Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Review Article

A Review and Comprehensive Study on DC-DC Converters

Author(s): Dharavath Anusha*, Srinivasan P. and Narender Reddy K.

Volume 17, Issue 6, 2024

Published on: 26 September, 2023

Page: [544 - 553] Pages: 10

DOI: 10.2174/2352096516666230616120554

Price: $65

Abstract

Background: DC-DC converters are used in various applications based on their required voltage capabilities ranging from milli volts to thousands of volts.

Methods: This review paper discusses various voltage boosting techniques, such as buck-boost, switched inductor, switched capacitors, isolated converters, etc., and provides a detailed evaluation of the literature and comparison of different DC-DC converters.

Results: This study reports a number of storage elements included, such as inductors and capacitors as well as switches and diodes. Their features along with methodologies, merits, complexity, efficiency, and voltage gain have been tabulated. A comprehensive study, converter classification based on the characteristics, and a detailed analysis of isolated and non-isolated DC-DC converters have also been provided.

Conclusion: As this study provides a comparison of each isolated and non-isolated converter's comprehensive gain, this research may help in future topology optimization for the choice of the ideal converter for applications. In addition, the examination of each isolated and non-isolated converter's comprehensive gain comparison has also been presented in this paper.

Graphical Abstract

[1]
R.M. Elavarasan, G.M. Shafiullah, S. Padmanaban, N.M. Kumar, A. Annam, A.M. Vetrichelvan, L. Mihet-Popa, and J.B. Holm-Nielsen, "A comprehensive review on renewable energy development, challenges, and policies of leading indian states with an international perspective", IEEE Access, vol. 8, pp. 74432-74457, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2988011]
[2]
S. Ganesan, U. Subramaniam, A.A. Ghodke, R.M. Elavarasan, K. Raju, and M.S. Bhaskar, "Investigation on sizing of voltage source for a battery energy storage system in microgrid with renewable energy sources", IEEE Access, vol. 8, pp. 188861-188874, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3030729]
[3]
M. Forouzesh, Y.P. Siwakoti, S.A. Gorji, F. Blaabjerg, and B. Lehman, "Step-up DC–DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications", IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, 2017.
[http://dx.doi.org/10.1109/TPEL.2017.2652318]
[4]
N. Elsayad, H. Moradisizkoohi, and O.A. Mohammed, "A new hybrid structure of a bidirectional DC-DC converter with high conversion ratios for electric vehicles", IEEE Trans. Vehicular Technol., vol. 69, no. 1, pp. 194-206, 2020.
[http://dx.doi.org/10.1109/TVT.2019.2950282]
[5]
B. Krishna, D. Anusha, and V. Karthikeyan, "Ultra-fast DC charger with improved power quality and optimal algorithmic approach to enable V2G and G2V", J. Circuits Syst. Comput., vol. 29, no. 12, p. 2050197, 2020.
[http://dx.doi.org/10.1142/S0218126620501972]
[6]
B. Krishna, and V. Karthikeyan, "Ultra-voltage gain step-up DC-DC converter for renewable energy micro-source applications", IEEE Trans. Energ. Convers., vol. 37, no. 2, pp. 947-957, 2021.
[7]
A. Emadi, S.S. Williamson, and A. Khaligh, "Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems", IEEE Trans. Power Electron., vol. 21, no. 3, pp. 567-577, 2006.
[http://dx.doi.org/10.1109/TPEL.2006.872378]
[8]
J.G. Kassakian, and D.J. Perreault, "The future of electronics in automobiles", In Proceedings of the 13th International Symposium on Power Semiconductor Devices & ICs. IPSD’01 (IEEE Cat. No. 01CH37216), 2001, pp. 15-19
[http://dx.doi.org/10.1109/ISPSD.2001.934550]
[9]
S.H. Hosseini, R. Ghazi, and H. Heydari-Doostabad, "An extendable quadratic bidirectional DC–DC converter for V2G and G2V applications", IEEE Trans. Ind. Electron., vol. 68, no. 6, pp. 4859-4869, 2021.
[http://dx.doi.org/10.1109/TIE.2020.2992967]
[10]
G. Franceschini, E. Lorenzani, M. Cavatorta, and A. Bellini, "boost: A high-power three-phase step-up full-bridge converter for automotive applications", IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 173-183, 2008.
[http://dx.doi.org/10.1109/TIE.2007.905930]
[11]
K. Shenai, "Accurate design of high-performance synchronous buck DC-DC power converters", In 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2013, pp. 435-438
[http://dx.doi.org/10.1109/APEC.2013.6520246]
[12]
F. Blaabjerg, A. Consoli, J.A. Ferreira, and J.D. vanWyk, "The future of electronic power processing and conversion", IEEE Trans. Ind. Appl., vol. 41, no. 1, pp. 3-8, 2005.
[http://dx.doi.org/10.1109/TIA.2004.841166]
[13]
L. Roggia, L. Schuch, J.E. Baggio, C. Rech, and J.R. Pinheiro, "Integrated full-bridge-forward DC–DC converter for a residential microgrid application", IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1728-1740, 2013.
[http://dx.doi.org/10.1109/TPEL.2012.2214061]
[14]
Fanghua Zhang, and Yangguang Yan, "Novel forward–flyback hybrid bidirectional DC–DC converter", IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1578-1584, 2009.
[http://dx.doi.org/10.1109/TIE.2008.2009561]
[15]
E. Adib, and H. Farzanehfard, "Analysis and design of a zero-current switching forward converter with simple auxiliary circuit", IEEE Trans. Power Electron., vol. 27, no. 1, pp. 144-150, 2012.
[http://dx.doi.org/10.1109/TPEL.2010.2096478]
[16]
H.R.E. Larico, and I. Barbi, "Three-phase flyback push–pull DC–DC converter: Analysis, design, and experimentation", IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1961-1970, 2013.
[http://dx.doi.org/10.1109/TPEL.2012.2211037]
[17]
Z. Zhang, O.C. Thomsen, and M.A.E. Andersen, "Optimal design of a push-pull-forward half-bridge (PPFHB) bidirectional DC–DC converter with variable input voltage", IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2761-2771, 2012.
[http://dx.doi.org/10.1109/TIE.2011.2134051]
[18]
G. Spiazzi, and S. Buso, ""The asymmetrical half-bridge flyback converter: A reexamination"", In: 2020 IEEE Energy Conversion Congress and Exposition., ECCE, 2020, pp. 405-411.
[http://dx.doi.org/10.1109/ECCE44975.2020.9235370]
[19]
H-S. Kim, J-H. Jung, J-W. Baek, and H-J. Kim, "Analysis and design of a multioutput converter using asymmetrical PWM half-bridge flyback converter employing a parallel–series transformer", IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3115-3125, 2012.
[20]
I-D. Kim, S-H. Paeng, J-W. Ahn, E-C. Nho, and J-S. Ko, "New bidirectional ZVS PWM sepic/zeta DC-DC converter", In 2007 IEEE International Symposium on Industrial Electronics, 2007, pp. 555-560
[http://dx.doi.org/10.1109/ISIE.2007.4374656]
[21]
M.R. Banaei, and S.G. Sani, "Analysis and implementation of a new SEPIC-based single-switch buck–boost DC–DC converter with continuous input current", IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10317-10325, 2018.
[http://dx.doi.org/10.1109/TPEL.2018.2799876]
[22]
H.L. Jou, J.J. Huang, J.C. Wu, and K.D. Wu, "Novel isolated multilevel DC–DC power converter", IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2690-2694, 2016.
[http://dx.doi.org/10.1109/TPEL.2015.2487558]
[23]
V. Rathore, S.R.P. Reddy, and K. Rajashekara, "An isolated multilevel dc–dc converter topology with hybrid resonant switching for EV fast charging application", IEEE Trans. Ind. Appl., vol. 58, no. 5, pp. 5546-5557, 2022.
[http://dx.doi.org/10.1109/TIA.2022.3168504]
[24]
Y.E. Wu, and Y.T. Ke, "A novel bidirectional isolated DC-DC converter with high voltage gain and wide input voltage", IEEE Trans. Power Electron., vol. 36, no. 7, pp. 7973-7985, 2021.
[http://dx.doi.org/10.1109/TPEL.2020.3045986]
[25]
P. Nayak, and K. Rajashekara, "Single-stage bi-directional matrix converter with regenerative flyback clamp circuit for EV battery charging", In 2019 IEEE Transportation Electrification Conference and Expo (ITEC), 2019, pp. 1-6
[http://dx.doi.org/10.1109/ITEC.2019.8790462]
[26]
R. Suryadevara, and L. Parsa, "Full-bridge ZCS-converter-based high-gain modular DC-DC converter for PV integration with medium-voltage DC grids", IEEE Trans. Energ. Convers., vol. 34, no. 1, pp. 302-312, 2019.
[http://dx.doi.org/10.1109/TEC.2018.2878964]
[27]
B. Moon, H.Y. Jung, S.H. Kim, and S.H. Lee, "A modified topology of two-switch buck-boost converter", IEEE Access, vol. 5, pp. 17772-17780, 2017.
[http://dx.doi.org/10.1109/ACCESS.2017.2749418]
[28]
A. Rodríguez-Lorente, A. Barrado, C. Calderón, C. Fernández, and A. Lázaro, "Non-inverting and Non-isolated Magnetically Coupled Buck–Boost Bidirectional DC–DC Converter", IEEE Trans. Power Electron., vol. 35, no. 11, pp. 11942-11954, 2020.
[http://dx.doi.org/10.1109/TPEL.2020.2984202]
[29]
M. Prudente, L.L. Pfitscher, G. Emmendoerfer, E.F. Romaneli, and R. Gules, "Voltage multiplier cells applied to non-isolated DC–DC converters", IEEE Trans. Power Electron., vol. 23, no. 2, pp. 871-887, 2008.
[http://dx.doi.org/10.1109/TPEL.2007.915762]
[30]
T. Nouri, S.H. Hosseini, E. Babaei, and J. Ebrahimi, "Generalised transformerless ultra step-up DC–DC converter with reduced voltage stress on semiconductors", IET Power Electron., vol. 7, no. 11, pp. 2791-2805, 2014.
[http://dx.doi.org/10.1049/iet-pel.2013.0933]
[31]
H. Bi, P. Wang, and Y. Che, "A capacitor clamped H-type boost DC-DC converter with wide voltage-gain range for fuel cell vehicles", IEEE Trans. Vehicular Technol., vol. 68, no. 1, pp. 276-290, 2019.
[http://dx.doi.org/10.1109/TVT.2018.2884890]
[32]
L. He, and Z. Zheng, "High step-up DC–DC converter with switched-capacitor and its zero-voltage switching realisation", IET Power Electron., vol. 10, no. 6, pp. 630-636, 2017.
[http://dx.doi.org/10.1049/iet-pel.2016.0389]
[33]
V. Karthikeyan, S. Kumaravel, and G. Gurukumar, "High step-up gain DC–DC converter with switched capacitor and regenerative boost configuration for solar PV applications", IEEE Trans. Circuits Syst. II Express Briefs, vol. 66, no. 12, pp. 2022-2026, 2019.
[http://dx.doi.org/10.1109/TCSII.2019.2892144]
[34]
Y. Tang, T. Wang, and Y. He, "A switched-capacitor-based active-network converter with high voltage gain", IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2959-2968, 2014.
[http://dx.doi.org/10.1109/TPEL.2013.2272639]
[35]
Y. Tang, D. Fu, T. Wang, and Z. Xu, "Hybrid switched-inductor converters for high step-up conversion", IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1480-1490, 2015.
[http://dx.doi.org/10.1109/TIE.2014.2364797]
[36]
P. Chavoshipour Heris, Z. Saadatizadeh, M. Sabahi, and E. Babaei, "A new switched-capacitor/switched-inductor–based converter with high voltage gain and low voltage stress on switches", Int. J. Circuit Theory Appl., vol. 47, no. 4, pp. 591-611, 2019.
[http://dx.doi.org/10.1002/cta.2606]
[37]
B. Krishna, and V. Karthikeyan, "Active switched-inductor network step-up DC–DC converter with wide range of voltage-gain at the lower range of duty cycles", IEEE J. Emerg. Sel. Top. Ind. Electron., vol. 2, no. 4, pp. 431-441, 2021.
[http://dx.doi.org/10.1109/JESTIE.2021.3097943]
[38]
C.S. Leu, P.Y. Huang, and M.H. Li, "A novel dual-inductor boost converter with ripple cancellation for high-voltage-gain applications", IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1268-1273, 2011.
[http://dx.doi.org/10.1109/TIE.2010.2048835]
[39]
S.M. Chen, T.J. Liang, L.S. Yang, and J.F. Chen, "A cascaded high step-up DC–DC converter with single switch for microsource applications", IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1146-1153, 2011.
[http://dx.doi.org/10.1109/TPEL.2010.2090362]
[40]
X. Zhang, and T.C. Green, "The modular multilevel converter for high step-up ratio DC–DC conversion", IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4925-4936, 2015.
[http://dx.doi.org/10.1109/TIE.2015.2393846]
[41]
A. Alzahrani, M. Ferdowsi, and P. Shamsi, "High-voltage-gain DC–DC step-up converter with bifold Dickson voltage multiplier cells", IEEE Trans. Power Electron., vol. 34, no. 10, pp. 9732-9742, 2019.
[http://dx.doi.org/10.1109/TPEL.2018.2890437]
[42]
G. Spiazzi, P. Mattavelli, and A. Costabeber, "High step-up ratio flyback converter with active clamp and voltage multiplier", IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3205-3214, 2011.
[http://dx.doi.org/10.1109/TPEL.2011.2134871]
[43]
B. Krishna, G. Lithesh, and V. Karthikeyan, "A novel high-gain bidirectional DC–DC converter for EV onboard charger applications", Int. J. Circuit Theory Appl., vol. 50, no. 7, pp. 2531-2547, 2022.
[http://dx.doi.org/10.1002/cta.3268]
[44]
B. Krishna, and V. Karthikeyan, "A novel bi-directional high-gain DC-DC converter with optimum number of components", Int. J. Circuit Theory Appl., vol. 51, no. 1, pp. 283-301, 2023.
[http://dx.doi.org/10.1002/cta.3421]
[45]
V. Rao, S.T. Seshagiri, and S. Kumaravel, "Extendable Bidirectional DC-DC Converter with Improved Voltage Transfer Ratio and Reduced Switch Count", IEEE J. Emerg. Sel. Top. Ind. Electron., 2022.
[46]
D. Vinnikov, and I. Roasto, "Quasi-Z-source-based isolated DC/DC converters for distributed power generation", IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 192-201, 2011.
[http://dx.doi.org/10.1109/TIE.2009.2039460]
[47]
T.J. Liang, J.H. Lee, S.M. Chen, J.F. Chen, and L.S. Yang, "Novel isolated high-step-up DC–DC converter with voltage lift", IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1483-1491, 2013.
[http://dx.doi.org/10.1109/TIE.2011.2177789]
[48]
A. Chub, D. Vinnikov, F. Blaabjerg, and F.Z. Peng, "A review of galvanically isolated impedance-source DC–DC converters", IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2808-2828, 2016.
[http://dx.doi.org/10.1109/TPEL.2015.2453128]
[49]
E. Babaei, H. Mashinchi Maheri, M. Sabahi, and S.H. Hosseini, "Extendable nonisolated high gain DC–DC converter based on active–passive inductor cells", IEEE Trans. Ind. Electron., vol. 65, no. 12, pp. 9478-9487, 2018.
[http://dx.doi.org/10.1109/TIE.2018.2807367]
[50]
M.A. Salvador, J.M. de Andrade, T.B. Lazzarin, and R.F. Coelho, "Nonisolated high-step-up DC–DC converter derived from switched-inductors and switched-capacitors", IEEE Trans. Ind. Electron., vol. 67, no. 10, pp. 8506-8516, 2020.
[http://dx.doi.org/10.1109/TIE.2019.2949535]
[51]
O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, "Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit", IEEE Trans. Circ. Syst. I Fundam. Theory Appl., vol. 50, no. 8, pp. 1098-1102, 2003.
[http://dx.doi.org/10.1109/TCSI.2003.815206]
[52]
M.K. Nguyen, T.D. Duong, and Y.C. Lim, "Switched-capacitor-based dual-switch high-boost DC–DC converter", IEEE Trans. Power Electron., vol. 33, no. 5, pp. 4181-4189, 2018.
[http://dx.doi.org/10.1109/TPEL.2017.2719040]
[53]
M. Abbasi, E. Babaei, and B. Tousi, "New family of non-isolated step-up/down and step-up switched-capacitor-based DC–DC converters", IET Power Electron., vol. 12, no. 7, pp. 1706-1720, 2019.
[http://dx.doi.org/10.1049/iet-pel.2018.5593]
[54]
M. Forouzesh, Y. Shen, K. Yari, Y.P. Siwakoti, and F. Blaabjerg, "High-efficiency high step-up DC–DC converter with dual coupled inductors for grid-connected photovoltaic systems", IEEE Trans. Power Electron., vol. 33, no. 7, pp. 5967-5982, 2018.
[http://dx.doi.org/10.1109/TPEL.2017.2746750]
[55]
R.J. Wai, and R.Y. Duan, "High step-up converter with coupled-inductor", IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025-1035, 2005.
[http://dx.doi.org/10.1109/TPEL.2005.854023]
[56]
Y. Ji, H. Liu, Y. Feng, F. Wu, and P. Wheeler, "High step-up Y-source coupled-inductor impedance network boost DC–DC converters with common ground and continuous input current", IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 3, pp. 3174-3183, 2020.
[http://dx.doi.org/10.1109/JESTPE.2019.2892499]
[57]
S. Dwari, and L. Parsa, "An efficient high-step-up interleaved DC–DC converter with a common active clamp", IEEE Trans. Power Electron., vol. 26, no. 1, pp. 66-78, 2011.
[http://dx.doi.org/10.1109/TPEL.2010.2051816]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy