Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Identification of Tyrosinase Inhibitory Peptides from Sea Cucumber (Apostichopus japonicus) Collagen by in silico Methods and Study of their Molecular Mechanism

Author(s): Hui Chen*, Yourong Yao, Tingyu Xie, Honghui Guo, Sijin Chen, Yiping Zhang and Zhuan Hong

Volume 24, Issue 9, 2023

Published on: 10 July, 2023

Page: [758 - 766] Pages: 9

DOI: 10.2174/1389203724666230622095013

Price: $65

Abstract

Aims: Identify novel tyrosinase inhibitory peptides from sea cucumber (Apostichopus japonicus) collagen using in silico methods and elucidate the molecular interaction mechanism.

Background: Tyrosinase is a key enzyme in the melanin biosynthesis pathway, to restrain melanin production and reduce the appearance of associated skin diseases, inhibition of tyrosinase activity is one of the most effective methods.

Objective: The collagen from Apostichopus japonicus, which consists of 3,700 amino acid residues, was obtained from the National Center for Biotechnology Information (NCBI) as the accession number of PIK45888.

Method: Virtual hydrolyzed method was used, and the peptides generated were compared to the previously established BIOPEP-UWM database. In addition, peptides were examined for their solubility, toxicity, and tyrosinase-binding capacity.

Result: A tripeptide CME with optimal potential inhibitory activity against tyrosinase was identified, and its inhibitory activity was validated by in vitro experiments. The IC50 value of CME was 0.348 ± 0.02 mM for monophenolase, which was inferior to the positive control peptide glutathione, while it had an IC50 value of 1.436 ± 0.07 mM for diphenolase, which was significantly better than glutathione, and the inhibition effect of CME on tyrosinase was competitive and reversible.

Conclusion: In silico methods were efficient and useful in the identification of new peptides.

Graphical Abstract

[1]
Feng, Y.; Wang, Z.; Chen, J.; Li, H.; Wang, Y.; Ren, D.F.; Lu, J. Separation, identification, and molecular docking of tyrosinase inhibitory peptides from the hydrolysates of defatted walnut (Juglans regia L.) meal. Food Chem., 2021, 353, 129471.
[http://dx.doi.org/10.1016/j.foodchem.2021.129471] [PMID: 33730668]
[2]
Ochiai, A.; Tanaka, S.; Imai, Y.; Yoshida, H.; Kanaoka, T.; Tanaka, T.; Taniguchi, M. New tyrosinase inhibitory decapeptide: Molecular insights into the role of tyrosine residues. J. Biosci. Bioeng., 2016, 121(6), 607-613.
[http://dx.doi.org/10.1016/j.jbiosc.2015.10.010] [PMID: 26589783]
[3]
Joompang, A.; Jangpromma, N.; Choowongkomon, K.; Payoungkiattikun, W.; Tankrathok, A.; Viyoch, J.; Luangpraditkun, K.; Klaynongsruang, S. Evaluation of tyrosinase inhibitory activity and mechanism of Leucrocin I and its modified peptides. J. Biosci. Bioeng., 2020, 130(3), 239-246.
[http://dx.doi.org/10.1016/j.jbiosc.2020.04.002] [PMID: 32389468]
[4]
Karkouch, I.; Tabbene, O.; Gharbi, D.; Ben Mlouka, M.A.; Elkahoui, S.; Rihouey, C.; Coquet, L.; Cosette, P.; Jouenne, T.; Limam, F. Antioxidant, antityrosinase and antibiofilm activities of synthesized peptides derived from Vicia faba protein hydrolysate: A powerful agents in cosmetic application. Ind. Crops Prod., 2017, 109, 310-319.
[http://dx.doi.org/10.1016/j.indcrop.2017.08.025]
[5]
Shen, Z.; Wang, Y.; Guo, Z.; Tan, T.; Zhang, Y. Novel tyrosinase inhibitory peptide with free radical scavenging ability. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1633-1640.
[http://dx.doi.org/10.1080/14756366.2019.1661401] [PMID: 31496313]
[6]
Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci., 2009, 10(6), 2440-2475.
[http://dx.doi.org/10.3390/ijms10062440] [PMID: 19582213]
[7]
Yap, P.G.; Gan, C.Y. Multifunctional tyrosinase inhibitor peptides with copper chelating, uv-absorption and antioxidant activities: kinetic and docking studies. Foods, 2021, 10(3), 675.
[8]
Westerhof, W.; Kooyers, T.J. Hydroquinone and its analogues in dermatology - a potential health risk. J. Cosmet. Dermatol., 2005, 4(2), 55-59.
[http://dx.doi.org/10.1111/j.1473-2165.2005.40202.x] [PMID: 17166200]
[9]
Yap, P-G.; Gan, C-Y. Chicken egg white-advancing from food to skin health therapy: optimization of hydrolysis condition and identification of tyrosinase inhibitor peptides. Foods, 2020, 9(9), 1312.
[10]
Zhuang, Y.; Sun, L.; Zhao, X.; Wang, J.; Hou, H.; Li, B. Antioxidant and melanogenesis-inhibitory activities of collagen peptide from jellyfish (Rhopilema esculentum). J. Sci. Food Agric., 2009, 89(10), 1722-1727.
[http://dx.doi.org/10.1002/jsfa.3645]
[11]
Zhang, X.; Bian, G.; Kang, P.; Cheng, X.; Yan, K.; Liu, Y.; Gao, Y.; Li, D. Recent advance in the discovery of tyrosinase inhibitors from natural sources via separation methods. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 2104-2117.
[http://dx.doi.org/10.1080/14756366.2021.1983559] [PMID: 34579614]
[12]
Pérez-Vega, J.A.; Olivera-Castillo, L.; Gómez-Ruiz, J.Á.; Hernández-Ledesma, B. Release of multifunctional peptides by gastrointestinal digestion of sea cucumber (Isostichopus badionotus). J. Funct. Foods, 2013, 5(2), 869-877.
[http://dx.doi.org/10.1016/j.jff.2013.01.036]
[13]
Liu, Z.; Tuo, F.; Song, L.; Liu, Y.; Dong, X.; Li, D.; Zhou, D.; Shahidi, F. Action of trypsin on structural changes of collagen fibres from sea cucumber (Stichopus japonicus). Food Chem., 2018, 256, 113-118.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.117] [PMID: 29606426]
[14]
Nakchum, L.; Kim, S.M. Preparation of squid skin collagen hydrolysate as an antihyaluronidase, antityrosinase, and antioxidant agent. Prep. Biochem. Biotechnol., 2016, 46(2), 123-130.
[http://dx.doi.org/10.1080/10826068.2014.995808] [PMID: 25568978]
[15]
Fan, Y.; Yu, Z.; Zhao, W.; Ding, L.; Zheng, F.; Li, J.; Liu, J. Identification and molecular mechanism of angiotensin-converting enzyme inhibitory peptides from Larimichthys crocea titin. Food Sci. Hum. Wellness, 2020, 9(3), 257-263.
[http://dx.doi.org/10.1016/j.fshw.2020.04.001]
[16]
Park, J.I.; Lee, J.E.; Shin, H.J.; Song, S.; Lee, W.K.; Hwang, J.S. Oral administration of glycine and leucine dipeptides improves skin hydration and elasticity in uvb-irradiated hairless mice. Biomol. Ther., 2017, 25(5), 528-534.
[http://dx.doi.org/10.4062/biomolther.2017.089] [PMID: 28655072]
[17]
Han, K.; Hong, K.B.; Ahn, Y.; Jo, K.; Jung, J.; Suh, H.J. Effects of collagen-tripeptide and galacto-oligosaccharide mixture on skin photoaging inhibition in UVB-exposed hairless mice. Photochem. Photobiol., 2022, 98(5), 1172-1181.
[http://dx.doi.org/10.1111/php.13618] [PMID: 35294989]
[18]
Singh, V.; Dhankhar, P.; Dalal, V.; Tomar, S.; Kumar, P. In-silico functional and structural annotation of hypothetical protein from Klebsiella pneumonia: A potential drug target. J. Mol. Graph. Model., 2022, 116, 108262.
[http://dx.doi.org/10.1016/j.jmgm.2022.108262] [PMID: 35839717]
[19]
Abd-Allah, W.H.; Osman, E.E.A.; Anwar, M.A.E.M.; Attia, H.N.; El Moghazy, S.M. Design, synthesis and docking studies of novel benzopyrone derivatives as anticonvulsants. Bioorg. Chem., 2020, 98, 103738.
[http://dx.doi.org/10.1016/j.bioorg.2020.103738] [PMID: 32179283]
[20]
Gao, H.; Jiang, Y.; Zhan, J.; Sun, Y. Pharmacophore-based drug design of AChE and BChE dual inhibitors as potential anti-Alzheimer’s disease agents. Bioorg. Chem., 2021, 114, 105149.
[http://dx.doi.org/10.1016/j.bioorg.2021.105149] [PMID: 34252860]
[21]
Kong, S.; Choi, H-R.; Kim, Y.J.; Lee, Y.S.; Park, K.C.; Kwak, S.Y. Milk Protein-Derived Antioxidant Tetrapeptides as Potential Hypopigmenting Agents. Antioxidants, 2020, 9, 11.
[22]
Kubglomsong, S.; Theerakulkait, C.; Reed, R.L.; Yang, L.; Maier, C.S.; Stevens, J.F. Isolation and identification of tyrosinase-inhibitory and copper-chelating peptides from hydrolyzed rice-bran-derived albumin. J. Agric. Food Chem., 2018, 66(31), 8346-8354.
[http://dx.doi.org/10.1021/acs.jafc.8b01849] [PMID: 30016586]
[23]
Iram, D.; Sansi, M.S.; Zanab, S.; Vij, S.; Ashutosh; Meena, S. In silico identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins—a molecular docking study. J. Food Biochem., 2022, 46(11), e14137.
[http://dx.doi.org/10.1111/jfbc.14137] [PMID: 35352361]
[24]
Yu, Z.; Kan, R.; Wu, S.; Guo, H.; Zhao, W.; Ding, L.; Zheng, F.; Liu, J. Xanthine oxidase inhibitory peptides derived from tuna protein: virtual screening, inhibitory activity, and molecular mechanisms. J. Sci. Food Agric., 2021, 101(4), 1349-1354.
[http://dx.doi.org/10.1002/jsfa.10745] [PMID: 32820534]
[25]
Ookubo, N.; Michiue, H.; Kitamatsu, M.; Kamamura, M.; Nishiki, T.; Ohmori, I.; Matsui, H. The transdermal inhibition of melanogenesis by a cell-membrane-permeable peptide delivery system based on poly-arginine. Biomaterials, 2014, 35(15), 4508-4516.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.052] [PMID: 24602570]
[26]
Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM database of bioactive peptides: current opportunities. Int. J. Mol. Sci., 2019, 20(23), 5978.
[http://dx.doi.org/10.3390/ijms20235978] [PMID: 31783634]
[27]
Attaallah, R.; Amine, A. The kinetic and analytical aspects of enzyme competitive inhibition: sensing of tyrosinase inhibitors. Biosensors, 2021, 11(9), 322.
[http://dx.doi.org/10.3390/bios11090322] [PMID: 34562912]
[28]
Khan, M.T.H. Novel tyrosinase inhibitors from natural resources - their computational studies. Curr. Med. Chem., 2012, 19(14), 2262-2272.
[http://dx.doi.org/10.2174/092986712800229041] [PMID: 22414108]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy