Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Navigated Transcranial Magnetic Stimulation (nTMS) based Preoperative Planning for Brain Tumor Treatment

Author(s): Hammad Riaz, Mohammad Uzair, Muhammad Arshad, Ali Hamza, Nedal Bukhari, Faisal Azam and Shahid Bashir*

Volume 23, Issue 7, 2024

Published on: 07 July, 2023

Page: [883 - 893] Pages: 11

DOI: 10.2174/1871527322666230619103429

Price: $65

Abstract

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique for analyzing the central and peripheral nervous system. TMS could be a powerful therapeutic technique for neurological disorders. TMS has also shown potential in treating various neurophysiological complications, such as depression, anxiety, and obsessive-compulsive disorders, without pain and analgesics. Despite advancements in diagnosis and treatment, there has been an increase in the prevalence of brain cancer globally. For surgical planning, mapping brain tumors has proven challenging, particularly those localized in expressive regions. Preoperative brain tumor mapping may lower the possibility of postoperative morbidity in surrounding areas. A navigated TMS (nTMS) uses magnetic resonance imaging (MRI) to enable precise mapping during navigated brain stimulation. The resulting magnetic impulses can be precisely applied to the target spot in the cortical region by employing nTMS. This review focuses on nTMS for preoperative planning for brain cancer. This study reviews several studies on TMS and its subtypes in treating cancer and surgical planning. nTMS gives wider and improved dimensions of preoperative planning of the motor-eloquent areas in brain tumor patients. nTMS also predicts postoperative neurological deficits, which might be helpful in counseling patients. nTMS have the potential for finding possible abnormalities in the motor cortex areas.

Graphical Abstract

[1]
Thorbinson C, Kilday JP. Childhood malignant brain tumors: Balancing the bench and bedside. Cancers 2021; 13(23): 6099.
[http://dx.doi.org/10.3390/cancers13236099] [PMID: 34885207]
[2]
Rehman A, Khan MA, Saba T, Mehmood Z, Tariq U, Ayesha N. Microscopic brain tumor detection and classification using 3D CNN and feature selection architecture. Microsc Res Tech 2021; 84(1): 133-49.
[http://dx.doi.org/10.1002/jemt.23597] [PMID: 32959422]
[3]
Sathornsumetee S, Rich JN. New approaches to primary brain tumor treatment. Anticancer Drugs 2006; 17(9): 1003-16.
[http://dx.doi.org/10.1097/01.cad.0000231473.00030.1f] [PMID: 17001172]
[4]
Sadad T, Rehman A, Munir A, et al. Brain tumor detection and multi-classification using advanced deep learning techniques. Microsc Res Tech 2021; 84(6): 1296-308.
[http://dx.doi.org/10.1002/jemt.23688] [PMID: 33400339]
[5]
Graham C, Cloughesy T. Brain tumor treatment: Chemotherapy and other new developments. Semin Oncol Nurs 2004; 20(4): 260-72.
[http://dx.doi.org/10.1016/S0749-2081(04)00090-7] [PMID: 15612602]
[6]
Durand T, Bernier MO, Léger I, et al. Cognitive outcome after radiotherapy in brain tumor. Curr Opin Oncol 2015; 27(6): 510-5.
[http://dx.doi.org/10.1097/CCO.0000000000000227] [PMID: 26371778]
[7]
Mut M. Surgical treatment of brain metastasis: A review. Clin Neurol Neurosurg 2012; 114(1): 1-8.
[http://dx.doi.org/10.1016/j.clineuro.2011.10.013] [PMID: 22047649]
[8]
Bindal AK, Bindal RK, Hess KR, et al. Surgery versus radiosurgery in the treatment of brain metastasis. J Neurosurg 1996; 84(5): 748-54.
[http://dx.doi.org/10.3171/jns.1996.84.5.0748] [PMID: 8622147]
[9]
Al-Mefty O, Kersh JE, Routh A, Smith RR. The long-term side effects of radiation therapy for benign brain tumors in adults. J Neurosurg 1990; 73(4): 502-12.
[http://dx.doi.org/10.3171/jns.1990.73.4.0502] [PMID: 2204689]
[10]
Nizard J, Levesque A, Denis N, et al. Interest of repetitive transcranial magnetic stimulation of the motor cortex in the management of refractory cancer pain in palliative care: Two case reports. Palliat Med 2015; 29(6): 564-8.
[http://dx.doi.org/10.1177/0269216315574260] [PMID: 25739966]
[11]
Bashir S, Uzair M, Abualait T, et al. Effects of transcranial magnetic stimulation on neurobiological changes in Alzheimer’s disease (Review). Mol Med Rep 2022; 25(4): 109.
[http://dx.doi.org/10.3892/mmr.2022.12625] [PMID: 35119081]
[12]
Mi TM, Garg S, Ba F, et al. Repetitive transcranial magnetic stimulation improves Parkinson’s freezing of gait via normalizing brain connectivity. NPJ Parkinsons Dis 2020; 6(1): 16.
[http://dx.doi.org/10.1038/s41531-020-0118-0] [PMID: 32699818]
[13]
Xie Q, Yang Y-W, Pan W-X. Combined effect of repetitive transcranial magnetic stimulation and physical exercise on cortical plasticity. Neural Regen Res 2020; 15(11): 1986-94.
[http://dx.doi.org/10.4103/1673-5374.282239] [PMID: 32394946]
[14]
Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985; 325(8437): 1106-7.
[http://dx.doi.org/10.1016/S0140-6736(85)92413-4] [PMID: 2860322]
[15]
Bashir S, Uzair M, Abualait T, et al. Transcranial magnetic stimulation in animal models of neurodegeneration. Neural Regen Res 2022; 17(2): 251-65.
[http://dx.doi.org/10.4103/1673-5374.317962] [PMID: 34269184]
[16]
Luber B, Lisanby SH. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neuroimage 2014; 85(0 3): 961-70.
[http://dx.doi.org/10.1016/j.neuroimage.2013.06.007] [PMID: 23770409]
[17]
Romero MC, Davare M, Armendariz M, Janssen P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat Commun 2019; 10(1): 2642.
[http://dx.doi.org/10.1038/s41467-019-10638-7] [PMID: 31201331]
[18]
Fox MD, Halko MA, Eldaief MC, Pascual-Leone A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). Neuroimage 2012; 62(4): 2232-43.
[http://dx.doi.org/10.1016/j.neuroimage.2012.03.035] [PMID: 22465297]
[19]
Magsood H, Hadimani RL. Development of anatomically accurate brain phantom for experimental validation of stimulation strengths during TMS. Mater Sci Eng C 2021; 120: 111705.
[http://dx.doi.org/10.1016/j.msec.2020.111705] [PMID: 33545864]
[20]
Goto Y, Hosomi K, Shimokawa T, et al. Pilot study of repetitive transcranial magnetic stimulation in patients with chemotherapy-induced peripheral neuropathy. J Clin Neurosci 2020; 73: 101-7.
[http://dx.doi.org/10.1016/j.jocn.2020.01.020] [PMID: 32063448]
[21]
Khedr EM, Kotb HI, Mostafa MG, et al. Repetitive transcranial magnetic stimulation in neuropathic pain secondary to malignancy: A randomized clinical trial. Eur J Pain 2015; 19(4): 519-27.
[http://dx.doi.org/10.1002/ejp.576] [PMID: 25142867]
[22]
Sollmann N, Ille S, Hauck T, et al. The impact of preoperative language mapping by repetitive navigated transcranial magnetic stimulation on the clinical course of brain tumor patients. BMC Cancer 2015; 15(1): 261.
[http://dx.doi.org/10.1186/s12885-015-1299-5] [PMID: 25885761]
[23]
Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ 2018; 25(1): 65-80.
[http://dx.doi.org/10.1038/cdd.2017.186] [PMID: 29149100]
[24]
Rogasch NC, Fitzgerald PB. Assessing cortical network properties using TMS-EEG. Hum Brain Mapp 2013; 34(7): 1652-69.
[http://dx.doi.org/10.1002/hbm.22016] [PMID: 22378543]
[25]
Ziemann U, Ishii K, Borgheresi A, et al. Dissociation of the pathways mediating ipsilateral and contralateral motor‐evoked potentials in human hand and arm muscles. J Physiol 1999; 518(3): 895-906.
[http://dx.doi.org/10.1111/j.1469-7793.1999.0895p.x] [PMID: 10420023]
[26]
Reithler J, Peters JC, Sack AT. Multimodal transcranial magnetic stimulation: Using concurrent neuroimaging to reveal the neural network dynamics of noninvasive brain stimulation. Prog Neurobiol 2011; 94(2): 149-65.
[http://dx.doi.org/10.1016/j.pneurobio.2011.04.004] [PMID: 21527312]
[27]
De Gennaro L, Fratello F, Marzano C, et al. Cortical plasticity induced by transcranial magnetic stimulation during wakefulness affects electroencephalogram activity during sleep. PLoS One 2008; 3(6): e2483.
[http://dx.doi.org/10.1371/journal.pone.0002483] [PMID: 18575583]
[28]
Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M. Natural frequencies of human corticothalamic circuits. J Neurosci 2009; 29(24): 7679-85.
[http://dx.doi.org/10.1523/JNEUROSCI.0445-09.2009] [PMID: 19535579]
[29]
Guller A, Clement S, Heng B, Sowman P, Guillemin G, Goldys E. Potential anticancer and immunomodulatory effects of TMS magnetic fields. Asia Pac J Clin Oncol 2021; 17(S5): 44-5.
[30]
Popov IA, Kit OI, Shikhlyarova AI, Frantsiyants EM, Rostorguev EE, Atmachidi DP, et al. Preliminary assessment of low-intensity transcranial magnetic stimulation (TMS) during the treatment for brain glioblastomas. American Society of Clinical Oncology 2020.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.2545]
[31]
Leao MT, Machetanz K, Sandritter J, et al. Repetitive transcranial magnetic stimulation for tinnitus treatment in vestibular schwannoma: A pilot study. Front Neurol 2021; 12: 646014.
[http://dx.doi.org/10.3389/fneur.2021.646014] [PMID: 33912127]
[32]
Emadi M, Rezaei M, Farahani F, Haghighi M, Shayganfar M. Repetitive transcranial magnetic stimulation for tinnitus: influence of loudness and frequency of tinnitus on tinnitus suppression. Aud Vest Res 2016; 25(3): 140-4.
[33]
Lang S, Gan LS, McLennan C, Kirton A, Monchi O, Kelly JJP. Preoperative transcranial direct current stimulation in glioma patients: A proof of concept pilot study. Front Neurol 2020; 11: 593950.
[http://dx.doi.org/10.3389/fneur.2020.593950] [PMID: 33329346]
[34]
Tokarev AS, Rak VA, Sinkin MV, et al. Appliance of navigated transcranial magnetic stimulation in radiosurgery for brain metastases. J Clin Neurophysiol 2020; 37(1): 50-5.
[http://dx.doi.org/10.1097/WNP.0000000000000621] [PMID: 31335563]
[35]
Julkunen P, Säisänen L, Danner N, et al. Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage 2009; 44(3): 790-5.
[http://dx.doi.org/10.1016/j.neuroimage.2008.09.040] [PMID: 18976714]
[36]
Lioumis P, Zhdanov A, Mäkelä N, et al. A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation. J Neurosci Methods 2012; 204(2): 349-54.
[http://dx.doi.org/10.1016/j.jneumeth.2011.11.003] [PMID: 22108143]
[37]
Picht T, Schmidt S, Brandt S, et al. Preoperative functional mapping for rolandic brain tumor surgery: Comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery 2011; 69(3): 581-9.
[http://dx.doi.org/10.1227/NEU.0b013e3182181b89] [PMID: 21430587]
[38]
Ruohonen J, Karhu J. Navigated transcranial magnetic stimulation. Neurophysiol Clin 2010; 40(1): 7-17.
[http://dx.doi.org/10.1016/j.neucli.2010.01.006] [PMID: 19910249]
[39]
Lefaucheur JP, Picht T. The value of preoperative functional cortical mapping using navigated TMS. Neurophysiol Clin 2016; 46(2): 125-33.
[http://dx.doi.org/10.1016/j.neucli.2016.05.001] [PMID: 27229765]
[40]
Sollmann N, Krieg SM, Säisänen L, Julkunen P. Mapping of motor function with neuronavigated transcranial magnetic stimulation: A review on clinical application in brain tumors and methods for ensuring feasible accuracy. Brain Sci 2021; 11(7): 897.
[http://dx.doi.org/10.3390/brainsci11070897] [PMID: 34356131]
[41]
Krings T, Chiappa KH, Foltys H, Reinges MH, Cosgrove RG, Thron A. Introducing navigated transcranial magnetic stimulation as a refined brain mapping methodology. Neurosurg Rev 2001; 24(4-6): 171-9.
[http://dx.doi.org/10.1007/s101430100151] [PMID: 11778822]
[42]
Julkunen P. Methods for estimating cortical motor representation size and location in navigated transcranial magnetic stimulation. J Neurosci Methods 2014; 232: 125-33.
[http://dx.doi.org/10.1016/j.jneumeth.2014.05.020] [PMID: 24875623]
[43]
Engelhardt M, Schneider H, Gast T, Picht T. Estimation of the resting motor threshold (RMT) in transcranial magnetic stimulation using relative-frequency and threshold-hunting methods in brain tumor patients. Acta Neurochir (Wien) 2019; 161(9): 1845-51.
[http://dx.doi.org/10.1007/s00701-019-03997-z] [PMID: 31286238]
[44]
Sollmann N, Zhang H, Kelm A, et al. Paired-pulse navigated TMS is more effective than single-pulse navigated TMS for mapping upper extremity muscles in brain tumor patients. Clin Neurophysiol 2020; 131(12): 2887-98.
[http://dx.doi.org/10.1016/j.clinph.2020.09.025] [PMID: 33166740]
[45]
Schiavao LJV, Neville Ribeiro I, Yukie Hayashi C, et al. Assessing the Capabilities of Transcranial Magnetic Stimulation (TMS) to Aid in the Removal of Brain Tumors Affecting the Motor Cortex: A Systematic Review. Neuropsychiatr Dis Treat 2022; 18: 1219-35.
[http://dx.doi.org/10.2147/NDT.S359855] [PMID: 35734549]
[46]
Seynaeve L, Haeck T, Gramer M, Maes F, De Vleeschouwer S, Van Paesschen W. Optimized preoperative motor cortex mapping in brain tumors using advanced processing of transcranial magnetic stimulation data. Neuroimage Clin 2019; 21: 101657.
[http://dx.doi.org/10.1016/j.nicl.2019.101657] [PMID: 30660662]
[47]
Raffa G, Scibilia A, Conti A, et al. Multimodal surgical treatment of high-grade gliomas in the motor area: The impact of the combination of navigated transcranial magnetic stimulation and fluorescein-guided resection. World Neurosurg 2019; 128: e378-90.
[http://dx.doi.org/10.1016/j.wneu.2019.04.158] [PMID: 31029822]
[48]
Liu S, Wei W, Chen Y, Hugo P, Zhao J. Visual-spatial ability predicts academic achievement through arithmetic and reading abilities. Front Psychol 2021; 11: 591308.
[http://dx.doi.org/10.3389/fpsyg.2020.591308] [PMID: 33897506]
[49]
Radan F, Johnston N, Nguyen CH, et al. Investigating visual–spatial abilities in students and expert physical therapists. Physiother Can 2020; 72(2): 132-6.
[http://dx.doi.org/10.3138/ptc-2018-0091] [PMID: 32494097]
[50]
Raffa G, Quattropani MC, Marzano G, et al. Mapping and preserving the visuospatial network by repetitive nTMS and DTI tractography in patients with right parietal lobe tumors. Front Oncol 2021; 11: 677172.
[http://dx.doi.org/10.3389/fonc.2021.677172] [PMID: 34249716]
[51]
Nossek E, Matot I, Shahar T, et al. Failed awake craniotomy: A retrospective analysis in 424 patients undergoing craniotomy for brain tumor. J Neurosurg 2013; 118(2): 243-9.
[http://dx.doi.org/10.3171/2012.10.JNS12511] [PMID: 23121432]
[52]
Ille S, Drummer K, Giglhuber K, et al. Mapping of arithmetic processing by navigated repetitive transcranial magnetic stimulation in patients with parietal brain tumors and correlation with postoperative outcome. World Neurosurg 2018; 114: e1016-30.
[http://dx.doi.org/10.1016/j.wneu.2018.03.136] [PMID: 29597021]
[53]
Natalizi F, Piras F, Vecchio D, Spalletta G, Piras F. Preoperative navigated transcranial magnetic stimulation: New insight for brain tumor-related language mapping. J Pers Med 2022; 12(10): 1589.
[http://dx.doi.org/10.3390/jpm12101589] [PMID: 36294728]
[54]
Senova S, Lefaucheur JP, Brugières P, et al. Case report: multimodal functional and structural evaluation combining pre-operative nTMS mapping and neuroimaging with intraoperative CT-Scan and brain shift correction for brain tumor surgical resection. Front Hum Neurosci 2021; 15: 646268.
[http://dx.doi.org/10.3389/fnhum.2021.646268] [PMID: 33716700]
[55]
Coburger J, Musahl C, Henkes H, et al. Comparison of navigated transcranial magnetic stimulation and functional magnetic resonance imaging for preoperative mapping in rolandic tumor surgery. Neurosurg Rev 2013; 36(1): 65-76.
[http://dx.doi.org/10.1007/s10143-012-0413-2] [PMID: 22886323]
[56]
Jung J, Lavrador J-P, Patel S, et al. First United Kingdom experience of navigated transcranial magnetic stimulation in preoperative mapping of brain tumors. World neurosurgery 2019; 122: e1578-1587.
[57]
Motomura K, Takeuchi H, Nojima I, et al. Navigated repetitive transcranial magnetic stimulation as preoperative assessment in patients with brain tumors. Sci Rep 2020; 10(1): 9044.
[http://dx.doi.org/10.1038/s41598-020-65944-8] [PMID: 32493943]
[58]
Picht T, Schulz J, Hanna M, Schmidt S, Suess O, Vajkoczy P. Assessment of the influence of navigated transcranial magnetic stimulation on surgical planning for tumors in or near the motor cortex. Neurosurgery 2012; 70(5): 1248-57.
[http://dx.doi.org/10.1227/NEU.0b013e318243881e] [PMID: 22127045]
[59]
Caffo M, Cardali SM, Raffa G, et al. The value of preoperative planning based on navigated transcranical magnetic stimulation for surgical treatment of brain metastases located in the perisylvian area. World Neurosurg 2020; 134: e442-52.
[http://dx.doi.org/10.1016/j.wneu.2019.10.090] [PMID: 31655240]
[60]
Krieg SM, Sollmann N, Obermueller T, et al. Changing the clinical course of glioma patients by preoperative motor mapping with navigated transcranial magnetic brain stimulation. BMC Cancer 2015; 15(1): 231.
[http://dx.doi.org/10.1186/s12885-015-1258-1] [PMID: 25884404]
[61]
Haddad AF, Young JS, Berger MS, Tarapore PE. Preoperative Applications of Navigated Transcranial Magnetic Stimulation. Front Neurol 2021; 11: 628903.
[http://dx.doi.org/10.3389/fneur.2020.628903] [PMID: 33551983]
[62]
Lavrador JP, Ghimire P, Brogna C, et al. Pre-and intraoperative mapping for tumors in the primary motor cortex: Decision-making process in surgical resection. J Neurol Surg A Cent Eur Neurosurg 2021; 82(4): 333-43.
[http://dx.doi.org/10.1055/s-0040-1709729] [PMID: 32438419]
[63]
Lavrador JP, Gioti I, Hoppe S, et al. Altered motor excitability in patients with diffuse gliomas involving motor eloquent areas: The impact of tumor grading. Neurosurgery 2021; 88(1): 183-92.
[http://dx.doi.org/10.1093/neuros/nyaa354] [PMID: 32888309]
[64]
Machetanz K, Wiesinger L, Leao MT, et al. Interhemispheric differences in time-frequency representation of motor evoked potentials in brain tumor patients. Clin Neurophysiol 2021; 132(11): 2780-8.
[http://dx.doi.org/10.1016/j.clinph.2021.07.024] [PMID: 34583121]
[65]
Abboud T, Asendorf T, Heinrich J, et al. Transcranial versus Direct Cortical Stimulation for Motor-Evoked Potentials during Resection of Supratentorial Tumors under General Anesthesia (The TRANSEKT-Trial): Study Protocol for a Randomized Controlled Trial. Biomedicines 2021; 9(10): 1490.
[http://dx.doi.org/10.3390/biomedicines9101490] [PMID: 34680607]
[66]
Wang Z, Dreyer F, Pulvermüller F, et al. Support vector machine based aphasia classification of transcranial magnetic stimulation language mapping in brain tumor patients. Neuroimage Clin 2021; 29: 102536.
[http://dx.doi.org/10.1016/j.nicl.2020.102536] [PMID: 33360768]
[67]
Wang Z, Fekonja L, Dreyer F, Vajkoczy P, Picht T. Transcranial magnetic stimulation language mapping analysis revisited: Machine learning classification of 90 patients reveals distinct reorganization pattern in aphasic patients. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.02.06.20020693]
[68]
Mirchandani AS, Beyh A, Lavrador JP, Howells H, Dell’Acqua F, Vergani F. Altered corticospinal microstructure and motor cortex excitability in gliomas: An advanced tractography and transcranial magnetic stimulation study. J Neurosurg 2021; 134(5): 1368-76.
[http://dx.doi.org/10.3171/2020.2.JNS192994] [PMID: 32357341]
[69]
Rizzo V, Terranova C, Raffa G, et al. Cortical excitability and connectivity in patients with brain tumors. Front Neurol 2021; 12: 673836.
[http://dx.doi.org/10.3389/fneur.2021.673836] [PMID: 34512501]
[70]
Neville IS, Gomes dos Santos A, Almeida CC, Hayashi CY, Solla DJF, Galhardoni R, et al. Evaluation of changes in preoperative cortical excitability by navigated transcranial magnetic stimulation in patients with brain tumor. Frontiers in Neurology 2021; 1861.
[http://dx.doi.org/10.3389/fneur.2020.582262]
[71]
Schwendner MJ, Sollmann N, Diehl CD, et al. The role of navigated transcranial magnetic stimulation motor mapping in adjuvant radiotherapy planning in patients with supratentorial brain metastases. Front Oncol 2018; 8: 424.
[http://dx.doi.org/10.3389/fonc.2018.00424] [PMID: 30333959]
[72]
Atmachidi DP, Shikhlyarova AI, Rostorguev EE, Protasova TP, Korobeynikova EP. Effectiveness of transcranial magnetic stimulation in neurooncological patients. American Society of Clinical Oncology 2015.
[http://dx.doi.org/10.1200/jco.2015.33.15_suppl.2042]
[73]
Yamaguchi S, Ogiue-Ikeda M, Sekino M, Ueno S. Effects of pulsed magnetic stimulation on tumor development and immune functions in mice. Bioelectromagnetics 2006; 27(1): 64-72.
[http://dx.doi.org/10.1002/bem.20177]
[74]
Shankayi Z, Firoozabadi SMP, Mansourian M, Mahna A. The effects of pulsed magnetic field exposure on the permeability of leukemia cancer cells. Electromagn Biol Med 2014; 33(2): 154-8.
[http://dx.doi.org/10.3109/15368378.2013.800103] [PMID: 23781987]
[75]
Ille S, Kelm A, Schroeder A, et al. Navigated repetitive transcranial magnetic stimulation improves the outcome of postsurgical paresis in glioma patients – A randomized, double-blinded trial. Brain Stimul 2021; 14(4): 780-7.
[http://dx.doi.org/10.1016/j.brs.2021.04.026] [PMID: 33984536]
[76]
Matsushima K, Kohno M, Ichimasu N, Tanaka Y, Nakajima N, Yoshino M. Intraoperative continuous vagus nerve monitoring with repetitive direct stimulation in surgery for jugular foramen tumors. J Neurosurg 2021; 135(4): 1036-43.
[http://dx.doi.org/10.3171/2020.8.JNS202680] [PMID: 33607614]
[77]
Umana GE, Scalia G, Graziano F, et al. Navigated transcranial magnetic stimulation motor mapping usefulness in the surgical management of patients affected by brain tumors in eloquent areas: A systematic review and meta-analysis. Front Neurol 2021; 12: 644198.
[http://dx.doi.org/10.3389/fneur.2021.644198] [PMID: 33746895]
[78]
Ille S, Kulchytska N, Sollmann N, et al. Hemispheric language dominance measured by repetitive navigated transcranial magnetic stimulation and postoperative course of language function in brain tumor patients. Neuropsychologia 2016; 91: 50-60.
[http://dx.doi.org/10.1016/j.neuropsychologia.2016.07.025] [PMID: 27449707]
[79]
Petrescu GE, Radu R, Giovani A, Gorgan C, Brehar FM, Gorgan RM. Navigated transcranial magnetic stimulation mapping in patients with language-eloquent brain lesions. Romanian Neurosurgery. 2021; pp. 14-9.
[80]
Rösler J, Niraula B, Strack V, et al. Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: Evidence of tumor-induced plasticity. Clin Neurophysiol 2014; 125(3): 526-36.
[http://dx.doi.org/10.1016/j.clinph.2013.08.015] [PMID: 24051073]
[81]
Rosenstock T, Grittner U, Acker G, et al. Risk stratification in motor area-related glioma surgery based on navigated transcranial magnetic stimulation data. J Neurosurg 2017; 126(4): 1227-37.
[http://dx.doi.org/10.3171/2016.4.JNS152896] [PMID: 27257834]
[82]
Krieg SM, Shiban E, Buchmann N, Meyer B, Ringel F. Presurgical navigated transcranial magnetic brain stimulation for recurrent gliomas in motor eloquent areas. Clin Neurophysiol 2013; 124(3): 522-7.
[http://dx.doi.org/10.1016/j.clinph.2012.08.011] [PMID: 22986282]
[83]
Krieg SM, Shiban E, Buchmann N, et al. Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg 2012; 116(5): 994-1001.
[http://dx.doi.org/10.3171/2011.12.JNS111524] [PMID: 22304452]
[84]
Bergmann TO, Varatheeswaran R, Hanlon CA, Madsen KH, Thielscher A, Siebner HR. Concurrent TMS-fMRI for causal network perturbation and proof of target engagement. Neuroimage 2021; 237: 118093.
[http://dx.doi.org/10.1016/j.neuroimage.2021.118093] [PMID: 33940146]
[85]
Machetanz K, Gallotti AL, Leao Tatagiba MT, Liebsch M, Trakolis L, Wang S, et al. Time-frequency representation of motor evoked potentials in brain tumor patients. Frontiers in Neurology 2021; 1896.
[http://dx.doi.org/10.3389/fneur.2020.633224]
[86]
Fekonja LS, Wang Z, Aydogan DB, Roine T, Engelhardt M, Dreyer FR, et al. Detecting corticospinal tract impairment in tumor patients with fiber density and tensor-based metrics. Front Oncol 2021; 10: 622358.
[http://dx.doi.org/10.3389/fonc.2020.622358] [PMID: 33585250]
[87]
Bulubas L, Sardesh N, Traut T, Findlay A, Mizuiri D, Honma SM, et al. Motor cortical network plasticity in patients with recurrent brain tumors. Front Hum Neurosci 2020; 14: 118.
[http://dx.doi.org/10.3389/fnhum.2020.00118] [PMID: 32317952]
[88]
Baro V, Sartori L, Caliri SL, Furlanis GM, D’Amico A, Meneghini G, et al. Navigated transcranial magnetic stimulation motor mapping and diffusion tensor imaging tractography for diencephalic tumor in pediatric patients. Brain Sci 2023; 13(2): 234.
[http://dx.doi.org/10.3390/brainsci13020234] [PMID: 36831777]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy