Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Perspective

Prediction of Toxicity of Nanomaterials Using QSAR Approach

Author(s): Dilpreet Singh* and Pooja A. Chawla

Volume 19, Issue 6, 2023

Published on: 12 July, 2023

Page: [436 - 439] Pages: 4

DOI: 10.2174/1573411019666230619151445

Price: $65

Abstract

Building mathematical models based on the analysis of physiochemical systems is known as computational modeling. It may be used to combine different types of data and gain a thorough grasp of how they are correlated. Computational modeling techniques cannot replace true experimental techniques or function as a real mechanism. Despite this, they showed to be highly effective at displaying the outcomes for a suggested technique. Nanotechnology is a developing field of producing cost-effective nanomaterials. The toxicity of nano-based products may be significantly affected by the presence of metal impurities and latent waste. The contaminants introduced into the nano-products during manufacturing toxicate the cells. A limited number of techniques for the precise detection of nanotoxicity in nanomaterials has created interest in scientists for the development of newer computational techniques like QSAR. QSAR gives precise results based on ligand descriptors and mathematical algorithms to create functionalized bandwidth that detects toxicity at nano-levels. Now, widespread literature revealed QSAR workflow for the precise detection of various toxicants in nano-materials. The current study focused on the basic principles of QSAR in nanotoxicity predictions along with the applications and future prospects.

Graphical Abstract

[1]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed., 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[2]
Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Peana, M.; Medici, S.; Zoroddu, M.A. Toxicity of nanoparticles: Etiology and mechanisms. In: Antimicrobial nanoarchitectonics; Elsevier, 2017; pp. 511-546.
[http://dx.doi.org/10.1016/B978-0-323-52733-0.00018-5]
[3]
Wuthrich, K.; Weckhuysen, B.; Rongy, L.; De Wit, A. Computational modeling: From chemistry to materials to biology. Proceedings Of The 25th Solvay Conference On Chemistry., Brussels, Belgium16 – 19 October 20192020, p. 372.
[4]
Kwon, S.; Bae, H.; Jo, J.; Yoon, S. Comprehensive ensemble in QSAR prediction for drug discovery. BMC Bioinformatics, 2019, 20(1), 521.
[http://dx.doi.org/10.1186/s12859-019-3135-4] [PMID: 31655545]
[5]
Williams, E.S.; Panko, J.; Paustenbach, D.J. The European Union’s REACH regulation: A review of its history and requirements. Crit. Rev. Toxicol., 2009, 39(7), 553-575.
[http://dx.doi.org/10.1080/10408440903036056] [PMID: 19650717]
[6]
De, P.; Kar, S.; Ambure, P.; Roy, K. Prediction reliability of QSAR models: An overview of various validation tools. Arch. Toxicol., 2022, 96(5), 1279-1295.
[http://dx.doi.org/10.1007/s00204-022-03252-y] [PMID: 35267067]
[7]
Peng, T.; Wei, C.; Yu, F.; Xu, J.; Zhou, Q.; Shi, T.; Hu, X. Predicting nanotoxicity by an integrated machine learning and metabolomics approach. Environ. Pollut., 2020, 267, 115434.
[http://dx.doi.org/10.1016/j.envpol.2020.115434] [PMID: 32841907]
[8]
Tantra, R.; Oksel, C.; Puzyn, T.; Wang, J.; Robinson, K.N.; Wang, X.Z.; Ma, C.Y.; Wilkins, T. Nano(Q)SAR: Challenges, pitfalls and perspectives. Nanotoxicology, 2015, 9(5), 636-642.
[http://dx.doi.org/10.3109/17435390.2014.952698] [PMID: 25211549]
[9]
Garnett, M.C.; Kallinteri, P. Nanomedicines and nanotoxicology: Some physiological principles. Occup. Med., 2006, 56(5), 307-311.
[http://dx.doi.org/10.1093/occmed/kql052] [PMID: 16868128]
[10]
Zielińska, A.; Costa, B.; Ferreira, M.V.; Miguéis, D.; Louros, J.M.S.; Durazzo, A.; Lucarini, M.; Eder, P.; Chaud, M.V.; Morsink, M.; Willemen, N.; Severino, P.; Santini, A.; Souto, E.B. Nanotoxicology and nanosafety: Safety-by-design and testing at a glance. Int. J. Environ. Res. Public Health, 2020, 17(13), 4657.
[http://dx.doi.org/10.3390/ijerph17134657] [PMID: 32605255]
[11]
Saini, B.; Srivastava, S. Nanotoxicity prediction using computational modelling-review and future directions. IOP Conf. Series Mater. Sci. Eng., 2018, 348(1), 012005.
[http://dx.doi.org/10.1088/1757-899X/348/1/012005]
[12]
Huang, H.J.; Lee, Y.H.; Hsu, Y.H.; Liao, C.T.; Lin, Y.F.; Chiu, H.W. Current strategies in assessment of nanotoxicity: Alternatives to in vivo animal testing. Int. J. Mol. Sci., 2021, 22(8), 4216.
[http://dx.doi.org/10.3390/ijms22084216] [PMID: 33921715]
[13]
Budama-Kilinc, Y.; Cakir-Koc, R.; Zorlu, T.; Ozdemir, B.; Karavelioglu, Z.; Egil, A.C.; Kecel-Gunduz, S. Assessment of nano-toxicity and safety profiles of silver nanoparticles. In: Silver Nanoparticles - Fabrication, Characterization and Applications; IntechOpen, 2018.
[http://dx.doi.org/10.5772/intechopen.75645]
[14]
Suh, W.H.; Suslick, K.S.; Stucky, G.D.; Suh, Y.H. Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol., 2009, 87(3), 133-170.
[http://dx.doi.org/10.1016/j.pneurobio.2008.09.009] [PMID: 18926873]
[15]
Maynard, A.D.; Warheit, D.B.; Philbert, M.A. The new toxicology of sophisticated materials: Nanotoxicology and beyond. Toxicol. Sci., 2011, 120(Suppl. 1), S109-S129.
[http://dx.doi.org/10.1093/toxsci/kfq372] [PMID: 21177774]
[16]
Shao, C.Y.; Chen, S.Z.; Su, B.H.; Tseng, Y.J.; Esposito, E.X.; Hopfinger, A.J. Dependence of QSAR models on the selection of trial descriptor sets: A demonstration using nanotoxicity endpoints of decorated nanotubes. J. Chem. Inf. Model., 2013, 53(1), 142-158.
[http://dx.doi.org/10.1021/ci3005308] [PMID: 23252880]
[17]
(a) Esposito, E.X.; Hopfinger, A.J.; Shao, C.Y.; Su, B.H.; Chen, S.Z.; Tseng, Y.J. Exploring possible mechanisms of action for the nanotoxicity and protein binding of decorated nanotubes: Interpretation of physicochemical properties from optimal QSAR models. Toxicol. Appl. Pharmacol., 2015, 288(1), 52-62.;
(b) Kotzabasaki, M.I.; Sotiropoulos, I.; Sarimveis, H. QSAR modeling of the toxicity classification of superparamagnetic iron oxide nanoparticles (SPIONs) in stem-cell monitoring applications: An integrated study from data curation to model development. RSC Advances, 2020, 10(9), 5383-5391.
[PMID: 35498319]
[18]
Pan, Y.; Li, T.; Cheng, J.; Telesca, D.; Zink, J.I.; Jiang, J. Nano-QSAR modeling for predicting the cytotoxicity of metal oxide nanoparticles using novel descriptors. RSC Advances, 2016, 6(31), 25766-25775.
[http://dx.doi.org/10.1039/C6RA01298A]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy