Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

N-Heterocyclic Compounds, In silico Molecular Docking Studies, and In vitro Enzyme Inhibition Effect against Acetylcholinesterase Inhibitors

Author(s): Abdussamat Guzel*, Zeynep Isık, Yetkin Gok, Tugba Taskin-Tok and Aydın Aktas

Volume 23, Issue 25, 2023

Published on: 05 July, 2023

Page: [2416 - 2426] Pages: 11

DOI: 10.2174/1568026623666230614150520

Price: $65

Abstract

Background: This work contains the synthesis of seven new N-heterocyclic compounds bearing imidazole, benzimidazole, pyridine, and morpholine moieties.

Objectives: We aimed to synthesize N-heterocyclic compounds for a more effective drug candidate to increase the amount of acetylcholine in synapses in Alzheimer's disease. All compounds were characterized by 1H NMR, 13C NMR, FTIR and elemental analysis. Enzyme inhibition activity of all compounds against acetylcholinesterase was investigated, which is an indirect treatment for Alzheimer's. Molecular docking was applied to estimate the binding energy of these compounds to the acetylcholinesterase.

Methods: All compounds were synthesized from reactions of 2 equivalents of N-heterocyclic starting material and 1 equivalent of 4,4'-bis(chloromethyl)-1,1'-biphenyl. The inhibition parameters of IC50 and Ki were calculated by the spectrophotometric method. AutoDock4 was used to define the binding pose of the compounds.

Results: Ki values were found in the range of 80.03 ± 19.64 to 5014.98 ± 1139.60 nM for AChE as an enzyme inhibition strategy, which is an important parameter for the treatment of neurodegenerative such as Alzheimer's disease. In this study, molecular docking is exerted to predict the binding energy of heterocyclic compounds (especially 2, 3, and 5) against acetylcholinesterase enzyme. Their docking binding energies are in good agreement with experimental findings.

Conclusion: These new syntheses are drugs that can be used as AChE inhibitors in Alzheimer's disease.

« Previous
Graphical Abstract

[1]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48(1), 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z]
[2]
Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89, 103021.
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[3]
Kumar, R.; Srinivasa, V.R.; Kapur, S. Emphasizing morpholine and its derivatives (MAID): Typical candidate of pharmaceutical importance. Int. J. Chem. Sci., 2016, 14(3), 1777-1788.
[4]
Fnfoon, D.Y.; Al-Adilee, K.J. Synthesis and spectral characterization of some metal complexes with new heterocyclic azo imidazole dye ligand and study biological activity as anticancer. J. Mol. Struct., 2023, 1271, 134089.
[http://dx.doi.org/10.1016/j.molstruc.2022.134089]
[5]
Roman, G.; Riley, J.G.; Vlahakis, J.Z.; Kinobe, R.T.; Brien, J.F.; Nakatsu, K.; Szarek, W.A. Heme oxygenase inhibition by 2-oxy-substituted 1-(1H-imidazol-1-yl)-4-phenylbutanes: Effect of halogen substitution in the phenyl ring. Bioorg. Med. Chem., 2007, 15(9), 3225-3234.
[http://dx.doi.org/10.1016/j.bmc.2007.02.034] [PMID: 17339115]
[6]
Rahman, M.M.; Ali, G.G.M.N.; Li, X.J.; Samuel, J.; Paul, K.C.; Chong, P.H.J.; Yakubov, M. Socioeconomic factors analysis for COVID-19 US reopening sentiment with Twitter and census data. Heliyon, 2021, 7(2), e06200.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06200] [PMID: 33585707]
[7]
Mahdi, M.A.; Jasim, L.S.; Mohamed, M.H. Synthesis, Spectral and Biological Studies of Co (II), Ni (II) and Cu (II) Complexes with New Heterocyclic Ligand Derived From Azo-Dye. Syst. Rev. Pharm, 2021, 12, 426-434.
[8]
Harisha, S.; Keshavayya, J.; Kumara Swamy, B.E.; Viswanath, C.C. Synthesis, characterization and electrochemical studies of azo dyes derived from barbituric acid. Dyes Pigments, 2017, 136, 742-753.
[http://dx.doi.org/10.1016/j.dyepig.2016.09.004]
[9]
Slassi, S.; Fix-Tailler, A.; Larcher, G.; Amine, A.; El-Ghayoury, A. Imidazole and azo-based schiff bases ligands as highly active antifungal and antioxidant components. Heteroatom Chem., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/6862170]
[10]
Gavazov, K.; Simeonova, Z.; Alexandrov, A. Extraction spectrophotometric determination of vanadium in natural waters and aluminium alloys using pyridyl azo resorcinol (PAR) and iodo-nitro-tetrazolium chloride (INT). Talanta, 2000, 52(3), 539-544.
[http://dx.doi.org/10.1016/S0039-9140(00)00405-7] [PMID: 18968014]
[11]
Bal, S.; Demirci, Ö.; Şen, B.; Taslimi, P.; Aktaş, A.; Gök, Y.; Aygün, M.; Gülçin, İ. Synthesis, characterization, crystal structure, α‐glycosidase, and acetylcholinesterase inhibitory properties of 1,3‐disubstituted benzimidazolium salts. Arch. Pharm., 2021, 354(5), 2000422.
[http://dx.doi.org/10.1002/ardp.202000422] [PMID: 33427318]
[12]
Tezcan, B.; Gök, Y.; Sevinçek, R.; Taslimi, P.; Taskin-Tok, T.; Aktaş, A.; Güzel, B.; Aygün, M.; Gülçin, İ. Benzimidazolium salts bearing the trifluoromethyl group as organofluorine compounds: Synthesis, characterization, crystal structure, in silico study, and inhibitory profiles against acetylcholinesterase and α‐glycosidase. J. Biochem. Mol. Toxicol., 2022, 36(4), e23001.
[http://dx.doi.org/10.1002/jbt.23001] [PMID: 35225413]
[13]
Hamide, M.; Gök, Y.; Demir, Y.; Yakalı, G.; Tok, T.T.; Aktaş, A.; Sevinçek, R.; Güzel, B.; Gülçin, İ. Pentafluorobenzyl-substituted benzimidazolium salts: Synthesis, characterization, crystal structures, computational studies and inhibitory properties of some metabolic enzymes. J. Mol. Struct., 2022, 1265, 133266.
[http://dx.doi.org/10.1016/j.molstruc.2022.133266]
[14]
Güzel, A.; Noma, S.A.A.; Şen, B.; Kazancı, A.; Taskin-Tok, T.; Kolaç, T.; Aktaş, A.; Ateş, B.; Aygün, M.; Gök, Y. Synthesis, characterization and inhibitor properties of benzimidazolium salts bearing 4-(methylsulfonyl)benzyl side arms. J. Mol. Struct., 2023, 1273, 134320.
[http://dx.doi.org/10.1016/j.molstruc.2022.134320]
[15]
Schiel, M.A.; Silbestri, G.F.; Alvarez, M.B.; Domini, C.E. Ultrasound-promoted metal-catalyzed synthesis of heterocyclic compounds of medicinal interest.Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier: Amsterdam, 2021, pp. 461-496.
[http://dx.doi.org/10.1016/B978-0-12-820586-0.00002-9]
[16]
Keshavarz, R.; Farahi, M.; Karami, B. efficient and facile synthesis of chromenopyrano[2,3-b] pyridine derivatives catalyzed by sodium carbonate. Acta Chim. Slov., 2021, 68(2), 332-340.
[http://dx.doi.org/10.17344/acsi.2020.6266] [PMID: 34738124]
[17]
Kumari, A.; Singh, R.K. Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR). Bioorg. Chem., 2020, 96, 103578.
[http://dx.doi.org/10.1016/j.bioorg.2020.103578] [PMID: 31978684]
[18]
Kumar, R.; Kapur, S. The biodegradation of environmental pollutant –“Morpholine”. National Conference on “Biodiversity, Environment Hazards –Therapeutic approaches and Drug Design.Andhra Pradesh2014.
[19]
Burland, P.A.; Osborn, H.M.I.; Turkson, A. Synthesis and glycosidase inhibitory profiles of functionalised morpholines and oxazepanes. Bioorg. Med. Chem., 2011, 19(18), 5679-5692.
[http://dx.doi.org/10.1016/j.bmc.2011.07.019] [PMID: 21862336]
[20]
Agbossou-Niedercorn, F.; Keldenich, J.; Michon, C.; Nowicki, A. Synthesis of a chiral key intermediate of neurokinin antagonist SSR 240600 by asymmetric allylic alkylation. Synlett, 2011, 2011(20), 2939-2942.
[http://dx.doi.org/10.1055/s-0031-1289878]
[21]
Métro, T.X.; Cochi, A.; Gomez Pardo, D.; Cossy, J. Asymmetric synthesis of an antagonist of neurokinin receptors: SSR 241586. J. Org. Chem., 2011, 76(8), 2594-2602.
[http://dx.doi.org/10.1021/jo102471r] [PMID: 21410197]
[22]
Lukas, R.J.; Muresan, A.Z.; Damaj, M.I.; Blough, B.E.; Huang, X.; Navarro, H.A.; Mascarella, S.W.; Eaton, J.B.; Marxer-Miller, S.K.; Carroll, F.I. Synthesis and characterization of in vitro and in vivo profiles of hydroxybupropion analogues: Aids to smoking cessation. J. Med. Chem., 2010, 53(12), 4731-4748.
[http://dx.doi.org/10.1021/jm1003232] [PMID: 20509659]
[23]
Sun, X.; Niu, L.; Li, X.; Lu, X.; Li, F. Characterization of metabolic profile of mosapride citrate in rat and identification of two new metabolites: Mosapride N-oxide and morpholine ring-opened mosapride by UPLC–ESI-MS/MS. J. Pharm. Biomed. Anal., 2009, 50(1), 27-34.
[http://dx.doi.org/10.1016/j.jpba.2009.03.011] [PMID: 19362796]
[24]
Daşgın, S.; Gök, Y.; Barut Celepci, D.; Taslimi, P.; İzmirli, M.; Aktaş, A.; Gülçin, İ. Synthesis, characterization, crystal structure and bioactivity properties of the benzimidazole-functionalized PEPPSI type of Pd(II)NHC complexes. J. Mol. Struct., 2021, 1228, 129442.
[http://dx.doi.org/10.1016/j.molstruc.2020.129442]
[25]
Sameem, B.; Saeedi, M.; Mahdavi, M.; Shafiee, A. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 128, 332-345.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.060] [PMID: 27876467]
[26]
Singh, M.; Kaur, M.; Kukreja, H.; Chugh, R.; Silakari, O.; Singh, D. Acetylcholinesterase inhibitors as Alzheimer therapy: From nerve toxins to neuroprotection. Eur. J. Med. Chem., 2013, 70, 165-188.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.050] [PMID: 24148993]
[27]
Wang, L.; Bharti; Kumar, R.; Pavlov, P.F.; Winblad, B. Small molecule therapeutics for tauopathy in Alzheimer’s disease: Walking on the path of most resistance. Eur. J. Med. Chem., 2021, 209, 112915.
[http://dx.doi.org/10.1016/j.ejmech.2020.112915] [PMID: 33139110]
[28]
Beato, A.; Gori, A.; Boucherle, B.; Peuchmaur, M.; Haudecoeur, R. β-Carboline as a privileged scaffold for multitarget strategies in Alzheimer’s disease therapy. J. Med. Chem., 2021, 64(3), 1392-1422.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01887] [PMID: 33528252]
[29]
Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine, 2007, 14(4), 289-300.
[http://dx.doi.org/10.1016/j.phymed.2007.02.002] [PMID: 17346955]
[30]
Kızıltaş, H.; Bingöl, Z.; Gören, A.C.; Alwasel, S.H.; Gülçin, İ. Anticholinergic, antidiabetic and antioxidant activities of Ferula orientalis L. - Analysis of its polyphenol contents by LC-HRMS. Rec. Nat. Prod., 2021, 15(6), 513-528.
[http://dx.doi.org/10.25135/rnp.236.21.02.1983]
[31]
Bingöl, Z.; Kızıltaş, H.; Gören, A.C.; Kose, L.P.; Topal, M.; Durmaz, L.; Alwasel, S.H.; Gulçin, İ. Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed (Convulvulus betonicifolia Miller subsp.) – profiling of phenolic compounds by LC-HRMS. Heliyon, 2021, 7(5), e06986.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06986] [PMID: 34027185]
[32]
Yılmaz, Ü.; Noma, S.A.A.; Taşkın Tok, T.; Şen, B.; Gök, Y.; Aktaş, A.; Ateş, B.; Aygün, M. A study about excellent xanthine oxidase inhibitory effects of new pyridine salts. Monatsh. Chem., 2021, 152(10), 1251-1260.
[http://dx.doi.org/10.1007/s00706-021-02831-6]
[33]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[34]
Garibov, E.; Taslimi, P.; Sujayev, A.; Bingöl, Z.; Çetinkaya, S.; Gulçin, İ.; Beydemir, S.; Farzaliyev, V.; Alwasel, S.H.; Supuran, C.T. Synthesis of 4,5-disubstituted-2-thioxo-1,2,3,4-tetrahydropyrimidines and investigation of their acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase I/II inhibitory and antioxidant activities. J. Enzyme Inhib. Med. Chem., 2016, 31(sup3), 1-9.
[http://dx.doi.org/10.1080/14756366.2016.1198901] [PMID: 27329935]
[35]
Erdemir, F.; Barut Celepci, D.; Aktaş, A.; Taslimi, P.; Gök, Y.; Karabıyık, H.; Gülçin, İ. 2-Hydroxyethyl substituted NHC precursors: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties. J. Mol. Struct., 2018, 1155, 797-806.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.079]
[36]
Atmaca, U.; Alp, C.; Akincioglu, H.; Karaman, H.S.; Gülçin, İ.; Çelik, M. Novel hypervalent iodine catalyzed synthesis of α-sulfonoxy ketones: Biological activity and molecular docking studies. J. Mol. Struct., 2021, 1239, 130492.
[http://dx.doi.org/10.1016/j.molstruc.2021.130492]
[37]
Turkan, F.; Çetin, A.; Taslimi, P.; Karaman, M.; Gulçin, İ. Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg. Chem., 2019, 86, 420-427.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.013] [PMID: 30769267]
[38]
Bayrak, C.; Taslimi, P.; Karaman, H.S.; Gulcin, I.; Menzek, A. The first synthesis, carbonic anhydrase inhibition and anticholinergic activities of some bromophenol derivatives with S including natural products. Bioorg. Chem., 2019, 85, 128-139.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.012] [PMID: 30605886]
[39]
Burmaoglu, S.; Yilmaz, A.O.; Polat, M.F.; Kaya, R.; Gulcin, İ.; Algul, O. Synthesis and biological evaluation of novel tris-chalcones as potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibitors. Bioorg. Chem., 2019, 85, 191-197.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.035] [PMID: 30622011]
[40]
Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc., 1934, 56(3), 658-666.
[http://dx.doi.org/10.1021/ja01318a036]
[41]
Tugrak, M.; Gul, H.I.; Demir, Y.; Gulcin, I. Synthesis of benzamide derivatives with thiourea‐substituted benzenesulfonamides as carbonic anhydrase inhibitors. Arch. Pharm., 2021, 354(2), 2000230.
[http://dx.doi.org/10.1002/ardp.202000230] [PMID: 33043495]
[42]
Köksal, Z.; Alım, Z.; Bayrak, S.; Gülçin, İ.; Özdemir, H. Investigation of the effects of some sulfonamides on acetylcholinesterase and carbonic anhydrase enzymes. J. Biochem. Mol. Toxicol., 2019, 33(5), e22300.
[http://dx.doi.org/10.1002/jbt.22300] [PMID: 30811749]
[43]
Yamali, C.; Gul, H.I.; Ece, A.; Taslimi, P.; Gulcin, I. Synthesis, molecular modeling, and biological evaluation of 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1 H -pyrazol-1-yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes. Chem. Biol. Drug Des., 2018, 91(4), 854-866.
[http://dx.doi.org/10.1111/cbdd.13149] [PMID: 29143485]
[44]
Wadood, A.; Ahmed, N.; Shah, L.; Ahmad, A.; Hassan, H.; Shams, S. in-silico drug design: An approach which revolutionarised the drug discovery process. OA Drug Des Deliv, 2013, 1(1), 3.
[45]
Accelrys Software Inc. Discovery Studio Modeling Environment; Accelrys Software Inc: San Diego, 2013.
[46]
Altay, A.; Yeniceri, E.; Taslimi, P.; Taskin-Tok, T.; Yilmaz, M.A.; Koksal, E. A biochemical approach for Hedysarum candidissimum from Turkey: Screening phytochemicals, evaluation of biological activites, and molecular docking study. Chem. Biodivers., 2022, 19(9), e202200348.
[http://dx.doi.org/10.1002/cbdv.202200348] [PMID: 36045318]
[47]
Güngör, S.A.; Şahin, İ.; Güngör, Ö.; Tok, T.T.; Köse, M. Synthesis, biological evaluation and docking study of mono‐ and di‐sulfonamide derivatives as antioxidant agents and acetylcholinesterase inhibitors. Chem. Biodivers., 2022, 19(10), e202200325.
[http://dx.doi.org/10.1002/cbdv.202200325] [PMID: 35984664]
[48]
Kısa, D.; Kaya, Z.; İmamoğlu, R.; Genç, N.; Taslimi, P.; Taskin-Tok, T. Assessment of antimicrobial and enzymes inhibition effects of Allium kastambulense with in silico studies: Analysis of its phenolic compounds and flavonoid contents. Arab. J. Chem., 2022, 15(6), 103810.
[http://dx.doi.org/10.1016/j.arabjc.2022.103810]
[49]
Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[50]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[51]
Türker, F.; Noma, S.A.A.; Aktaş, A.; Al-Khafaji, K.; Taşkın Tok, T.; Ateş, B.; Gök, Y. The (NHC)PdBr2(2‑aminopyridine) complexes: Synthesis, characterization, molecular docking study, and inhibitor effects on the human serum carbonic anhydrase and serum bovine xanthine oxidase. Chem Monthly, 2020, 151(10), 1.
[52]
Türker, F.; Gürses, C.; Barut Celepci, D.; Aktaş, A.; Ateş, B.; Gök, Y. New morpholine‐liganded palladium(II) N ‐heterocyclic carbene complexes: Synthesis, characterization, crystal structure, and DNA‐binding studies. Arch. Pharm., 2019, 352(12), 1900187.
[http://dx.doi.org/10.1002/ardp.201900187]
[53]
Biçer, A.; Taslimi, P.; Yakalı, G.; Gülçin, I.; Serdar Gültekin, M.; Turgut Cin, G. Synthesis, characterization, crystal structure of novel bis-thiomethylcyclohexanone derivatives and their inhibitory properties against some metabolic enzymes. Bioorg. Chem., 2019, 82, 393-404.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.001] [PMID: 30428418]
[54]
Bal, S.; Demirci, Ö.; Şen, B.; Taslimi, P.; Aktaş, A.; Gök, Y.; Aygün, M.; Gülçin, İ. PEPPSI type Pd(II)NHC complexes bearing chloro-/fluorobenzyl group: Synthesis, characterization, crystal structures, α-glycosidase and acetylcholinesterase inhibitory properties. Polyhedron, 2021, 198, 115060.
[http://dx.doi.org/10.1016/j.poly.2021.115060]
[55]
Aktaş, A.; Barut Celepci, D.; Kaya, R.; Taslimi, P.; Gök, Y.; Aygün, M.; Gülçin, İ. Novel morpholine liganded Pd-based N-heterocyclic carbene complexes: Synthesis, characterization, crystal structure, antidiabetic and anticholinergic properties. Polyhedron, 2019, 159, 345-354.
[http://dx.doi.org/10.1016/j.poly.2018.11.048]
[56]
Marco, J.; Carreiras, M. Recent developments in the synthesis of acetylcholinesterase inhibitors. Mini Rev. Med. Chem., 2003, 3(6), 518-524.
[http://dx.doi.org/10.2174/1389557033487908] [PMID: 12871155]
[57]
Waldemar, G.; Dubois, B.; Emre, M.; Georges, J.; McKeith, I.G.; Rossor, M.; Scheltens, P.; Tariska, P.; Winblad, B. Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: EFNS guideline. Eur. J. Neurol., 2007, 14(1), e1-e26.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01605.x] [PMID: 17222085]
[58]
Kennedy, D.O.; Dodd, F.L.; Robertson, B.C.; Okello, E.J.; Reay, J.L.; Scholey, A.B.; Haskell, C.F. Monoterpenoid extract of sage ( Salvia lavandulaefolia ) with cholinesterase inhibiting properties improves cognitive performance and mood in healthy adults. J. Psychopharmacol., 2011, 25(8), 1088-1100.
[http://dx.doi.org/10.1177/0269881110385594] [PMID: 20937617]
[59]
Choonara, Y.; Pillay, V.; Du Toit, L.; Modi, G.; Naidoo, D.; Ndesendo, V.; Sibambo, S. Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders. Int. J. Mol. Sci., 2009, 10(6), 2510-2557.
[http://dx.doi.org/10.3390/ijms10062510] [PMID: 19582217]
[60]
Brett, A.; Webster, A.A. Acetylcholinesterase and its Inhibitors. Primer on the Autonomic Nervous System; Elsevier: Amsterdam, 2012.
[61]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[62]
O’Brien, R.D. Toxic Phosphorus Esters: Chemistry, Metabolism, and Biological Effects; Elsevier: Amsterdam, 2013.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy