Abstract
Colorectal cancer is more prevalent in females than males. There are many anticancer drugs accessible for use, but their therapeutic importance is constrained by factors including poor solubility, low absorption, and multi-drug resistance. This review highlights how PLGA may be used to develop polymeric- targeted drug delivery systems that specifically target colorectal cancer. The PLGA polymer, which is disseminated in the colon together with drugs in a regulated and targeted manner, has the distinct characteristics of smart degradation in a biological system. Its degradability is dependent on multiple glycolide units; therefore, a lower glycol concentration improves degradability and vice versa. Also, PLGA facilitates drug delivery in colorectal cancer, enhances the efficacy of the drug, improves the sustained release profile of a drug, improves bioavailability due to prolonged retention time in the colon, enhances solubility, etc. To develop the formulation for improving the cytotoxic impact of various anticancer drugs, the surface modification of PLGA can be carried out by introducing a copolymer. By emphasizing their crucial characterization to demonstrate their therapeutic potential, this literature work has also shed light on recent patents and advancements in PLGA application.