Graphical Abstract
[1]
Bashir, M.S.; Zhou, C.; Wang, C.; Sillanpää, M.; Wang, F. Facile strategy to fabricate palladium-based nanoarchitectonics as efficient catalytic converters for water treatment. Separ. Purif. Tech., 2023, 304, 122307.
[http://dx.doi.org/10.1016/j.seppur.2022.122307]
[http://dx.doi.org/10.1016/j.seppur.2022.122307]
[2]
Jiang, X.; Bashir, M.S.; Zhang, F.; Kong, X.Z. Formation and shape transition of porous polyurea of exotic forms through interfacial polymerization of toluene diisocyanate in aqueous solution of ethylenediamine and their characterization. Eur. Polym. J., 2018, 109, 93-100.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.09.002]
[http://dx.doi.org/10.1016/j.eurpolymj.2018.09.002]
[3]
Han, H.; Li, S.; Zhu, X.; Jiang, X.; Kong, X.Z. One step preparation of porous polyurea by reaction of toluene diisocyanate with water and its characterization. RSC Advances, 2014, 4(63), 33520-33529.
[http://dx.doi.org/10.1039/C4RA06383J]
[http://dx.doi.org/10.1039/C4RA06383J]
[4]
Bashir, M.S.; Kong, X.Z.; Ramzan, N.; Arif, M.; Bashir, H.; Azhar, U.; Zaib Arshad, J.; Shoaib, A.S.S.; Wang, F. Systematic study on interfacial polymerization mechanism of toluene diisocyanate and water for the preparation of polyurea microspheres. Inorg. Chem. Commun., 2022, 143, 109814.
[http://dx.doi.org/10.1016/j.inoche.2022.109814]
[http://dx.doi.org/10.1016/j.inoche.2022.109814]
[5]
Jiang, X.; Li, X.; Zhu, X.; Kong, X.Z. Preparation of highly uniform polyurea microspheres through precipitation polymerization and their characterization. Ind. Eng. Chem. Res., 2016, 55(44), 11528-11535.
[http://dx.doi.org/10.1021/acs.iecr.6b03526]
[http://dx.doi.org/10.1021/acs.iecr.6b03526]
[6]
Zhang, X.; Li, S.; Zhu, X.; Jiang, X.; Kong, X.Z. Easy preparation of porous polyurea through copolymerization of toluene diisocyanate with ethylenediamine and its use as absorbent for copper ions. React. Funct. Polym., 2018, 133, 143-152.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.10.010]
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.10.010]
[7]
Han, H.; Zhou, Y.; Li, S.; Wang, Y.; Kong, X.Z. Immobilization of lipase from Pseudomonas fluorescens on porous polyurea and its application in kinetic resolution of racemic 1-phenylethanol. ACS Appl. Mater. Interfaces, 2016, 8(39), 25714-25724.
[http://dx.doi.org/10.1021/acsami.6b07979] [PMID: 27618157]
[http://dx.doi.org/10.1021/acsami.6b07979] [PMID: 27618157]
[8]
Li, L.; Chen, Z.; Zhong, H.; Wang, R. Urea-based porous organic frameworks: Effective supports for catalysis in neat water. Chemistry, 2014, 20(11), 3050-3060.
[http://dx.doi.org/10.1002/chem.201304046] [PMID: 24677450]
[http://dx.doi.org/10.1002/chem.201304046] [PMID: 24677450]
[9]
Bashir, M.S.; Jiang, X.; Li, S.; Kong, X.Z. Highly uniform and porous polyurea microspheres: Clean and easy preparation by interface polymerization, palladium incorporation, and high catalytic performance for dye degradation. Front Chem., 2019, 7, 314.
[http://dx.doi.org/10.3389/fchem.2019.00314] [PMID: 31139616]
[http://dx.doi.org/10.3389/fchem.2019.00314] [PMID: 31139616]
[10]
Zhang, F.; Jiang, X.; Zhu, X.; Chen, Z.; Kong, X.Z. Preparation of uniform and porous polyurea microspheres of large size through interfacial polymerization of toluene diisocyanate in water solution of ethylene diamine. Chem. Eng. J., 2016, 303, 48-55.
[http://dx.doi.org/10.1016/j.cej.2016.05.145]
[http://dx.doi.org/10.1016/j.cej.2016.05.145]
[11]
Bashir, M.S.; Jiang, X.; Yang, X.; Kong, X.Z. Porous polyurea supported pd catalyst: Easy preparation, full characterization, and high activity and reusability in reduction of hexavalent chromium in aqueous system. Ind. Eng. Chem. Res., 2021, 60(22), 8108-8119.
[http://dx.doi.org/10.1021/acs.iecr.1c01376]
[http://dx.doi.org/10.1021/acs.iecr.1c01376]
[12]
Bashir, M.S.; Shah, S.S.A.; Najam, T.; Safdar, A.; Bashir, H. Covalent Organic Framework-Based Nanoparticles for Catalytic Environmental Remediation In: Covalent Organic Frameworks; 1st ed; Boca Raton; CRC Press; 2022, pp. 411-430.
[13]
Bashir, M.S.; Jiang, X.; Kong, X.Z. Porous polyurea microspheres with Pd immobilized on surface and their catalytic activity in 4-nitrophenol reduction and organic dyes degradation. Eur. Polym. J., 2020, 129, 109652.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109652]
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109652]
[14]
Bashir, M.S. Benign fabrication process of hierarchal porous polyurea microspheres with tunable pores and porosity: Their Pd immobilization and use for hexavalent chromium reduction. Chem. Eng. Res. Des., 2021, 175, 102-114.
[http://dx.doi.org/10.1016/j.cherd.2021.08.037]
[http://dx.doi.org/10.1016/j.cherd.2021.08.037]
[15]
Polenz, I.; Weitz, D.A.; Baret, J.C. Polyurea microcapsules in microfluidics: Surfactant control of soft membranes. Langmuir, 2015, 31(3), 1127-1134.
[http://dx.doi.org/10.1021/la5040189] [PMID: 25531127]
[http://dx.doi.org/10.1021/la5040189] [PMID: 25531127]
[16]
Polenz, I.; Datta, S.S.; Weitz, D.A. Controlling the morphology of polyurea microcapsules using microfluidics. Langmuir, 2014, 30(44), 13405-13410.
[http://dx.doi.org/10.1021/la503234z] [PMID: 25320872]
[http://dx.doi.org/10.1021/la503234z] [PMID: 25320872]
[17]
Du, J.; Ibaseta, N.; Guichardon, P. Characterization of polyurea microcapsules synthesized with an isocyanate of low toxicity and eco-friendly esters via microfluidics: Shape, shell thickness, morphology and encapsulation efficiency. Chem. Eng. Res. Des., 2022, 182, 256-272.
[http://dx.doi.org/10.1016/j.cherd.2022.03.026]
[http://dx.doi.org/10.1016/j.cherd.2022.03.026]
[18]
Shi, T.; Hu, P.; Wang, J. Preparation of polyurea microcapsules containing phase change materials using microfluidics. ChemistrySelect, 2020, 5(7), 2342-2347.
[http://dx.doi.org/10.1002/slct.201904570]
[http://dx.doi.org/10.1002/slct.201904570]
[19]
Lone, S.; Lee, H.M.; Kim, G.M.; Koh, W.G.; Cheong, I.W. Facile and highly efficient microencapsulation of a phase change material using tubular microfluidics. Colloids Surf. A Physicochem. Eng. Asp., 2013, 422, 61-67.
[http://dx.doi.org/10.1016/j.colsurfa.2013.01.035]
[http://dx.doi.org/10.1016/j.colsurfa.2013.01.035]
[20]
Yang, L.; Dai, L.; Ye, L.; Yang, R.; Lu, Y. Microfluidic fabrication and thermal properties of microencapsulated n-hexadecane with a hybrid polymer shell for thermal energy storage. Materials, 2022, 15(10), 3708.
[http://dx.doi.org/10.3390/ma15103708] [PMID: 35629733]
[http://dx.doi.org/10.3390/ma15103708] [PMID: 35629733]