[1]
Bostancıklıoğlu M. Connectivity between gut microbiota and terminal awakenings in Alzheimer’s disease. Curr Alzheimer Res 2023; 20(1): 3-10.
[http://dx.doi.org/10.2174/1567205020666230504153407] [PMID: 37143272]
[http://dx.doi.org/10.2174/1567205020666230504153407] [PMID: 37143272]
[2]
Zhang M, Liu L, Hao L, Yang Q, Cao Q, Jiang N. Alpha rhythm wavelength of electroencephalography signals as a 2 diagnostic biomarker for Alzheimer’s disease. Curr Alzheimer Res 2023; 20(1): 11-28.
[http://dx.doi.org/10.2174/1567205020666230503094441]
[http://dx.doi.org/10.2174/1567205020666230503094441]
[3]
Banerjee S, Yadav S, Aggarwal P, et al. β-sitosterol protects against aluminium chloride-mediated neurotoxicity. Curr Alzheimer Res 2023; 20(1): 29-37.
[http://dx.doi.org/10.2174/1567205020666230308151443] [PMID: 36892031]
[http://dx.doi.org/10.2174/1567205020666230308151443] [PMID: 36892031]
[4]
Singh RK, Kumari N, Kumar Pandey S, et al. Roflumilast protects against neuroinflammatory alterations in brain 4 tissues of lipopolysaccharide-induced mice model. Curr Alzheimer Res 2023; 20(1): 38-47.
[http://dx.doi.org/10.2174/1567205020666230503141817] [PMID: 37138423]
[http://dx.doi.org/10.2174/1567205020666230503141817] [PMID: 37138423]
[5]
Jiang X, Chen L, Fu Q, Ma D, Wang XT, Wang XY. Kidney yang deficiency syndrome exacerbates aβ25-35-induced pathological 5 changes, and ginsenoside re ameliorates synapse lesions in aβ25-35- injected rats with kidney yang deficiency syndrome. Curr Alzheimer Res 2023; 20(1): 48-58.
[http://dx.doi.org/10.2174/1567205020666230512094230] [PMID: 37183470]
[http://dx.doi.org/10.2174/1567205020666230512094230] [PMID: 37183470]
[6]
Gorriz JM, Martín-Clemente R, Puntonet CG, Ortiz A, Ramírez J, Suckling J. A hypothesis-driven method based on machine learning for neuroimaging data analysis. Neurocomputing 2022; 510: 159-71.
[http://dx.doi.org/10.1016/j.neucom.2022.09.001]
[http://dx.doi.org/10.1016/j.neucom.2022.09.001]
[7]
Gorriz JM, Jimenez-Mesa C, Segovia F, Ramirez J, Suckling J. A connection between pattern classification by machine learning and statistical inference with the general linear model. IEEE J Biomed Health Inform 2022; 26(11): 5332-43.
[http://dx.doi.org/10.1109/JBHI.2021.3101662]
[http://dx.doi.org/10.1109/JBHI.2021.3101662]
[8]
Gorriz JM, Jimenez-Mesa C, Romero-Garcia R, et al. Statistical agnostic mapping: A framework in neuroimaging based on concentration inequalities. Inf Fusion 2021; 66: 198-212.
[http://dx.doi.org/10.1016/j.inffus.2020.09.008]
[http://dx.doi.org/10.1016/j.inffus.2020.09.008]
[9]
Jiménez-Mesa C, Arco JE, Valentí-Soler M, et al. Using explainable artificial intelligence in the clock drawing test to reveal the cognitive impairment pattern. Int J Neural Syst 2023; 33(4): 2350015.
[http://dx.doi.org/10.1142/S0129065723500156]
[http://dx.doi.org/10.1142/S0129065723500156]
[10]
Arco JE, Ortiz A, Castillo-Barnes D, Górriz JM, Ramírez J. Ensembling shallow siamese architectures to assess functional asymmetry in Alzheimer’s disease progression. Appl Soft Comput 2023; 134: 109991.
[http://dx.doi.org/10.1016/j.asoc.2023.109991]
[http://dx.doi.org/10.1016/j.asoc.2023.109991]
[11]
Ortiz A, Lozano F, Gorriz JM, Ramirez J, Martinez Murcia FJ. Alzheimer’s Disease Neuroimaging Initiative. Discriminative sparse features for Alzheimer’s disease diagnosis using multimodal image data. Curr Alzheimer Res 2018; 15(1): 67-79.
[http://dx.doi.org/10.2174/1567205014666170922101135] [PMID: 28934923]
[http://dx.doi.org/10.2174/1567205014666170922101135] [PMID: 28934923]
[12]
Zhang Y, Wang S, Sui Y, et al. Multivariate approach for Alzheimer’s disease detection using stationary wavelet entropy and predator-prey particle swarm optimization. J Alzheimers Dis 2023; 65(3): 855-69.
[http://dx.doi.org/10.3233/JAD-170069] [PMID: 28731432]
[http://dx.doi.org/10.3233/JAD-170069] [PMID: 28731432]