Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Mini-Review Article

Modernization of Food Packaging Materials with Nanotechnology-A Mini Review

Author(s): Deepika Balasubramanian, Agnishwar Girigoswami and Koyeli Girigoswami*

Volume 14, Issue 2, 2023

Published on: 07 August, 2023

Page: [72 - 83] Pages: 12

DOI: 10.2174/2772574X14666230626105930

Price: $65

Abstract

Food toxins can be of natural origin, chemicals, or inadvertent additives that get incorporated during food packaging and processing. When food is contaminated with bacteria or viruses, or other contaminants, serious foodborne diseases arise, causing severe health issues. To overcome these issues, proper food processing and packaging needs to be addressed to protect humans and animals from foodborne diseases. There are many smart food packaging materials that have evolved recently. Researchers enabled the use of nanomaterials in food packaging and have improved the efficacy of food packaging. In this mini-review, the objectives are to summarize the different types of food contaminants, conventional food packaging materials, and recent developments in nanotechnology-based food packaging materials.

Graphical Abstract

[1]
Kantiani, L.; Llorca, M.; Sanchís, J.; Farré, M.; Barceló, D. Emerging food contaminants: a review. Anal. Bioanal. Chem., 2010, 398(6), 2413-2427.
[http://dx.doi.org/10.1007/s00216-010-3944-9] [PMID: 20680618]
[2]
Lunn, R.M.; Mehta, S.S.; Jahnke, G.D.; Wang, A.; Wolfe, M.S.; Berridge, B.R. Cancer hazard evaluations for contemporary needs: Highlights from new national toxicology program evaluations and methodological advancements. J. Natl. Cancer Inst., 2022, 114(11), 1441-1448.
[http://dx.doi.org/10.1093/jnci/djac164] [PMID: 36029241]
[3]
Abnet, C.C. Carcinogenic food contaminants. Cancer Invest., 2007, 25(3), 189-196.
[http://dx.doi.org/10.1080/07357900701208733] [PMID: 17530489]
[4]
Harper, J.M. Extrusion of Foods; CRC press: Florida, USA, 2019.
[http://dx.doi.org/10.1201/9780429290428]
[5]
Mulla, M.Z.; Bharadwaj, V.R.; Annapure, U.S.; Singhal, R.S. Effect of formulation and processing parameters on acrylamide formation: A case study on extrusion of blends of potato flour and semolina. Lebensm. Wiss. Technol., 2011, 44(7), 1643-1648.
[http://dx.doi.org/10.1016/j.lwt.2010.11.019]
[6]
Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States-major pathogens. Emerg. Infect. Dis., 2011, 17(1), 7-15.
[http://dx.doi.org/10.3201/eid1701.P11101] [PMID: 21192848]
[7]
Mead, P.S.; Slutsker, L.; Griffin, P.M.; Tauxe, R.V. Food-related illness and death in the United States reply to Dr. Hedberg. Emerg. Infect. Dis., 1999, 5(6), 841-842.
[http://dx.doi.org/10.3201/eid0506.990625]
[8]
Girigoswami, A.; Ghosh, M.M.; Pallavi, P.; Ramesh, S.; Girigoswami, K. Nanotechnology in detection of food toxins - focus on the dairy products. Biointerface Res. Appl. Chem., 2021, 11(6), 14155-14172.
[http://dx.doi.org/10.33263/BRIAC116.1415514172]
[9]
Di Stefano, V.; Avellone, G. Food contaminants. J. Food Stud., 2014, 3(1), 88-103.
[http://dx.doi.org/10.5296/jfs.v3i1.6192]
[10]
Ubaid ur Rahman, H.; Asghar, W.; Nazir, W.; Sandhu, M.A.; Ahmed, A.; Khalid, N. A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. Sci. Total Environ., 2021, 755(Pt 2), 142649.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142649] [PMID: 33059141]
[11]
Xu, G.; Hou, J.; Zhao, Y.; Bao, J.; Yang, M.; Fa, H.; Yang, Y.; Li, L.; Huo, D.; Hou, C. Dual-signal aptamer sensor based on polydopamine-gold nanoparticles and exonuclease I for ultrasensitive malathion detection. Sens. Actuators B Chem., 2019, 287, 428-436.
[http://dx.doi.org/10.1016/j.snb.2019.01.113]
[12]
Kumar, S.S.; Ghosh, P.; Malyan, S.K.; Sharma, J.; Kumar, V. A comprehensive review on enzymatic degradation of the organophosphate pesticide malathion in the environment. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2019, 37(4), 288-329.
[http://dx.doi.org/10.1080/10590501.2019.1654809] [PMID: 31566482]
[13]
Costa, L.G. Toxic effects of pesticides. Casarett & Doull’s Toxicology: The Basic Science of Poisons; McGraw Hill: New York, 2008, 8, 883-930.
[14]
Kormoker, T.; Proshad, R.; Islam, M.S.; Tusher, T.R.; Uddin, M.; Khadka, S.; Chandra, K.; Sayeed, A. Presence of toxic metals in rice with human health hazards in Tangail district of Bangladesh. Int. J. Environ. Health Res., 2022, 32(1), 40-60.
[http://dx.doi.org/10.1080/09603123.2020.1724271] [PMID: 32024372]
[15]
Durmuş, E.; Güneysu, F. Iron poisoning. J. Surg. Med., 2020, 4(4), 314-317.
[16]
Otto, S.; Strenger, M.; Maier-Nöth, A.; Schmid, M. Food packaging and sustainability - Consumer perception vs. correlated scientific facts: A review. J. Clean. Prod., 2021, 298, 126733.
[http://dx.doi.org/10.1016/j.jclepro.2021.126733]
[17]
Raheem, D. Application of plastics and paper as food packaging materials? An overview. Emir. J. Food Agric., 2013, 25(3), 177-188.
[http://dx.doi.org/10.9755/ejfa.v25i3.11509]
[18]
Marsh, K.; Bugusu, B. Food packaging-roles, materials, and environmental issues. J. Food Sci., 2007, 72(3), R39-R55.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00301.x] [PMID: 17995809]
[19]
Paine, F.A.; Paine, H.Y. A handbook of Food Packaging; Springer Science & Business Media: Cham, 2012.
[20]
Youssef, A.M.; El-Sayed, S.M. Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydr. Polym., 2018, 193, 19-27.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.088] [PMID: 29773372]
[21]
Cha, D.S.; Chinnan, M.S. Biopolymer-based antimicrobial packaging: a review. Crit. Rev. Food Sci. Nutr., 2004, 44(4), 223-237.
[http://dx.doi.org/10.1080/10408690490464276] [PMID: 15462127]
[22]
Motelica, L.; Ficai, D.; Ficai, A.; Oprea, O.C.; Kaya, D.A.; Andronescu, E. Biodegradable antimicrobial food packaging: Trends and perspectives. Foods, 2020, 9(10), 1438.
[http://dx.doi.org/10.3390/foods9101438] [PMID: 33050581]
[23]
Bratovčić, A.; Odobašić, A.; Ćatić, S.; Šestan, I. Application of polymer nanocomposite materials in food packaging. Croat. J. Food Sci. Technol., 2015, 7(2), 86-94.
[http://dx.doi.org/10.17508/CJFST.2015.7.2.06]
[24]
Rodrigues, E.T.; Han, J.H. Antimicrobial whey protein films against spoilage and pathogenic bacteria. In Proceedings of the IFT Annual Meeting, 2000Dallas, Texas, USA, pp. 10-14.
[25]
Kumar, S.; Mukherjee, A.; Dutta, J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci. Technol., 2020, 97, 196-209.
[http://dx.doi.org/10.1016/j.tifs.2020.01.002]
[26]
An, D-S.; Kim, Y-M.; Lee, S-B.; Paik, H-D.; Lee, D-S. Antimicrobial low density polyethylene film coated with bacteriocins in binder medium. Food Sci. Biotechnol., 2000, 9(1), 14-20.
[27]
Siragusa, G.R.; Cutter, C.N.; Willett, J.L. Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiol., 1999, 16(3), 229-235.
[http://dx.doi.org/10.1006/fmic.1998.0239]
[28]
Rokbani, H.; Daigle, F.; Ajji, A. Long- and short-term antibacterial properties of low-density polyethylene-based films coated with zinc oxide nanoparticles for potential use in food packaging. J. Plast. Film Sheeting, 2019, 35(2), 117-134.
[http://dx.doi.org/10.1177/8756087918822677]
[29]
Chougule, S.S.; Gurme, S.T.; Jadhav, J.P.; Dongale, T.D.; Tiwari, A.P. Low density polyethylene films incorporated with Biosynthesised silver nanoparticles using Moringa oleifera plant extract for antimicrobial, food packaging, and photocatalytic degradation applications. J. Plant Biochem. Biotechnol., 2021, 30(1), 208-214.
[http://dx.doi.org/10.1007/s13562-020-00584-7]
[30]
Ittiachen, L.; Babu, S.M. Evaluation of antibacterial activity of biosynthesized silver nanoparticles coated low density polyethylene films. Mater. Today Proc., 2021.
[31]
Devlieghere, F.; Vermeiren, L.; Jacobs, M.; Debevere, J. The effectiveness of hexamethylenetetramine-incorporated plastic for the active packaging of foods. Packag. Technol. Sci., 2000, 13(3), 117-121.
[http://dx.doi.org/10.1002/1099-1522(200005)13:3<117:AID-PTS500>3.0.CO;2-B]
[32]
Chung, T.S.; Loh, K.C.; Tay, H.L. Development of polysulfone membranes for bacteria immobilization to remove phenol. J. Appl. Polym. Sci., 1998, 70(13), 2585-2594.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19981226)70:13<2585:AID-APP4>3.0.CO;2-#]
[33]
Suppakul, P.; Miltz, J.; Sonneveld, K.; Bigger, S.W. Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J. Food Sci., 2003, 68(2), 408-420.
[http://dx.doi.org/10.1111/j.1365-2621.2003.tb05687.x]
[34]
Jovanović, J.; Ćirković, J.; Radojković, A.; Mutavdžić, D.; Tanasijević, G.; Joksimović, K.; Bakić, G.; Branković, G.; Branković, Z. Chitosan and pectin-based films and coatings with active components for application in antimicrobial food packaging. Prog. Org. Coat., 2021, 158, 106349.
[http://dx.doi.org/10.1016/j.porgcoat.2021.106349]
[35]
Atta, O.M.; Manan, S.; Ul-Islam, M.; Ahmed, A.A.Q.; Ullah, M.W.; Yang, G. Silver decorated bacterial cellulose nanocomposites as antimicrobial food packaging materials. ES Food Agroforestr., 2021, 6, 12-26.
[http://dx.doi.org/10.30919/esfaf590]
[36]
Ramos, Ó.L.; Fernandes, J.C.; Silva, S.I.; Pintado, M.E.; Malcata, F.X. Edible films and coatings from whey proteins: a review on formulation, and on mechanical and bioactive properties. Crit. Rev. Food Sci. Nutr., 2012, 52(6), 533-552.
[http://dx.doi.org/10.1080/10408398.2010.500528] [PMID: 22452733]
[37]
Coma, V.; Sebti, I.; Pardon, P.; Deschamps, A.; Pichavant, F.H. Antimicrobial edible packaging based on cellulosic ethers, fatty acids, and nisin incorporation to inhibit Listeria innocua and Staphylococcus aureus. J. Food Prot., 2001, 64(4), 470-475.
[http://dx.doi.org/10.4315/0362-028X-64.4.470] [PMID: 11307881]
[38]
Chawla, R.; Sivakumar, S.; Kaur, H. Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. Carbohydr. Polym. Technol. Appl., 2021, 2, 100024.
[http://dx.doi.org/10.1016/j.carpta.2020.100024]
[39]
Bourtoom, T. Edible films and coatings: characteristics and properties. Int. Food Res. J., 2008, 15(3), 237-248.
[40]
Thirumalai, A.; Harini, K.; Pallavi, P.; Gowtham, P.; Girigoswami, K.; Girigoswami, A. Nanotechnology driven improvement of smart food packaging. Mater. Res. Innov., 2023, 27(4), 223-232.
[41]
Chhikara, S.; Kumar, D. Edible coating and edible film as food packaging material: a review. J. Packag Technol Res, 2022, 6(1), 1-10.
[http://dx.doi.org/10.1007/s41783-021-00129-w]
[42]
Zhang, X.; Zhao, Y.; Li, Y.; Zhu, L.; Fang, Z.; Shi, Q. Physicochemical, mechanical and structural properties of composite edible films based on whey protein isolate/psyllium seed gum. Int. J. Biol. Macromol., 2020, 153, 892-901.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.018] [PMID: 32142843]
[43]
Lewis, H.; Fitzpatrick, L.; Verghese, K.; Sonneveld, K.; Jordon, R.; Alliance, S.P. Sustainable packaging redefined; Sustainable Packaging Alliance: Melbourne, Australia, 2007.
[44]
Mahalik, N. Advances in packaging methods, processes and systems. Challenges, 2014, 5(2), 374-389.
[http://dx.doi.org/10.3390/challe5020374]
[45]
Yu, F.; Fei, X.; He, Y.; Li, H. Poly(lactic acid)-based composite film reinforced with acetylated cellulose nanocrystals and ZnO nanoparticles for active food packaging. Int. J. Biol. Macromol., 2021, 186, 770-779.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.07.097] [PMID: 34284052]
[46]
Zhang, C.; Jiang, Z.; Jin, M.; Du, P.; Chen, G.; Cui, X.; Zhang, Y.; Qin, G.; Yan, F.; Abd El-Aty, A.M. Hacimüftüoğlu, A.; Wang, J. Fluorescence immunoassay for multiplex detection of organophosphate pesticides in agro-products based on signal amplification of gold nanoparticles and oligonucleotides. Food Chem., 2020, 326, 126813.
[http://dx.doi.org/10.1016/j.foodchem.2020.126813] [PMID: 32438234]
[47]
Sun, F.; Zhang, J.; Yang, Q.; Wu, W. Quantum dot biosensor combined with antibody and aptamer for tracing food-borne pathogens. Food. Qual. Safe., 2021, 5, 5.
[48]
Omerović N.; Djisalov, M.; Živojević K.; Mladenović M.; Vunduk, J.; Milenković I.; Knežević N.Ž.; Gadjanski, I.; Vidić J. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr. Rev. Food Sci. Food Saf., 2021, 20(3), 2428-2454.
[http://dx.doi.org/10.1111/1541-4337.12727] [PMID: 33665972]
[49]
Chaffee, C.; Yoros, B.R. Life Cycle Assessment for three types of grocery bags-recyclable plastics, compostable, biodegradable plastic and recyclable paper; Bonstead Consulting and Associates Limited, 2007.
[50]
McDonough, W.; Braungart, M. Cradle to cradle: Remaking the way we make things; North point press: New York, USA, 2010.
[51]
Metkar, S.K.; Girigoswami, K.J.B. Diagnostic biosensors in medicine - A review. Biocatal. Agric. Biotechnol., 2019, 17, 271-283.
[52]
Akhtar, N.; Metkar, S.K.; Girigoswami, A.; Girigoswami, K. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater. Sci. Eng. C, 2017, 78, 960-968.
[http://dx.doi.org/10.1016/j.msec.2017.04.118] [PMID: 28576073]
[53]
Thendral, V.; Dharshni, T.; Ramalakshmi, M.; Girigoswami, A.; Girigoswami, K. Cerium oxide nanocluster based nanobiosensor for ROS detection. Biocatal. Agric. Biotechnol., 2019, 19, 101124.
[http://dx.doi.org/10.1016/j.bcab.2019.101124]
[54]
Girigoswami, K.; Girigoswami, A.J.E. A review on the role of nanosensors in detecting cellular mirna expression in colorectal cancer Endocr Metab. Immune Disord. Drug Targ., 2021, 21(1), 12-21.
[55]
Agraharam, G.; Girigoswami, A.; Girigoswami, K. Nanoencapsulated myricetin to improve antioxidant activity and bioavailability: a study on zebrafish embryos. Chemistry, 2021, 4(1), 1-17.
[http://dx.doi.org/10.3390/chemistry4010001] [PMID: 37118105]
[56]
De, S.; Gopikrishna, A.; Keerthana, V.; Girigoswami, A.; Girigoswami, K. An overview of nanoformulated nutraceuticals and their therapeutic approaches. Curr. Nutr. Food Sci., 2021, 17(4), 392-407.
[http://dx.doi.org/10.2174/1573401316999200901120458]
[57]
Jino, A.R.; Narayan, S. A systematic review of different classes of biopolymers and their use as antimicrobial agents. Russian Bioorganic Chem., 2023, 49, 262-287.
[http://dx.doi.org/10.1007/s40495-021-00269-2] [PMID: 35036292]
[58]
Balasubramanian, D.; Girigoswami, A.; Girigoswami, K. Nano resveratrol and its anticancer activity. Current Appl. Sci. Technol., 2023, 23(3), (May-June 2023).
[http://dx.doi.org/10.55003/cast.2022.03.23.010]
[59]
Girigoswami, K.; Balasubramanian, D.; Girigoswami, A. Antimicrobial, pesticidal and food preservative applications of lemongrass oil nanoemulsion: A Mini-Review. Rec. Adv. Food Nutr. Agric., 2022, 13(1), 51-58.
[http://dx.doi.org/10.2174/2212798412666220527154707] [PMID: 35638282]
[60]
Pallavi, P.; Harini, K.; Alshehri, S.; Ghoneim, M.M.; Alshlowi, A.; Gowtham, P.; Girigoswami, K.; Shakeel, F.; Girigoswami, A. From synthetic route of silica nanoparticles to theranostic applications. Processes (Basel), 2022, 10(12), 2595.
[http://dx.doi.org/10.3390/pr10122595]
[61]
Atchaya, J.; Girigoswami, A.; Girigoswami, K. Versatile applications of nanosponges in biomedical field: a glimpse on SARS-CoV-2 management. Bionanoscience, 2022, 12(3), 1018-1031.
[http://dx.doi.org/10.1007/s12668-022-01000-1] [PMID: 35755139]
[62]
Girigoswami, A.; Yassine, W.; Sharmiladevi, P.; Haribabu, V.; Girigoswami, K. Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Sci. Rep., 2018, 8(1), 16459.
[http://dx.doi.org/10.1038/s41598-018-34843-4] [PMID: 30405190]
[63]
Jagannathan, N.R. Potential of Magnetic Resonance (MR) Methods in Clinical Cancer Research. Biomedical Translational Research; Springer: Cham, 2022, pp. 339-360.
[64]
Valdés, M.G.; Valdés González, A.C.; García Calzón, J.A.; Díaz-García, M.E. Analytical nanotechnology for food analysis. Mikrochim. Acta, 2009, 166(1), 1-19.
[65]
Bumbudsanpharoke, N.; Ko, S. Nano-food packaging: an overview of market, migration research, and safety regulations. J. Food Sci., 2015, 80(5), R910-R923.
[http://dx.doi.org/10.1111/1750-3841.12861] [PMID: 25881665]
[66]
Chellaram, C.; Murugaboopathi, G.; John, A.A.; Sivakumar, R.; Ganesan, S.; Krithika, S.; Priya, G. Significance of nanotechnology in food industry. APCBEE Procedia, 2014, 8, 109-113.
[http://dx.doi.org/10.1016/j.apcbee.2014.03.010]
[67]
Nair, R.; Varghese, S.H.; Nair, B.G.; Maekawa, T.; Yoshida, Y.; Kumar, D.S. Nanoparticulate material delivery to plants. Plant Sci., 2010, 179(3), 154-163.
[http://dx.doi.org/10.1016/j.plantsci.2010.04.012]
[68]
Lal, R. Soil degradation as a reason for inadequate human nutrition. Food Secur., 2009, 1(1), 45-57.
[http://dx.doi.org/10.1007/s12571-009-0009-z]
[69]
Martin-Ortigosa, S.; Valenstein, J.S.; Lin, V.S.Y.; Trewyn, B.G.; Wang, K. Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv. Funct. Mater., 2012, 22(17), 3576-3582.
[http://dx.doi.org/10.1002/adfm.201200359]
[70]
Kampers, G. Die Thüringer und die Goten. Ergänzungsbände zum Reallexikon der Germanischen Altertumskunde; De Gruyter: Berlin, Germany, 2009, p. 265.
[71]
Weiss, P.S. A Conversation with Prof. Mildred dresselhaus: A career in carbon nanomaterials. ACS Nano, 2009, 3(9), 2434-2440.
[http://dx.doi.org/10.1021/nn901147q] [PMID: 19769399]
[72]
Echegoyen, Y. Nano-developments for food packaging and labeling applications. Nanotechnologies in food and agriculture; Springer: Cham, 2015, pp. 141-166.
[http://dx.doi.org/10.1007/978-3-319-14024-7_7]
[73]
Konur, O. Nanotechnology applications in food: A scientometric overview. Nanoscience for Sustainable Agriculture; Springer: Cham, 2019, pp. 683-711.
[http://dx.doi.org/10.1007/978-3-319-97852-9_27]
[74]
Siddiqui, S.; Alrumman, S.A. Influence of nanoparticles on food: An analytical assessment. J. King Saud Univ. Sci., 2021, 33(6), 101530.
[http://dx.doi.org/10.1016/j.jksus.2021.101530]
[75]
Barage, S.; Lakkakula, J.; Sharma, A.; Roy, A.; Alghamdi, S.; Almehmadi, M. Nanomaterial in food packaging: A comprehensive review. J. Nanomater., 2022, 2022, 12.
[http://dx.doi.org/10.1155/2022/6053922]
[76]
Chadha, U.; Bhardwaj, P.; Selvaraj, S.K.; Arasu, K.; Praveena, S. Pavan, A current trends and future perspectives of nanomaterials in food packaging application. J. Nanomater., 2022, 2022, 32.
[http://dx.doi.org/10.1155/2022/2745416]
[77]
Huang, Y.; Mei, L.; Chen, X.; Wang, Q. Recent developments in food packaging based on nanomaterials. Nanomaterials (Basel), 2018, 8(10), 830.
[http://dx.doi.org/10.3390/nano8100830] [PMID: 30322162]
[78]
Pal, M. Nanotechnology: a new approach in food packaging. J Food Microbiol. Safety Hygiene, 2017, 2(2), 8-9.
[http://dx.doi.org/10.4172/2476-2059.1000121]
[79]
Chaudhary, P.; Fatima, F.; Kumar, A. Relevance of nanomaterials in food packaging and its advanced future prospects. J. Inorg. Organomet. Polym. Mater., 2020, 30(12), 5180-5192.
[http://dx.doi.org/10.1007/s10904-020-01674-8] [PMID: 32837459]
[80]
Cerqueira, MA; Vicente, AA; Pastrana, LM Nanotechnology in food packaging: opportunities and challenges. Nanomater. food pack., 2018, 2018, 1-11.
[http://dx.doi.org/10.1016/B978-0-323-51271-8.00001-2]
[81]
Sharma, C.; Dhiman, R.; Rokana, N.; Panwar, H. Nanotechnology: an untapped resource for food packaging. Front. Microbiol., 2017, 8, 1735.
[http://dx.doi.org/10.3389/fmicb.2017.01735] [PMID: 28955314]
[82]
Alfadul, S.M.; Elneshwy, A.A. Use of nanotechnology in food processing, packaging and safety - review. Afr. J. Food Agric. Nutr. Dev., 2010, 10(6)
[http://dx.doi.org/10.4314/ajfand.v10i6.58068]
[83]
He, Y.; Li, H.; Fei, X.; Peng, L. Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohydr. Polym., 2021, 252, 117156.
[http://dx.doi.org/10.1016/j.carbpol.2020.117156] [PMID: 33183607]
[84]
Cano, A.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packag. Shelf Life, 2016, 10, 16-24.
[http://dx.doi.org/10.1016/j.fpsl.2016.07.002]
[85]
Dairi, N.; Ferfera-Harrar, H.; Ramos, M.; Garrigós, M.C. Cellulose acetate/AgNPs-organoclay and/or thymol nano-biocomposite films with combined antimicrobial/antioxidant properties for active food packaging use. Int. J. Biol. Macromol., 2019, 121, 508-523.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.042] [PMID: 30321636]
[86]
Ahmed, J.; Arfat, Y.A.; Bher, A.; Mulla, M.; Jacob, H.; Auras, R. Active chicken meat packaging based on polylactide films and bimetallic Ag-Cu nanoparticles and essential oil. J. Food Sci., 2018, 83(5), 1299-1310.
[http://dx.doi.org/10.1111/1750-3841.14121] [PMID: 29660773]
[87]
Castro-Mayorga, J.L.; Fabra, M.J.; Pourrahimi, A.M.; Olsson, R.T.; Lagaron, J.M. The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications. Food Bioprod. Process., 2017, 101, 32-44.
[http://dx.doi.org/10.1016/j.fbp.2016.10.007]
[88]
Chawengkijwanich, C.; Hayata, Y. Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int. J. Food Microbiol., 2008, 123(3), 288-292.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2007.12.017] [PMID: 18262298]
[89]
Venkatesan, R.; Rajeswari, N. Preparation, mechanical and antimicrobial properties of SiO2/poly (butylene adipate-co-terephthalate) films for active food packaging. Silicon, 2019, 11(5), 2233-2239.
[http://dx.doi.org/10.1007/s12633-015-9402-8]
[90]
Vasile, C. Râpă, M.; Ştefan, M.; Stan, M.; Macavei, S.; Darie-Niţă, R.N.; Barbu-Tudoran, L.; Vodnar, D.C.; Popa, E.E.; Stefan, R.; Borodi, G.; Brebu, M. New PLA/ZnO:Cu/Ag bionanocomposites for food packaging. Express Polym. Lett., 2017, 11(7), 531-544.
[http://dx.doi.org/10.3144/expresspolymlett.2017.51]
[91]
Râpă, M.; Stefan, M.; Popa, P.A.; Toloman, D.; Leostean, C.; Borodi, G.; Vodnar, D.C.; Wrona, M.; Salafranca, J.; Nerín, C.; Barta, D.G.; Suciu, M.; Predescu, C.; Matei, E. Electrospun nanosystems based on PHBV and ZnO for ecological food packaging. Polymers (Basel), 2021, 13(13), 2123.
[http://dx.doi.org/10.3390/polym13132123] [PMID: 34203404]
[92]
Bhardwaj, H.; Sumana, G. Recent advances in nanomaterials integrated immunosensors for food toxin detection. J. Food Sci. Technol., 2021, 59(1), 12-33.
[PMID: 35068548]
[93]
Talan, A.; Mishra, A.; Eremin, S.A.; Narang, J.; Kumar, A.; Gandhi, S. Ultrasensitive electrochemical immuno-sensing platform based on gold nanoparticles triggering chlorpyrifos detection in fruits and vegetables. Biosens. Bioelectron., 2018, 105, 14-21.
[http://dx.doi.org/10.1016/j.bios.2018.01.013] [PMID: 29346076]
[94]
Primožič, M.; Knez, Ž.; Leitgeb, M. (Bio) Nanotechnology in food science—food packaging. Nanomaterials (Basel), 2021, 11(2), 292.
[http://dx.doi.org/10.3390/nano11020292] [PMID: 33499415]
[95]
Chausali, N.; Saxena, J.; Prasad, R. Recent trends in nanotechnology applications of bio-based packaging. J. Agric. Food Res., 2022, 7, 100257.
[http://dx.doi.org/10.1016/j.jafr.2021.100257]
[96]
Ghosh, T.; Raj, G.B.; Dash, K.K. A comprehensive review on nanotechnology based sensors for monitoring quality and shelf life of food products. Measurement. Food, 2022, 7, 100049.
[97]
Sahoo, M.; Vishwakarma, S.; Panigrahi, C. Kumar, J. Nanotechnology: Current applications and future scope in food. Food Front., 2021, 2(1), 3-22.
[http://dx.doi.org/10.1002/fft2.58]
[98]
Kumar, H. Kuča, K.; Bhatia, S.K.; Saini, K.; Kaushal, A.; Verma, R.; Bhalla, T.C.; Kumar, D. Applications of nanotechnology in sensor-based detection of foodborne pathogens. Sensors (Basel), 2020, 20(7), 1966.
[http://dx.doi.org/10.3390/s20071966] [PMID: 32244581]
[99]
Mustafa, F.; Andreescu, S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Advances, 2020, 10(33), 19309-19336.
[http://dx.doi.org/10.1039/D0RA01084G] [PMID: 35515480]
[100]
He, X.; Deng, H.; Hwang, H.M. The current application of nanotechnology in food and agriculture. Yao Wu Shi Pin Fen Xi, 2019, 27(1), 1-21.
[PMID: 30648562]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy