Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

A Comprehensive Study on Peppermint Oil and Cinnamon Oil as Nanoemulsion: Preparation, Stability, Cytotoxicity, Antimicrobial, Antifungal, and Antioxidant Activity

Author(s): Emrah Özakar, Levent Alparslan, M. Cemal Adıgüzel, Gülşah Torkay, Alper Baran, Ayça Bal-Öztürk and Rukiye Sevinç-Özakar*

Volume 21, Issue 4, 2024

Published on: 23 June, 2023

Page: [603 - 622] Pages: 20

DOI: 10.2174/1567201820666230612123011

Price: $65

Abstract

Background: Recent studies have shown that nanoemulsions prepared with essential oils have significant antimicrobial potential against multidrug-resistant pathogens due to increased chemical stability. Nanoemulsion also promotes controlled and sustained release, which increases their bioavailability and efficacy against multidrug-resistant bacteria.

Objective: This study aimed to investigate the antimicrobial, antifungal, antioxidant, and cytotoxicity properties of cinnamon essential oil and peppermint essential oil as nanoemulsions compared to pure forms. For this purpose, analyses of the selected stable nanoemulsions were carried out.

Method: The droplet sizes and zeta potentials of peppermint essential oil nanoemulsions and cinnamon essential oil nanoemulsions were found to be 154.6±1.42 nm and -17.1±0.68 mV and 200.3±4.71 nm and -20.0±0.81 mV, respectively. Although the amount of essential oil used in nanoemulsions was 25% w/w, antioxidant and antimicrobial activities were found to be more effective compared to pure essential oils.

Results: In cytotoxicity studies on the 3T3 cell line, both essential oil nanoemulsions showed higher cell viability than pure essential oils. At the same time, cinnamon essential oil nanoemulsions exhibited a higher antioxidant property than peppermint essential oil nanoemulsions and showed superiority in the antimicrobial susceptibility test conducted against four bacteria and two fungi. Cell viability tests determined that cinnamon essential oil nanoemulsions showed considerably higher cell viability compared to pure cinnamon essential oil.

Conclusion: These findings indicated that the prepared nanoemulsions in the current study might positively influence the dosing regimen and clinical outcomes of antibiotic therapy.

Graphical Abstract

[1]
Adiguzel, M.C.; Sigirci, B.D.; Celik, B.; Kahraman, B.B.; Metiner, K.; Ikiz, S.; Bagcigil, A.F.; Ak, S.; Ozgur, N.Y. Phenotypic and genotypic examination of antimicrobial resistance in thermophilic Campylobacter species isolated from poultry in Turkey. J. Vet. Res. (Pulawy), 2018, 62(4), 463-468.
[http://dx.doi.org/10.2478/jvetres-2018-0071] [PMID: 30729203]
[2]
Cengiz, S.; Okur, S.; Oz, C.; Turgut, F.; Gumurcinler, B.; Sevuk, N.S.; Kekec, A.I.; Cepoglu, H.; Sevimli, U.; Adiguzel, M.C. Prevalence and clonal diversity of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius isolated from dogs and cats with eye discharge. Acta Microbiol. Immunol. Hung., 2023. (Online ahead of print)
[http://dx.doi.org/10.1556/030.2023.01899]
[3]
Yang, S.K.; Tan, N.P.; Chong, C.W.; Abushelaibi, A.; Lim, S.H.E.; Lai, K.S. The missing piece: Recent approaches investigating the antimicrobial mode of action of essential oils. Evol. Bioinform. Online, 2021, 17, 1176934320938391.
[http://dx.doi.org/10.1177/1176934320938391] [PMID: 34017165]
[4]
Chiriac, A.P.; Rusu, A.G.; Nita, L.E.; Chiriac, V.M.; Neamtu, I.; Sandu, A. Polymeric carriers designed for encapsulation of essential oils with biological activity. Pharmaceutics, 2021, 13(5), 631.
[http://dx.doi.org/10.3390/pharmaceutics13050631] [PMID: 33925127]
[5]
Szewczuk, M.A.; Zych, S.; Oster, N.; Karakulska, J. Activity of patchouli and tea tree essential oils against Staphylococci isolated from Pyoderma in dogs and their synergistic potential with gentamicin and enrofloxacin. Animals, 2023, 13(8), 1279.
[http://dx.doi.org/10.3390/ani13081279] [PMID: 37106842]
[6]
Moo, C.L.; Yang, S.K.; Yusoff, K.; Ajat, M.; Thomas, W.; Abushelaibi, A.; Lim, S.H.E.; Lai, K.S. Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR. Curr. Drug Discov. Technol., 2020, 17(4), 430-447.
[http://dx.doi.org/10.2174/1570163816666190304122219] [PMID: 30836923]
[7]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[8]
Liang, R.; Xu, S.; Shoemaker, C.F.; Li, Y.; Zhong, F.; Huang, Q. Physical and antimicrobial properties of peppermint oil nanoemulsions. J. Agric. Food Chem., 2012, 60(30), 7548-7555.
[http://dx.doi.org/10.1021/jf301129k] [PMID: 22746096]
[9]
Zhang, S.; Zhang, M.; Fang, Z.; Liu, Y. Preparation and characterization of blended cloves/cinnamon essential oil nanoemulsions. Lebensm. Wiss. Technol., 2017, 75, 316-322.
[http://dx.doi.org/10.1016/j.lwt.2016.08.046]
[10]
Jiang, Y.; Wang, D.; Li, F.; Li, D.; Huang, Q. Cinnamon essential oil Pickering emulsion stabilized by zein-pectin composite nanoparticles: Characterization, antimicrobial effect and advantages in storage application. Int. J. Biol. Macromol., 2020, 148, 1280-1289.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.103] [PMID: 31739045]
[11]
da Silva, R.C.S.; de Souza Arruda, I.R.; Malafaia, C.B.; de Moraes, M.M.; Beck, T.S.; Gomes da Camara, C.A.; Henrique da Silva, N.; Vanusa da Silva, M.; dos Santos Correia, M.T.; Frizzo, C.P.; Machado, G. Synthesis, characterization and antibiofilm/antimicrobial activity of nanoemulsions containing Tetragastris catuaba (Burseraceae) essential oil against disease-causing pathogens. J. Drug Deliv. Sci. Technol., 2022, 67, 102795.
[http://dx.doi.org/10.1016/j.jddst.2021.102795]
[12]
Arancibia, C.; Miranda, M.; Matiacevich, S.; Troncoso, E. Physical properties and lipid bioavailability of nanoemulsion-based matrices with different thickening agents. Food Hydrocoll., 2017, 73, 243-254.
[http://dx.doi.org/10.1016/j.foodhyd.2017.07.010]
[13]
Bashlouei, S.G.; Karimi, E.; Zareian, M.; Oskoueian, E.; Shakeri, M. Heracleum persicum essential oil nanoemulsion: a nanocarrier system for the delivery of promising anticancer and antioxidant bioactive agents. Antioxidants, 2022, 11(5), 831.
[http://dx.doi.org/10.3390/antiox11050831] [PMID: 35624695]
[14]
Zong, T.X.; Silveira, A.P.; Morais, J.A.V.; Sampaio, M.C.; Muehlmann, L.A.; Zhang, J.; Jiang, C.S.; Liu, S.K. Recent advances in antimicrobial nano-drug delivery systems. Nanomaterials, 2022, 12(11), 1855.
[http://dx.doi.org/10.3390/nano12111855] [PMID: 35683711]
[15]
Garcia, C.R.; Malik, M.H.; Biswas, S.; Tam, V.H.; Rumbaugh, K.P.; Li, W.; Liu, X. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomater. Sci., 2022, 10(3), 633-653.
[http://dx.doi.org/10.1039/D1BM01537K] [PMID: 34994371]
[16]
Pey, C.M.; Maestro, A.; Solé, I.; González, C.; Solans, C.; Gutiérrez, J.M. Optimization of nano-emulsions prepared by low-energy emulsifi-cation methods at constant temperature using a factorial design study. Colloids Surf. A Physicochem. Eng. Asp., 2006, 288(1-3), 144-150.
[http://dx.doi.org/10.1016/j.colsurfa.2006.02.026]
[17]
Lu, W.C.; Huang, D.W.; Wang, C.R.; Yeh, C.H.; Tsai, J.C.; Huang, Y.T.; Li, P.H. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. Yao Wu Shi Pin Fen Xi, 2018, 26(1), 82-89.
[PMID: 29389592]
[18]
Kentish, S.; Wooster, T.J.; Ashokkumar, M.; Balachandran, S.; Mawson, R.; Simons, L. The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. Technol., 2008, 9(2), 170-175.
[http://dx.doi.org/10.1016/j.ifset.2007.07.005]
[19]
Kim, D.M.; Hyun, S.S.; Yun, P.; Lee, C.H.; Byun, S.Y. Identification of an emulsifier and conditions for preparing stable nanoemulsions containing the antioxidant astaxanthin. Int. J. Cosmet. Sci., 2012, 34(1), 64-73.
[http://dx.doi.org/10.1111/j.1468-2494.2011.00682.x] [PMID: 21883294]
[20]
Henry, J.V.L.; Fryer, P.J.; Frith, W.J.; Norton, I.T. Emulsification mechanism and storage instabilities of hydrocarbon-in-water sub-micron emulsions stabilised with Tweens (20 and 80), Brij 96v and sucrose monoesters. J. Colloid Interface Sci., 2009, 338(1), 201-206.
[http://dx.doi.org/10.1016/j.jcis.2009.05.077] [PMID: 19589533]
[21]
Özakar, R.S.; Bingöl, M.S.; Adıgüzel, M.C.; Özakar, E. Preparation, characterization of chitosan-coated/uncoated boron nanoparticles and in-vitro evaluation of their antimicrobial effects. Porrime, 2022, 46(6), 709-721.
[http://dx.doi.org/10.7317/pk.2022.46.6.709]
[22]
Algahtani, M.S.; Ahmad, M.Z.; Ahmad, J. Investigation of factors influencing formation of nanoemulsion by spontaneous emulsification: impact on droplet size, polydispersity index, and stability. Bioengineering, 2022, 9(8), 384.
[http://dx.doi.org/10.3390/bioengineering9080384] [PMID: 36004909]
[23]
Gurpreet, K.; Singh, S. Review of Nanoemulsion formulation and characterization techniques. Indian J. Pharm. Sci., 2018, 80(5), 781-789.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000422]
[24]
Ghosh, V.; Saranya, S.; Mukherjee, A.; Chandrasekaran, N. Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J. Nanosci. Nanotechnol., 2013, 13(1), 114-122.
[http://dx.doi.org/10.1166/jnn.2013.6701] [PMID: 23646705]
[25]
Cezarotto, V.S.; Franceschi, E.P.; Stein, A.C.; Emanuelli, T.; Maurer, L.H.; Sari, M.H.M.; Ferreira, L.M.; Cruz, L. Nanoencapsulation of Vaccinium ashei leaf extract in Eudragit® RS100-based nanoparticles increases its in vitro antioxidant and in vivo antidepressant-like actions. Pharmaceuticals, 2023, 16(1), 84.
[http://dx.doi.org/10.3390/ph16010084] [PMID: 36678581]
[26]
Jiménez, M.; Domínguez, J.A.; Pascual-Pineda, L.A.; Azuara, E.; Beristain, C.I. Elaboration and characterization of O/W cinnamon (Cin-namomum zeylanicum) and black pepper (Piper nigrum) emulsions. Food Hydrocoll., 2018, 77, 902-910.
[http://dx.doi.org/10.1016/j.foodhyd.2017.11.037]
[27]
Sevinç-Özakar, R.; Seyret, E.; Özakar, E.; Adıgüzel, M.C. nanoemulsion-based hydrogels and organogels containing propolis and dexpanthenol: Preparation, characterization, and comparative evaluation of stability, antimicrobial, and cytotoxic properties. Gels, 2022, 8(9), 578.
[http://dx.doi.org/10.3390/gels8090578] [PMID: 36135290]
[28]
Özakar, E.; Bı̇ngöl, M.S.; Sevı̇nç Özakar, R. Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability. Turk. J. Chem., 2022, 46(5), 1429-1449.
[http://dx.doi.org/10.55730/1300-0527.3449]
[29]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181(4617), 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[30]
Celik, H.; Nadaroglu, H.; Senol, M. Evaluation of antioxidant, antiradicalic and antimicrobial activities of olive pits (Olea europaea L.). Bulg. J. Agric. Sci., 2014, 20(6), 1392-1400.
[31]
European Committee on Antimicrobial Susceptibility Testing (EUCAST). Media preparation for EUCAST disk diffusion testing and for determination of MIC values by the broth microdilution method., 2022. Available from: http://www.eucast.org
[32]
European Committee on Antimicrobial Susceptibility Testing (EUCAST). Antimicrobial susceptibility testing EUCAST disk diffusion method., 2023. http://www.eucast.org
[33]
Zeng, L.; Liu, Y.; Pan, J.; Liu, X. Formulation and evaluation of norcanthridin nanoemulsions against the Plutella xylostella (Lepidotera: Plutellidae). BMC Biotechnol., 2019, 19(1), 16.
[http://dx.doi.org/10.1186/s12896-019-0508-8] [PMID: 30871528]
[34]
Ali, M.S.; Alam, M.S.; Alam, N.; Siddiqui, M.R. Preparation, characterization and stability study of dutasteride loaded nanoemulsion for treatment of benign prostatic hypertrophy. Iran. J. Pharm. Res., 2014, 13(4), 1125-1140.
[PMID: 25587300]
[35]
Jafari, S.M.; He, Y.; Bhandari, B. Production of sub-micron emulsions by ultrasound and microfluidization techniques. J. Food Eng., 2007, 82(4), 478-488.
[http://dx.doi.org/10.1016/j.jfoodeng.2007.03.007]
[36]
Jena, S.; Das, H. Modeling of particle size distribution of sonicated coconut milk emulsion: Effect of emulsifiers and sonication time. Food Res. Int., 2006, 39(5), 606-611.
[http://dx.doi.org/10.1016/j.foodres.2005.12.005]
[37]
Liu, W.; Sun, D.; Li, C.; Liu, Q.; Xu, J. Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. J. Colloid Interface Sci., 2006, 303(2), 557-563.
[http://dx.doi.org/10.1016/j.jcis.2006.07.055] [PMID: 16905141]
[38]
Nazarzadeh, E.; Anthonypillai, T.; Sajjadi, S. On the growth mechanisms of nanoemulsions. J. Colloid Interface Sci., 2013, 397, 154-162.
[http://dx.doi.org/10.1016/j.jcis.2012.12.018] [PMID: 23452515]
[39]
Izquierdo, P.; Feng, J.; Esquena, J.; Tadros, T.F.; Dederen, J.C.; Garcia, M.J.; Azemar, N.; Solans, C. The influence of surfactant mixing ratio on nano-emulsion formation by the pit method. J. Colloid Interface Sci., 2005, 285(1), 388-394.
[http://dx.doi.org/10.1016/j.jcis.2004.10.047] [PMID: 15797437]
[40]
Liu, X.; Chen, L.; Kang, Y.; He, D.; Yang, B.; Wu, K. Cinnamon essential oil nanoemulsions by high-pressure homogenization: Formulation, stability, and antimicrobial activity. Lebensm. Wiss. Technol., 2021, 147, 111660.
[http://dx.doi.org/10.1016/j.lwt.2021.111660]
[41]
Sarheed, O.; Dibi, M.; Ramesh, K.V.R.N.S. Studies on the effect of oil and surfactant on the formation of alginate-based o/w lidocaine nanocarriers using nanoemulsion template. Pharmaceutics, 2020, 12(12), 1223.
[http://dx.doi.org/10.3390/pharmaceutics12121223] [PMID: 33348692]
[42]
Silva, H.D.; Cerqueira, M.A.; Vicente, A.A. Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. J. Food Eng., 2015, 167, 89-98.
[http://dx.doi.org/10.1016/j.jfoodeng.2015.07.037]
[43]
Heydari, M.; Amirjani, A.; Bagheri, M.; Sharifian, I.; Sabahi, Q. Ecofriendly pesticide based on peppermint oil nanoemulsion: preparation, physicochemical properties, and its aphicidal activity against cotton aphid. Environ. Sci. Pollut. Res. Int., 2020, 27(6), 6667-6679.
[http://dx.doi.org/10.1007/s11356-019-07332-y] [PMID: 31873908]
[44]
Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocoll., 2015, 43, 547-556.
[http://dx.doi.org/10.1016/j.foodhyd.2014.07.012]
[45]
Badran, M. Formulation and in vitro evaluation of flufenamic acid loaded deformable liposomes for improved skin delivery. Dig. J. Nanomater. Biostruct., 2014, 9(1), 83-91.
[46]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[47]
Peng, T.; Lin, S.; Niu, B.; Wang, X.; Huang, Y.; Zhang, X.; Li, G.; Pan, X.; Wu, C. Influence of physical properties of carrier on the performance of dry powder inhalers. Acta Pharm. Sin. B, 2016, 6(4), 308-318.
[http://dx.doi.org/10.1016/j.apsb.2016.03.011] [PMID: 27471671]
[48]
da Cruz Silva, G.; Golçalves de Oliveira Filho, J.; de Mori Morselli Ribeiro, M.; Oliveira de Souza, C.W.; Ferreira, M.D. Antibacterial activity of nanoemulsions based on essential oils compounds against species of Xanthomonas that cause citrus canker. Biointerface Res. Appl. Chem., 2021, 12(2), 1835-1846.
[http://dx.doi.org/10.33263/BRIAC122.18351846]
[49]
Afifi, S.A.; Hassan, M.A.; Abdelhameed, A.S.; Elkhodairy, K.A. Nanosuspension: An emerging trend for bioavailability enhancement of etodolac. Int. J. Polym. Sci., 2015, 2015, 1-16.
[http://dx.doi.org/10.1155/2015/938594]
[50]
Koca, M.; Sevinç Özakar, R.; Özakar, E.; Sade, R.; Pirimoğlu, B.; Şimsek Özek, N.; Aysin, F. Preparation and characterization of nanosuspensions of triiodoaniline derivative new contrast agent, and investigation into its cytotoxicity and contrast properties. Iran. J. Pharm. Res., 2022, 21(1), e123824.
[http://dx.doi.org/10.5812/ijpr.123824] [PMID: 35765507]
[51]
Tian, Y.; Chen, L.; Zhang, W. Influence of ionic surfactants on the properties of nanoemulsions emulsified by nonionic surfactants Span 80/Tween 80. J. Dispers. Sci. Technol., 2016, 37(10), 1511-1517.
[http://dx.doi.org/10.1080/01932691.2015.1048806]
[52]
Abreu, F.O.M.S.; Costa, E.F.; Cardial, M.R.L.; André, W.P.P. Polymeric nanoemulsions enriched with Eucalyptus citriodora essential oil. Polímeros, 2020, 30(2), e2020024.
[http://dx.doi.org/10.1590/0104-1428.00920]
[53]
Pengon, S.; Chinatangkul, N.; Limmatvapirat, C.; Limmatvapirat, S. The effect of surfactant on the physical properties of coconut oil nanoemulsions. As. J. Pharm. Sci., 2018, 13(5), 409-414.
[http://dx.doi.org/10.1016/j.ajps.2018.02.005] [PMID: 32104415]
[54]
Yilmaztekin, M.; Lević, S.; Kalušević, A.; Cam, M.; Bugarski, B.; Rakić, V.; Pavlović, V.; Nedović, V. Characterisation of peppermint (Men-tha piperita L.) essential oil encapsulates. J. Microencapsul., 2019, 36(2), 109-119.
[http://dx.doi.org/10.1080/02652048.2019.1607596] [PMID: 30982381]
[55]
Prakash, N.; Yumus, M. Fourier transform infrared spectroscopy analysis of oil of Mentha arvensis grown at sites varying with vehicular traffic loads in lucknow city, India. Int J Environ, 2013, 2(1), 16-25.
[http://dx.doi.org/10.3126/ije.v2i1.9204]
[56]
Bai, M. Jin, X.; Cen, Z.; Yu, K.; Yu, H.; Xiao, R.; Deng, J.; Lai, Z.; Wu, H.; Li, Y. GC–MS and FTIR spectroscopy for the identification and assessment of essential oil components of five cinnamon leaves. Rev. Bras. Bot., 2021, 44(3), 525-535.
[http://dx.doi.org/10.1007/s40415-021-00751-7]
[57]
Mutlu, M.; Bingol, Z.; Uc, E.M.; Köksal, E.; Goren, A.C.; Alwasel, S.H.; Gulcin, İ. Comprehensive metabolite profiling of cinnamon (Cin-namomum zeylanicum) leaf oil using LC-HR/MS, GC/MS, and GC-FID: Determination of antiglaucoma, antioxidant, anticholinergic, and antidiabetic profiles. Life, 2023, 13(1), 136.
[http://dx.doi.org/10.3390/life13010136] [PMID: 36676085]
[58]
Tsai, M.L.; Wu, C.T.; Lin, T.F.; Lin, W.C.; Huang, Y.C.; Yang, C.H. Chemical composition and biological properties of essential oils of two mint species. Trop. J. Pharm. Res., 2013, 12(4), 577-582.
[http://dx.doi.org/10.4314/tjpr.v12i4.20]
[59]
Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Martorell Guerola, P.; Tortajada, M.; Cao, Z.; Ji, P. Chemical composition and antioxidant properties of essential oils from peppermint, native spearmint and scotch spearmint. Molecules, 2019, 24(15), 2825.
[http://dx.doi.org/10.3390/molecules24152825] [PMID: 31382468]
[60]
Kanaya, K.; Akao, S.; Misumi, R.; Nishi, K.; Kaminoyama, M. Development of method for estimating drop diameter in the manufacturing process of functional O/W microcapsules. Chem. Eng. Res. Des., 2013, 91(11), 2098-2105.
[http://dx.doi.org/10.1016/j.cherd.2013.07.007]
[61]
McClements, D.J.; Rao, J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr., 2011, 51(4), 285-330.
[http://dx.doi.org/10.1080/10408398.2011.559558] [PMID: 21432697]
[62]
Li, W.; Chen, H.; He, Z.; Han, C.; Liu, S.; Li, Y. Influence of surfactant and oil composition on the stability and antibacterial activity of euge-nol nanoemulsions. Lebensm. Wiss. Technol., 2015, 62(1), 39-47.
[http://dx.doi.org/10.1016/j.lwt.2015.01.012]
[63]
McClements, D.J.; Das, A.K.; Dhar, P.; Nanda, P.K.; Chatterjee, N. Nanoemulsion-based technologies for delivering natural plant-based anti-microbials in foods. Front. Sustain. Food Syst., 2021, 5, 643208.
[http://dx.doi.org/10.3389/fsufs.2021.643208]
[64]
Yildirim, S.T.; Oztop, M.H.; Soyer, Y. Cinnamon oil nanoemulsions by spontaneous emulsification: Formulation, characterization and antimicrobial activity. Lebensm. Wiss. Technol., 2017, 84, 122-128.
[http://dx.doi.org/10.1016/j.lwt.2017.05.041]
[65]
Pandey, V.K.; Islam, R.U.; Shams, R.; Dar, A.H. A comprehensive review on the application of essential oils as bioactive compounds in nano-emulsion based edible coatings of fruits and vegetables. App Food Res, 2022, 2(1), 100042.
[http://dx.doi.org/10.1016/j.afres.2022.100042]
[66]
Gupta, C.; Garg, A.P.; Uniyal, R.C.; Kumari, A. Antimicrobial activity of some herbal oils against common food-borne pathogens. Afr. J. Microbiol. Res., 2008, 2(10), 258-261.
[67]
Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health, 2017, 10(4), 369-378.
[http://dx.doi.org/10.1016/j.jiph.2016.08.007] [PMID: 27616769]
[68]
Hamad, T.; Hellmark, B.; Nilsdotter-Augustinsson, Å.; Söderquist, B. Antibiotic susceptibility among Staphylococcus epidermidis isolated from prosthetic joint infections, with focus on doxycycline. Acta Pathol. Microbiol. Scand. Suppl., 2015, 123(12), 1055-1060.
[http://dx.doi.org/10.1111/apm.12465] [PMID: 26547372]
[69]
Mohamed, M.A.; Nasr, M.; Elkhatib, W.F.; Eltayeb, W.N. In vitro evaluation of antimicrobial activity and cytotoxicity of different nanobiotics targeting multidrug resistant and biofilm forming Staphylococci. BioMed Res. Int., 2018, 2018, 1-7.
[http://dx.doi.org/10.1155/2018/7658238] [PMID: 30622962]
[70]
Gostyńska, A.; Czerniel, J.; Kuźmińska, J.; Brzozowski, J.; Majchrzak-Celińska, A.; Krajka-Kuźniak, V.; Stawny, M. Honokiol loaded nanoemulsion for glioblastoma treatment: statistical optimization, physicochemical characterization, and an in vitro toxicity assay. Pharmaceutics, 2023, 15(2), 448.
[http://dx.doi.org/10.3390/pharmaceutics15020448] [PMID: 36839769]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy