Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Addressing the Current Knowledge and Gaps in Research Surrounding Lysergic Acid Diethylamide (LSD), Psilocybin, and Psilocin in Rodent Models

Author(s): Udoka C. Ezeaka, Hye Ji J. Kim and Robert B. Laprairie*

Volume 23, Issue 23, 2023

Published on: 15 August, 2023

Page: [2232 - 2241] Pages: 10

DOI: 10.2174/1568026623666230705151922

Price: $65

Abstract

Lysergic acid Diethylamide (LSD), psilocybin, and psilocin are being intensively evaluated as potential therapeutics to treat depression, anxiety, substance use disorder, and a host of other psychiatric illnesses. Pre-clinical investigation of these compounds in rodent models forms a key component of their drug development process. In this review, we will summarize the evidence gathered to date surrounding LSD, psilocybin, and psilocin in rodent models of the psychedelic experience, behavioural organization, substance use, alcohol consumption, drug discrimination, anxiety, depression-like behaviour, stress response, and pharmacokinetics. In reviewing these topics, we identify three knowledge gaps as areas of future inquiry: sex differences, oral dosing rather than injection, and chronic dosing regimens. A comprehensive understanding of LSD, psilocybin, and psilocin’s in vivo pharmacology may not only lead to their successful clinical implementation but optimize the use of these compounds as controls or references in the development of novel psychedelic therapeutics.

Graphical Abstract

[1]
Nichols, D.E.; Nichols, C.D.; Hendricks, P.S. Proposed consensus statement on defining psychedelic drugs. Psychedelic Medicine, 2023, 1(1), 12-13.
[http://dx.doi.org/10.1089/psymed.2022.0008]
[2]
Preller, K.H.; Burt, J.B.; Ji, J.L.; Schleifer, C.H.; Adkinson, B.D.; Stämpfli, P.; Seifritz, E.; Repovs, G.; Krystal, J.H.; Murray, J.D.; Vollenweider, F.X.; Anticevic, A. Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. eLife, 2018, 7(1), e35082.
[http://dx.doi.org/10.7554/eLife.35082] [PMID: 30355445]
[3]
Geiger, H.A.; Wurst, M.G.; Daniels, R.N. Dark classics in chemical neuroscience: Psilocybin. ACS Chem. Neurosci., 2018, 9(10), 2438-2447.
[http://dx.doi.org/10.1021/acschemneuro.8b00186] [PMID: 29956917]
[4]
Leger, R.F.; Unterwald, E.M. Assessing the effects of methodological differences on outcomes in the use of psychedelics in the treatment of anxiety and depressive disorders: A systematic review and meta-analysis. J. Psychopharmacol., 2022, 36(1), 20-30.
[http://dx.doi.org/10.1177/02698811211044688] [PMID: 34519567]
[5]
Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; Egger, M.; Takeshima, N.; Hayasaka, Y.; Imai, H.; Shinohara, K.; Tajika, A.; Ioannidis, J.P.A.; Geddes, J.R. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet, 2018, 391(10128), 1357-1366.
[http://dx.doi.org/10.1016/S0140-6736(17)32802-7] [PMID: 29477251]
[6]
Clevenger, S.S.; Malhotra, D.; Dang, J.; Vanle, B.; IsHak, W.W. The role of selective serotonin reuptake inhibitors in preventing relapse of major depressive disorder. Ther. Adv. Psychopharmacol., 2018, 8(1), 49-58.
[http://dx.doi.org/10.1177/2045125317737264] [PMID: 29344343]
[7]
Wacker, D.; Wang, S.; McCorvy, J.D.; Betz, R.M.; Venkatakrishnan, A.J.; Levit, A.; Lansu, K.; Schools, Z.L.; Che, T.; Nichols, D.E.; Shoichet, B.K.; Dror, R.O.; Roth, B.L. Crystral structure of an LSD-bound human serotonin receptor. Cell, 2017, 168(3), 377-389.e12.
[http://dx.doi.org/10.1016/j.cell.2016.12.033] [PMID: 28129538]
[8]
Kim, K.; Che, T.; Panova, O.; DiBerto, J.F.; Lyu, J.; Krumm, B.E.; Wacker, D.; Robertson, M.J.; Seven, A.B.; Nichols, D.E.; Shoichet, B.K.; Skiniotis, G.; Roth, B.L. Structure of a hallucinogen-activated Gq-coupled 5-HT(2A) serotonin receptor. Cell, 2020, 182(6), 1574-1588.e19.
[http://dx.doi.org/10.1016/j.cell.2020.08.024] [PMID: 32946782]
[9]
Odland, A.U.; Kristensen, J.L.; Andreasen, J.T. Animal behavior in psychedelic research. Pharmacol. Rev., 2022, 74(4), 1176-1205.
[http://dx.doi.org/10.1124/pharmrev.122.000590] [PMID: 36180111]
[10]
Hanks, J.B.; González-Maeso, J. Animal models of serotonergic psychedelics. ACS Chem. Neurosci., 2013, 4(1), 33-42.
[http://dx.doi.org/10.1021/cn300138m] [PMID: 23336043]
[11]
Nichols, D.E. Psychedelics. Pharmacol. Rev., 2016, 68(2), 264-355.
[http://dx.doi.org/10.1124/pr.115.011478] [PMID: 26841800]
[12]
Jaster, A.M.; Elder, H.; Marsh, S.A.; de la Fuente Revenga, M.; Negus, S.S.; González-Maeso, J. Effects of the 5-HT2A receptor antagonist volinanserin on head-twitch response and intracranial self-stimulation depression induced by different structural classes of psychedelics in rodents. Psychopharmacology, 2022, 239(6), 1665-1677.
[http://dx.doi.org/10.1007/s00213-022-06092-x] [PMID: 35233648]
[13]
Hjorth, S.; Bengtsson, H.J.; Kullberg, A.; Carlzon, D.; Peilot, H.; Auerbach, S.B. Serotonin autoreceptor function and antidepressant drug action. J. Psychopharmacol., 2000, 14(2), 177-185.
[http://dx.doi.org/10.1177/026988110001400208] [PMID: 10890313]
[14]
Watts, R.; Day, C.; Krzanowski, J.; Nutt, D.; Carhart-Harris, R. Patients’ accounts of increased “connectedness” and “acceptance” after psilocybin for treatment-resistant depression. J. Humanist. Psychol., 2017, 57(5), 520-564.
[http://dx.doi.org/10.1177/0022167817709585]
[15]
Roseman, L.; Nutt, D.J.; Carhart-Harris, R.L. Quality of acute psychedelic experience predicts therapeutic efficacy of psilocybin for treatment-resistant depression. Front. Pharmacol., 2018, 8, 974.
[http://dx.doi.org/10.3389/fphar.2017.00974] [PMID: 29387009]
[16]
Carhart-Harris, R.; Giribaldi, B.; Watts, R.; Baker-Jones, M.; Murphy-Beiner, A.; Murphy, R.; Martell, J.; Blemings, A.; Erritzoe, D.; Nutt, D.J. Trial of psilocybin versus escitalopram for depression. N. Engl. J. Med., 2021, 384(15), 1402-1411.
[http://dx.doi.org/10.1056/NEJMoa2032994] [PMID: 33852780]
[17]
Vollenweider, F.X.; Preller, K.H. Psychedelic drugs: Neurobiology and potential for treatment of psychiatric disorders. Nat. Rev. Neurosci., 2020, 21(11), 611-624.
[http://dx.doi.org/10.1038/s41583-020-0367-2] [PMID: 32929261]
[18]
Carhart-Harris, R.L.; Brugger, S.; Nutt, D.J.; Stone, J.M. Psychiatry’s next top model: Cause for a re-think on drug models of psychosis and other psychiatric disorders. J. Psychopharmacol., 2013, 27(9), 771-778.
[http://dx.doi.org/10.1177/0269881113494107] [PMID: 23784738]
[19]
Carhart-Harris, R.L.; Nutt, D.J. Serotonin and brain function: A tale of two receptors. J. Psychopharmacol., 2017, 31(9), 1091-1120.
[http://dx.doi.org/10.1177/0269881117725915] [PMID: 28858536]
[20]
Lu, H.; Zou, Q.; Gu, H.; Raichle, M.E.; Stein, E.A.; Yang, Y. Rat brains also have a default mode network. Proc. Natl. Acad. Sci. USA, 2012, 109(10), 3979-3984.
[http://dx.doi.org/10.1073/pnas.1200506109] [PMID: 22355129]
[21]
Cavero, I.; Guillon, J.M. Safety pharmacology assessment of drugs with biased 5-ht2b receptor agonism mediating cardiac valvulopathy. J. Pharmacol. Toxicol. Methods, 2014, 69(2), 150-161.
[http://dx.doi.org/10.1016/j.vascn.2013.12.004] [PMID: 24361689]
[22]
Cao, D.; Yu, J.; Wang, H.; Luo, Z.; Liu, X.; He, L.; Qi, J.; Fan, L.; Tang, L.; Chen, Z.; Li, J.; Cheng, J.; Wang, S. Structure-based discovery of nonhallucinogenic psychedelic analogs. Science, 2022, 375(6579), 403-411.
[http://dx.doi.org/10.1126/science.abl8615] [PMID: 35084960]
[23]
Halberstadt, A.L.; Geyer, M.A. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 2011, 61(3), 364-381.
[http://dx.doi.org/10.1016/j.neuropharm.2011.01.017] [PMID: 21256140]
[24]
Halberstadt, A.L.; Chatha, M.; Klein, A.K.; Wallach, J.; Brandt, S.D. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology, 2020, 167, 107933.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107933] [PMID: 31917152]
[25]
Halberstadt, A.L.; Koedood, L.; Powell, S.B.; Geyer, M.A. Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice. J. Psychopharmacol., 2011, 25(11), 1548-1561.
[http://dx.doi.org/10.1177/0269881110388326] [PMID: 21148021]
[26]
Passie, T.; Seifert, J.; Schneider, U.; Emrich, H.M. The pharmacology of psilocybin. Addict. Biol., 2002, 7(4), 357-364.
[http://dx.doi.org/10.1080/1355621021000005937] [PMID: 14578010]
[27]
Carod-Artal, F.J. Hallucinogenic drugs in pre-Columbian Mesoamerican cultures. Neurologia, 2015, 30(1), 42-49.
[http://dx.doi.org/10.1016/j.nrl.2011.07.003] [PMID: 21893367]
[28]
Rickli, A.; Moning, O.D.; Hoener, M.C.; Liechti, M.E. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur. Neuropsychopharmacol., 2016, 26(8), 1327-1337.
[http://dx.doi.org/10.1016/j.euroneuro.2016.05.001] [PMID: 27216487]
[29]
McCorvy, J.D.; Wacker, D.; Wang, S.; Agegnehu, B.; Liu, J.; Lansu, K.; Tribo, A.R.; Olsen, R.H.J.; Che, T.; Jin, J.; Roth, B.L. Structural determinants of 5-HT2B receptor activation and biased agonism. Nat. Struct. Mol. Biol., 2018, 25(9), 787-796.
[http://dx.doi.org/10.1038/s41594-018-0116-7] [PMID: 30127358]
[31]
Castelhano, J.; Lima, G.; Teixeira, M.; Soares, C.; Pais, M.; Castelo-Branco, M. The effects of tryptamine psychedelics in the brain: A meta-analysis of functional and review of molecular imaging studies. Front. Pharmacol., 2021, 12, 739053.
[http://dx.doi.org/10.3389/fphar.2021.739053] [PMID: 34658876]
[32]
Basedow, L.A.; Riemer, T.G.; Reiche, S.; Kreutz, R.; Majić, T. Neuropsychological functioning in users of serotonergic psychedelics – a systematic review and meta-analysis. Front. Pharmacol., 2021, 12, 739966.
[http://dx.doi.org/10.3389/fphar.2021.739966] [PMID: 34603053]
[33]
Maia, L.O.; Beaussant, Y.; Garcia, A.C.M. The therapeutic potential of psychedelic-assisted therapies for symptom control in patients diagnosed with serious illness: A systematic review. J. Pain Symptom Manage., 2022, 63(6), e725-e738.
[http://dx.doi.org/10.1016/j.jpainsymman.2022.01.024] [PMID: 35157985]
[34]
Schmid, C.L.; Bohn, L.M. Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a ß-arrestin2/Src/Akt signaling complex in vivo. J. Neurosci., 2010, 30(40), 13513-13524.
[http://dx.doi.org/10.1523/JNEUROSCI.1665-10.2010] [PMID: 20926677]
[35]
Schmid, C.L.; Raehal, K.M.; Bohn, L.M. Agonist-directed signaling of the serotonin 2A receptor depends on β-arrestin-2 interactions in vivo. Proc. Natl. Acad. Sci. USA, 2008, 105(3), 1079-1084.
[http://dx.doi.org/10.1073/pnas.0708862105] [PMID: 18195357]
[36]
Hesselgrave, N.; Troppoli, T.A.; Wulff, A.B.; Cole, A.B.; Thompson, S.M. Harnessing psilocybin: Antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc. Natl. Acad. Sci. USA, 2021, 118(17), e2022489118.
[http://dx.doi.org/10.1073/pnas.2022489118] [PMID: 33850049]
[37]
Shao, L.X.; Liao, C.; Gregg, I.; Davoudian, P.A.; Savalia, N.K.; Delagarza, K.; Kwan, A.C. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron, 2021, 109(16), 2535-2544.e4.
[http://dx.doi.org/10.1016/j.neuron.2021.06.008] [PMID: 34228959]
[38]
Vargas, M.V.; Dunlap, L.E.; Dong, C.; Carter, S.J.; Tombari, R.J.; Jami, S.A.; Cameron, L.P.; Patel, S.D.; Hennessey, J.J.; Saeger, H.N.; McCorvy, J.D.; Gray, J.A.; Tian, L.; Olson, D.E. Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science, 2023, 379(6633), 700-706.
[http://dx.doi.org/10.1126/science.adf0435] [PMID: 36795823]
[39]
Ouagazzal, A.; Grottick, A.J.; Moreau, J.; Higgins, G.A. Effect of LSD on prepulse inhibition and spontaneous behavior in the rat. A pharmacological analysis and comparison between two rat strains. Neuropsychopharmacology, 2001, 25(4), 565-575.
[http://dx.doi.org/10.1016/S0893-133X(01)00282-2] [PMID: 11557170]
[40]
Krebs-Thomson, K.; Paulus, M.P.; Geyer, M.A. Effects of hallucinogens on locomotor and investigatory activity and patterns: Influence of 5-HT2A and 5-HT2C receptors. Neuropsychopharmacology, 1998, 18(5), 339-351.
[http://dx.doi.org/10.1016/S0893-133X(97)00164-4] [PMID: 9536447]
[41]
Vohra, H.Z.; Saunders, J.M.; Jaster, A.M.; de la Fuente Revenga, M.; Jimenez, J.; Fernández-Teruel, A.; Wolstenholme, J.T.; Beardsley, P.M.; González-Maeso, J. Sex-specific effects of psychedelics on prepulse inhibition of startle in 129S6/SvEv mice. Psychopharmacology, 2022, 239(6), 1649-1664.
[http://dx.doi.org/10.1007/s00213-021-05913-9] [PMID: 34345931]
[42]
Vollenweider, F.X.; Csomor, P.A.; Knappe, B.; Geyer, M.A.; Quednow, B.B. The effects of the preferential 5-HT2A agonist psilocybin on prepulse inhibition of startle in healthy human volunteers depend on interstimulus interval. Neuropsychopharmacology, 2007, 32(9), 1876-1887.
[http://dx.doi.org/10.1038/sj.npp.1301324] [PMID: 17299516]
[43]
Sakloth, F.; Leggett, E.; Moerke, M.J.; Townsend, E.A.; Banks, M.L.; Negus, S.S. Effects of acute and repeated treatment with serotonin 5-HT2A receptor agonist hallucinogens on intracranial self-stimulation in rats. Exp. Clin. Psychopharmacol., 2019, 27(3), 215-226.
[http://dx.doi.org/10.1037/pha0000253] [PMID: 30628811]
[44]
Marona-Lewicka, D.; Chemel, B.R.; Nichols, D.E. Dopamine D4 receptor involvement in the discriminative stimulus effects in rats of LSD, but not the phenethylamine hallucinogen DOI. Psychopharmacology, 2009, 203(2), 265-277.
[http://dx.doi.org/10.1007/s00213-008-1238-0] [PMID: 18604600]
[45]
Alper, K.; Dong, B.; Shah, R.; Sershen, H.; Vinod, K.Y. LSD administered as a single dose reduces alcohol consumption in C57BL/6J mice. Front. Pharmacol., 2018, 9, 994.
[http://dx.doi.org/10.3389/fphar.2018.00994] [PMID: 30233372]
[46]
Meinhardt, M.W.; Güngör, C.; Skorodumov, I.; Mertens, L.J.; Spanagel, R. Psilocybin and LSD have no long-lasting effects in an animal model of alcohol relapse. Neuropsychopharmacology, 2020, 45(8), 1316-1322.
[http://dx.doi.org/10.1038/s41386-020-0694-z] [PMID: 32369828]
[47]
Elsilä, L.V.; Harkki, J.; Enberg, E.; Martti, A.; Linden, A.M.; Korpi, E.R. Effects of acute lysergic acid diethylamide on intermittent ethanol and sucrose drinking and intracranial self-stimulation in C57BL/6 mice. J. Psychopharmacol., 2022, 36(7), 860-874.
[http://dx.doi.org/10.1177/02698811221104641] [PMID: 35695174]
[48]
Elsilä, L.V.; Korhonen, N.; Hyytiä, P.; Korpi, E.R. Acute lysergic acid diethylamide does not influence reward-driven decision making of C57BL/6 mice in the iowa gambling task. Front. Pharmacol., 2020, 11, 602770.
[http://dx.doi.org/10.3389/fphar.2020.602770] [PMID: 33343373]
[49]
Winter, J.C. Hallucinogens as discriminative stimuli in animals: LSD, phenethylamines, and tryptamines. Psychopharmacology, 2009, 203(2), 251-263.
[http://dx.doi.org/10.1007/s00213-008-1356-8] [PMID: 18979087]
[50]
Fiorella, D.; Rabin, R.A.; Winter, J.C. The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs I: Antagonist correlation analysis. Psychopharmacology, 1995, 121(3), 347-356.
[http://dx.doi.org/10.1007/BF02246074] [PMID: 8584617]
[51]
Reissig, C.J.; Eckler, J.R.; Rabin, R.A.; Winter, J.C. The 5-HT1A receptor and the stimulus effects of LSD in the rat. Psychopharmacology, 2005, 182(2), 197-204.
[http://dx.doi.org/10.1007/s00213-005-0068-6] [PMID: 16025319]
[52]
Eckler, J.; Reissig, C.; Rabin, R.; Winter, J. A 5-HT receptor-mediated interaction between 2,5-dimethoxy-4-methylamphetamine and citalopram in the rat. Pharmacol. Biochem. Behav., 2004, 79(1), 25-30.
[http://dx.doi.org/10.1016/j.pbb.2004.06.012] [PMID: 15388280]
[53]
Winter, J.; Eckler, J.; Rice, K.; Rabin, R. Serotonergic/glutamatergic interactions: Potentiation of phencyclidine-induced stimulus control by citalopram. Pharmacol. Biochem. Behav., 2005, 81(3), 694-700.
[http://dx.doi.org/10.1016/j.pbb.2005.03.022] [PMID: 15970314]
[54]
Winter, J.C.; Rice, K.C.; Amorosi, D.J.; Rabin, R.A. Psilocybin-induced stimulus control in the rat. Pharmacol. Biochem. Behav., 2007, 87(4), 472-480.
[http://dx.doi.org/10.1016/j.pbb.2007.06.003] [PMID: 17688928]
[55]
Berquist, M.D., II; Thompson, N.A.; Baker, L.E. Evaluation of training dose in male Sprague-Dawley rats trained to discriminate 4-methylmethcathinone. Psychopharmacology, 2017, 234(21), 3271-3278.
[http://dx.doi.org/10.1007/s00213-017-4716-4] [PMID: 28815279]
[56]
Gimpl, M.P.; Gormezano, I.; Harvey, J.A. Effects of LSD on learning as measured by classical conditioning of the rabbit nictitating membrane response. J. Pharmacol. Exp. Ther., 1979, 208(2), 330-334.
[PMID: 762668]
[57]
Harvey, J.A.; Gormezano, I.; Cool, V.A. Effects of d-lysergic acid diethylamide, d-2-bromolysergic acid diethylamide, dl-2,5-dimethoxy-4-methylamphetamine and d-amphetamine on classical conditioning of the rabbit nictitating membrane response. J. Pharmacol. Exp. Ther., 1982, 221(2), 289-294.
[PMID: 6122729]
[58]
Siegel, S.; Freedman, D.X. Effects of LSD-25 on classical trace conditioning. Pharmacol. Biochem. Behav., 1988, 30(2), 427-431.
[http://dx.doi.org/10.1016/0091-3057(88)90476-5] [PMID: 3174775]
[59]
King, A.R.; Martin, I.L.; Melville, K.A. Reversal learning enhanced by lysergic acid diethylamide (LSD): Concomitant rise in brain 5-hydroxytryptamine levels. Br. J. Pharmacol., 1974, 52(3), 419-426.
[http://dx.doi.org/10.1111/j.1476-5381.1974.tb08611.x] [PMID: 4458849]
[60]
Hagsäter, S.M.; Pettersson, R.; Pettersson, C.; Atanasovski, D.; Näslund, J.; Eriksson, E. A complex impact of systemically administered 5-HT2A receptor ligands on conditioned fear. Int. J. Neuropsychopharmacol., 2021, 24(9), 749-757.
[http://dx.doi.org/10.1093/ijnp/pyab040] [PMID: 34228806]
[61]
Rambousek, L.; Palenicek, T.; Vales, K.; Stuchlik, A. The effect of psilocin on memory acquisition, retrieval, and consolidation in the rat. Front. Behav. Neurosci., 2014, 8, 180.
[http://dx.doi.org/10.3389/fnbeh.2014.00180] [PMID: 24904332]
[62]
Parker, L.A. LSD produces place preference and flavor avoidance but does not produce flavor aversion in rats. Behav. Neurosci., 1996, 110(3), 503-508.
[http://dx.doi.org/10.1037/0735-7044.110.3.503] [PMID: 8888996]
[63]
Meehan, S.; Schechter, M.D. LSD produces conditioned place preference in male but not female fawn hooded rats. Pharmacol. Biochem. Behav., 1998, 59(1), 105-108.
[http://dx.doi.org/10.1016/S0091-3057(97)00391-2] [PMID: 9443543]
[64]
Krsiak, M. Effects of drugs on behaviour of aggressive mice. Br. J. Pharmacol., 1979, 65(3), 525-533.
[http://dx.doi.org/10.1111/j.1476-5381.1979.tb07861.x] [PMID: 570866]
[65]
Sbordone, R.J.; Wingard, J.A.; Gorelick, D.A.; Elliott, M.L. Severe aggression in rats induced by mescaline but not other hallucinogens. Psychopharmacology, 1979, 66(3), 275-280.
[http://dx.doi.org/10.1007/BF00428319] [PMID: 119274]
[66]
De Gregorio, D.; Aguilar-Valles, A.; Preller, K.H.; Heifets, B.D.; Hibicke, M.; Mitchell, J.; Gobbi, G. Hallucinogens in mental health: Preclinical and clinical studies on LSD, psilocybin, MDMA, and ketamine. J. Neurosci., 2021, 41(5), 891-900.
[http://dx.doi.org/10.1523/JNEUROSCI.1659-20.2020] [PMID: 33257322]
[67]
De Gregorio, D.; Popic, J.; Enns, J.P.; Inserra, A.; Skalecka, A.; Markopoulos, A.; Posa, L.; Lopez-Canul, M.; Qianzi, H.; Lafferty, C.K.; Britt, J.P.; Comai, S.; Aguilar-Valles, A.; Sonenberg, N.; Gobbi, G. Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission. Proc. Natl. Acad. Sci. USA, 2021, 118(5), e2020705118.
[http://dx.doi.org/10.1073/pnas.2020705118] [PMID: 33495318]
[68]
De Gregorio, D.; Inserra, A.; Enns, J.P.; Markopoulos, A.; Pileggi, M.; El Rahimy, Y.; Lopez-Canul, M.; Comai, S.; Gobbi, G. Repeated lysergic acid diethylamide (LSD) reverses stress-induced anxiety-like behavior, cortical synaptogenesis deficits and serotonergic neurotransmission decline. Neuropsychopharmacology, 2022, 47(6), 1188-1198.
[http://dx.doi.org/10.1038/s41386-022-01301-9] [PMID: 35301424]
[69]
Jefsen, O.; Højgaard, K.; Christiansen, S.L.; Elfving, B.; Nutt, D.J.; Wegener, G.; Müller, H.K. Psilocybin lacks antidepressant-like effect in the Flinders Sensitive Line rat. Acta Neuropsychiatr., 2019, 31(4), 213-219.
[http://dx.doi.org/10.1017/neu.2019.15] [PMID: 31106729]
[70]
Horsley, R.R.; Páleníček, T.; Kolin, J.; Valeš, K. Psilocin and ketamine microdosing: Effects of subchronic intermittent microdoses in the elevated plus-maze in male Wistar rats. Behav. Pharmacol., 2018, 29(6), 530-536.
[http://dx.doi.org/10.1097/FBP.0000000000000394] [PMID: 29537989]
[71]
Hibicke, M.; Landry, A.N.; Kramer, H.M.; Talman, Z.K.; Nichols, C.D. Psychedelics, but not ketamine, produce persistent antidepressant-like effects in a rodent experimental system for the study of depression. ACS Chem. Neurosci., 2020, 11(6), 864-871.
[http://dx.doi.org/10.1021/acschemneuro.9b00493] [PMID: 32133835]
[72]
Marona-Lewicka, D.; Nichols, C.D.; Nichols, D.E. An animal model of schizophrenia based on chronic LSD administration: Old idea, new results. Neuropharmacology, 2011, 61(3), 503-512.
[http://dx.doi.org/10.1016/j.neuropharm.2011.02.006] [PMID: 21352832]
[73]
King, W., Jr; Ellison, G. Long-lasting alterations in behavior and brain neurochemistry following continuous low-level LSD administration. Pharmacol. Biochem. Behav., 1989, 33(1), 69-73.
[http://dx.doi.org/10.1016/0091-3057(89)90431-0] [PMID: 2780790]
[74]
Buchborn, T.; Schröder, H.; Höllt, V.; Grecksch, G. Repeated lysergic acid diethylamide in an animal model of depression: Normalisation of learning behaviour and hippocampal serotonin 5-HT 2 signalling. J. Psychopharmacol., 2014, 28(6), 545-552.
[http://dx.doi.org/10.1177/0269881114531666] [PMID: 24785760]
[75]
Dinis-Oliveira, R.J. Metabolomics of drugs of abuse: A more realistic view of the toxicological complexity. Bioanalysis, 2014, 6(23), 3155-3159.
[http://dx.doi.org/10.4155/bio.14.260] [PMID: 25529883]
[76]
Libânio Osório Marta, R.F. Metabolism of lysergic acid diethylamide (LSD): An update. Drug Metab. Rev., 2019, 51(3), 378-387.
[http://dx.doi.org/10.1080/03602532.2019.1638931] [PMID: 31266388]
[77]
Cumming, P.; Scheidegger, M.; Dornbierer, D.; Palner, M.; Quednow, B.B.; Martin-Soelch, C. Molecular and functional imaging studies of psychedelic drug action in animals and humans. Molecules, 2021, 26(9), 2451.
[http://dx.doi.org/10.3390/molecules26092451] [PMID: 33922330]
[78]
Nakahara, Y.; Kikura, R.; Takahashi, K.; Foltz, R.L.; Mieczkowski, T. Detection of LSD and metabolite in rat hair and human hair. J. Anal. Toxicol., 1996, 20(5), 323-329.
[http://dx.doi.org/10.1093/jat/20.5.323] [PMID: 8872243]
[79]
Lim, H.K.; Andrenyak, D.; Francom, P.; Foltz, R.L.; Jones, R.T. Quantification of LSD and N-demethyl-LSD in urine by gas chromatography/resonance electron capture ionization mass spectrometry. Anal. Chem., 1988, 60(14), 1420-1425.
[http://dx.doi.org/10.1021/ac00165a015] [PMID: 3218752]
[80]
Canezin, J.; Cailleux, A.; Turcant, A.; Le Bouil, A.; Harry, P.; Allain, P. Determination of LSD and its metabolites in human biological fluids by high-performance liquid chromatography with electrospray tandem mass spectrometry. J. Chromatogr., Biomed. Appl., 2001, 765(1), 15-27.
[http://dx.doi.org/10.1016/S0378-4347(01)00386-3] [PMID: 11817305]
[81]
Steuer, A.E.; Poetzsch, M.; Stock, L.; Eisenbeiss, L.; Schmid, Y.; Liechti, M.E.; Kraemer, T. Development and validation of an ultra-fast and sensitive microflow liquid chromatography-tandem mass spectrometry (MFLC-MS/MS) method for quantification of LSD and its metabolites in plasma and application to a controlled LSD administration study in huma. Drug Test. Anal., 2017, 9(5), 788-797.
[http://dx.doi.org/10.1002/dta.2042] [PMID: 27422082]
[82]
Gomes, M.M.; Dörr, F.A.; Catalani, L.H.; Campa, A. Oxidation of lysergic acid diethylamide (LSD) by peroxidases: A new metabolic pathway. Forensic Toxicol., 2012, 30(2), 87-97.
[http://dx.doi.org/10.1007/s11419-011-0131-4]
[83]
Wagmann, L.; Richter, L.H.J.; Kehl, T.; Wack, F.; Bergstrand, M.P.; Brandt, S.D.; Stratford, A.; Maurer, H.H.; Meyer, M.R. in vitro metabolic fate of nine LSD-based new psychoactive substances and their analytical detectability in different urinary screening procedures. Anal. Bioanal. Chem., 2019, 411(19), 4751-4763.
[http://dx.doi.org/10.1007/s00216-018-1558-9] [PMID: 30617391]
[84]
Eivindvik, K.; Rasmussen, K.E.; Sund, R.B. Handling of psilocybin and psilocin by everted sacs of rat jejunum and colon. Acta Pharm. Nord., 1989, 1(5), 295-302.
[PMID: 2610906]
[85]
Hopf, A.; Eckert, H. Distribution patterns of 14-C-psilocin in the brains of various animals. Act. Nerv. Super., 1974, 16(1), 64-66.
[PMID: 4454947]
[86]
Ballesteros, S.; Ramón, M.F.; Iturralde, M.J.; Martínez-Arrieta, R. Natural sources of drugs of abuse: Magic mushrooms.New Research on Street Drugs; Nova Science Publishers, Inc.: New York, 2006, pp. 167-186.
[87]
Chen, J.; Li, M.; Yan, X.; Wu, E.; Zhu, H.; Lee, K.J.; Chu, V.M.; Zhan, L.; Lee, W.; Kang, J.S. Determining the pharmacokinetics of psilocin in rat plasma using ultra-performance liquid chromatography coupled with a photodiode array detector after orally administering an extract of Gymnopilus spectabilis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(25), 2669-2672.
[http://dx.doi.org/10.1016/j.jchromb.2011.07.003] [PMID: 21820980]
[88]
Hasler, F.; Bourquin, D.; Brenneisen, R.; Bär, T.; Vollenweider, F.X. Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psilocybin in man. Pharm. Acta Helv., 1997, 72(3), 175-184.
[http://dx.doi.org/10.1016/S0031-6865(97)00014-9] [PMID: 9204776]
[89]
Martin, R.; Schürenkamp, J.; Gasse, A.; Pfeiffer, H.; Köhler, H. Determination of psilocin, bufotenine, LSD and its metabolites in serum, plasma and urine by SPE-LC-MS/MS. Int. J. Legal Med., 2013, 127(3), 593-601.
[http://dx.doi.org/10.1007/s00414-012-0796-1] [PMID: 23183899]
[90]
Meinhardt, M.W.; Pfarr, S.; Fouquet, G.; Rohleder, C.; Meinhardt, M.L.; Barroso-Flores, J.; Hoffmann, R.; Jeanblanc, J.; Paul, E.; Wagner, K.; Hansson, A.C.; Köhr, G.; Meier, N.; von Bohlen und Halbach, O.; Bell, R.L.; Endepols, H.; Neumaier, B.; Schönig, K.; Bartsch, D.; Naassila, M.; Spanagel, R.; Sommer, W.H. Psilocybin targets a common molecular mechanism for cognitive impairment and increased craving in alcoholism. Sci. Adv., 2021, 7(47), eabh2399.
[http://dx.doi.org/10.1126/sciadv.abh2399] [PMID: 34788104]
[91]
Halberstadt, A.L.; van der Zee, J.V.F.; Chatha, M.; Geyer, M.A.; Powell, S.B. Chronic treatment with a metabotropic mGlu2/3 receptor agonist diminishes behavioral response to a phenethylamine hallucinogen. Psychopharmacology, 2019, 236(2), 821-830.
[http://dx.doi.org/10.1007/s00213-018-5118-y] [PMID: 30448990]
[92]
Wischhof, L.; Koch, M. 5-HT2A and mGlu2/3 receptor interactions. Behav. Pharmacol., 2016, 27(1), 1-11.
[http://dx.doi.org/10.1097/FBP.0000000000000183] [PMID: 26292187]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy