACM Trans Sens Netw 2023; 19(2): 1-25.
[http://dx.doi.org/10.1145/3561056]
[7]
Rashid A, Zubair U, Ashraf M, Javid A, Abid HA, Akram S. Flexible piezoelectric coatings on textiles for energy harvesting and autonomous sensing applications: A review. J Coat Technol Res 2023; 20(1): 141-72.
[http://dx.doi.org/10.1007/s11998-022-00690-2]
[8]
Xing L. Reliability modeling of wireless sensor networks: A review. Recent Pat Eng 2021; 15(1): 3-11.
[http://dx.doi.org/10.2174/1872212113666191209091947]
[9]
Yang Y, Wang X, Sun Q. The most cutting-edge patents on wireless sensor networks. Recent Adv Electr Electron Eng 2015; 8(2): 95-100.
[http://dx.doi.org/10.2174/2352096508666150520003049]
[10]
Hiriyannaiah S, Matt SG, Srinivasa KG, Patnaik LM. A multi-layered framework for internet of everything (ioe) via wireless communication and distributed computing in industry 4.0. Recent Pat Eng 2021; 14(4): 521-9.
[http://dx.doi.org/10.2174/1872212113666190624120121]
[11]
Yuce MR. Wearable and implantable wireless body area networks. Recent Pat Electr Electron Eng 2009; 2(2): 115-24.
[12]
Nath A, Mohammad N. Stochastic economic load dispatch under supply and load uncertainty-a case study on modified ieee 5 bus power system. Recent Adv Electr Electron Eng 2021; 14(5): 597-612.
[http://dx.doi.org/10.2174/2352096514666210322154506]
[13]
Li E, Xie B, Chen Y. Recent patents about pulse power supply of EDM. Recent Pat Mech Eng 2020; 13(1): 24-34.
[http://dx.doi.org/10.2174/2212797612666191127100146]
[14]
Zhang Y. An energy conserved hydrodynamic journal bearing by the boundary slippage technology. Recent Pat Mech Eng 2016; 9(1): 63-70.
[http://dx.doi.org/10.2174/2212797609666160118234638]
[15]
Chavan S, Gumtapure V, Perumal DA. A review on thermal energy storage using composite phase change materials. Recent Pat Mech Eng 2018; 11(4): 298-310.
[http://dx.doi.org/10.2174/2212797611666181009153110]
[16]
Cardona-Alzate CA, Parra-Ramírez D, Serna-Loaiza S. Perspectives of energy production from microalgae: The biodiesel and cogeneration cases recent advances in renewable energy microalgae as a source of bioenergy: Products, processes and economics. Bentham Science Publishers 2017; pp. 1-436.
[http://dx.doi.org/10.2174/9781681085227117010003]
[17]
Mouapi A, Mrad H. Energy prediction and energy management in kinetic energy-harvesting wireless sensors network for industry 4.0. Appl Sci 2022; 12(14): 7298.
[http://dx.doi.org/10.3390/app12147298] [http://dx.doi.org/10.3390/app12147298]
[18]
Kebede AA, Kalogiannis T, Van Mierlo J, Berecibar M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew Sustain Energy Rev 2022; 159: 112213.
[http://dx.doi.org/10.1016/j.rser.2022.112213]
[19]
Caetano VJ, Savi MA. Star-shaped piezoelectric mechanical energy harvesters for multidirectional sources. Int J Mech Sci 2022; 215: 106962.
[http://dx.doi.org/10.1016/j.ijmecsci.2021.106962]
[20]
Maamer B, Boughamoura A, Fath El-Bab AMR, Francis LA, Tounsi F. A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes. Energy Convers Manage 2019; 199: 111973.
[http://dx.doi.org/10.1016/j.enconman.2019.111973]
[21]
Mishu MK, Rokonuzzaman M, Pasupuleti J, et al. Prospective efficient ambient energy harvesting sources for iot-equipped sensor applications. Electronics 2020; 9(9): 1345.
[http://dx.doi.org/10.3390/electronics9091345]
[22]
Li X, Luo J, Han K, et al. Stimulation of ambient energy generated electric field on crop plant growth. Nat Food 2022; 3(2): 133-42.
[http://dx.doi.org/10.1038/s43016-021-00449-9] [PMID: 37117953]
[23]
Ahmed M, Doja MN, Amjad M. Energy optimization in wireless sensor networks under dynamic spectrum access using adaptive listening. Recent Pat Eng 2021; 14(3): 339-46.
[http://dx.doi.org/10.2174/1872212114999200514100129]
[24]
Enteria N, Cuartero O. A review of the recent development of the philippine household tech-nologies and energy consumption. Recent Pat Eng 2017; 11(1): 35-48.
[http://dx.doi.org/10.2174/1872212110666161026154442]
[25]
Fan Y, Ghayesh MH, Lu TF. High-efficient internal resonance energy harvesting: Modelling and experimental study. Mech Syst Signal Process 2022; 180: 109402.
[http://dx.doi.org/10.1016/j.ymssp.2022.109402]
[26]
Thakre A, Kumar A, Song HC, Jeong DY, Ryu J. Pyroelectric energy conversion and its applications—flexible energy harvesters and sensors. Sensors 2019; 19(9): 2170.
[http://dx.doi.org/10.3390/s19092170] [PMID: 31083331]
[27]
Meriem BF, Charfeddine M, Ferid K. Vibrational energy recovery to generate electrical energy using piezoelectric technology. 7th International Conference on Advances in Mechanical Engineering and Mechanics. Hammamet, Tunisia. 2019. Florence, Italy. 2019.
[28]
Yang L, Huang H, Xi Z, et al. Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals. Nat Commun 2022; 13(1): 2444.
[http://dx.doi.org/10.1038/s41467-022-29962-6] [PMID: 35508534]
[29]
Kao FC, Chiu PY, Tsai TT, Lin ZH. The application of nanogenerators and piezoelectricity in osteogenesis. Sci Technol Adv Mater 2019; 20(1): 1103-17.
[http://dx.doi.org/10.1080/14686996.2019.1693880] [PMID: 32002085]
[30]
Li M, Luo A, Luo W, Wang F. Recent progress on mechanical optimization of mems electret-based electrostatic vibration energy harvesters. J Microelectromech Syst 2022; 31(5): 726-40.
[http://dx.doi.org/10.1109/JMEMS.2022.3194859]
[31]
Yang Y, Zhu D, Yan W, et al. A general theoretical and experimental framework for nanoscale electromagnetism. Nature 2019; 576(7786): 248-52.
[http://dx.doi.org/10.1038/s41586-019-1803-1] [PMID: 31827292]
[32]
Chao P, Strekha B, Kuate Defo R, Molesky S, Rodriguez AW. Physical limits in electromagnetism. Nature Reviews Physics 2022; 4(8): 543-59.
[http://dx.doi.org/10.1038/s42254-022-00468-w]
[33]
Lee J, Kim HJ, Ko YJ, et al. Enhanced pyroelectric conversion of thermal radiation energy: Energy harvesting and non-contact proximity sensor. Nano Energy 2022; 97: 107178.
[http://dx.doi.org/10.1016/j.nanoen.2022.107178]
[34]
Pandya S, Velarde G, Zhang L, et al. New approach to waste-heat energy harvesting: Pyroelectric energy conversion. NPG Asia Mater 2019; 11(1): 26.
[http://dx.doi.org/10.1038/s41427-019-0125-y]
[35]
Xu Z, Zhang D, Cai H, Yang Y, Zhang H, Du C. Performance enhancement of triboelectric nanogenerators using contact-separation mode in conjunction with the sliding mode and multifunctional application for motion monitoring. Nano Energy 2022; 102: 107719.
[http://dx.doi.org/10.1016/j.nanoen.2022.107719]
[36]
Fan FR, Lin L, Zhu G, Wu W, Zhang R, Wang ZL. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 2012; 12(6): 3109-14.
[http://dx.doi.org/10.1021/nl300988z] [PMID: 22577731]
[37]
Sundar S, Aravind K, Muruganantham R, Sangeetha D. Evaluating triboelectric properties of polymer films: An incipient appliance and case studies. Recent Pat Mater Sci 2014; 7(1): 64-70.
[http://dx.doi.org/10.2174/18744648113066660021]
[38]
Fan FR, Tian ZQ, Lin Wang Z. Flexible triboelectric generator. Nano Energy 2012; 1(2): 328-34.
[http://dx.doi.org/10.1016/j.nanoen.2012.01.004]
[39]
Yoon HJ, Ryu H, Kim SW. Sustainable powering triboelectric nanogenerators: Approaches and the path towards efficient use. Nano Energy 2018; 51: 270-85.
[http://dx.doi.org/10.1016/j.nanoen.2018.06.075]
[40]
Zhou YS, Wang S, Yang Y, et al. Manipulating nanoscale contact electrification by an applied electric field. Nano Lett 2014; 14(3): 1567-72.
[http://dx.doi.org/10.1021/nl404819w] [PMID: 24479730]
[41]
Xu C, Zhang B, Wang AC, et al. Contact-electrification between two identical materials: Curvature effect. ACS Nano 2019; 13(2): acsnano.8b08533.
[http://dx.doi.org/10.1021/acsnano.8b08533] [PMID: 30707552]
[42]
Xu C, Wang AC, Zou H, et al. Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact‐electrification. Adv Mater 2018; 30(38): 1803968.
[http://dx.doi.org/10.1002/adma.201803968] [PMID: 30091484]
[43]
Wang ZL, Jiang T, Xu L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017; 39: 9-23.
[http://dx.doi.org/10.1016/j.nanoen.2017.06.035]
[44]
Chen B, Yang Y, Wang ZL. Scavenging wind energy by triboelectric nanogenerators. Adv Energy Mater 2018; 8(10): 1702649.
[http://dx.doi.org/10.1002/aenm.201702649]
[45]
Seol M, Kim S, Cho Y, et al. Triboelectric series of 2D layered materials. Adv Mater 2018; 30(39): 1801210.
[http://dx.doi.org/10.1002/adma.201801210] [PMID: 30117201]
[46]
Chandrasekaran S, Bowen C, Roscow J, et al. Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices. Phys Rep 2019; 792: 1-33.
[http://dx.doi.org/10.1016/j.physrep.2018.11.001]
[47]
Bai Y, Feng H, Li Z. Theory and applications of high-voltage triboelectric nanogenerators. Cell Rep Phy Sci 2022; 3(11): 101108.
[http://dx.doi.org/10.1016/j.xcrp.2022.101108]
[48]
Xu G, Li X, Xia X, Fu J, Ding W, Zi Y. On the force and energy conversion in triboelectric nanogenerators. Nano Energy 2019; 59: 154-61.
[http://dx.doi.org/10.1016/j.nanoen.2019.02.035]
[49]
Rodrigues-Marinho T, Castro N, Correia V, Costa P, Lanceros-Méndez S. Triboelectric energy harvesting response of different polymer-based materials. Materials 2020; 13(21): 4980.
[http://dx.doi.org/10.3390/ma13214980] [PMID: 33167460]
[50]
Diaz AF, Felix-Navarro RM. A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. J Electrost 2004; 62(4): 277-90.
[http://dx.doi.org/10.1016/j.elstat.2004.05.005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy