Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Metal and Metal Oxide Nanoparticles as Agents Against Human Infectious Viruses

Author(s): Malihe Hamidzade, Saeed Motlaghzadeh, Pegah Khales, Danesh Aminpanah, Sara Minaeian, Seyed Morteza Hosseini-Hosseinabad and Ahmad Tavakoli*

Volume 20, Issue 4, 2024

Published on: 26 June, 2023

Page: [510 - 529] Pages: 20

DOI: 10.2174/1573413719666230608112014

Price: $65

Abstract

Viral infections remain to be a serious threat to public health on a global scale. Recent outbreaks of viral infections have highlighted the urgent need for novel antiviral treatments. The recent development of metal/metal oxide nanoparticles for the treatment of various pathogenic viruses has received significant attention. There are established mechanisms of action for metal/ metal oxide nanoparticles that can occur inside and outside host cells. These mechanisms include the interaction of nanoparticles with viral receptors, interference with viral attachment, interaction with the viral genome, inactivating virus particles prior to cellular entry, and interaction with viral replication factors. In this article, we attempted to present a comprehensive review of all published research on using metal/metal oxide nanoparticles against human infectious viruses and their antiviral modes of action.

Graphical Abstract

[1]
Yadavalli, T.; Shukla, D. Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomedicine, 2017, 13(1), 219-230.
[http://dx.doi.org/10.1016/j.nano.2016.08.016] [PMID: 27575283]
[2]
Ezzat, M.A.; Alabdulhadi, M.H. Thermomechanical interactions in viscoelastic skin tissue under different theories. Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci., 2023, 97(1), 47-60.
[http://dx.doi.org/10.1007/s12648-021-02261-4]
[3]
Ezzat, M.A.; Lewis, R.W. Two-dimensional thermo-mechanical fractional responses to biological tissue with rheological properties. Int. J. Numer. Methods Heat Fluid Flow, 2022, 32(6), 1944-1960.
[http://dx.doi.org/10.1108/HFF-03-2021-0201]
[4]
Zhang, C.; Yan, L.; Wang, X.; Zhu, S.; Chen, C.; Gu, Z.; Zhao, Y. Progress, challenges, and future of nanomedicine. Nano Today, 2020, 35, 101008.
[http://dx.doi.org/10.1016/j.nantod.2020.101008]
[5]
WHO. Infectious diseases kill over 17 million people a year: WHO warns of global crisis. 2020. Available From: https://www.who.int/whr/1996/media_centre/press_release/en/
[6]
Kumar, M.; Kuroda, K.; Dhangar, K.; Mazumder, P.; Sonne, C.; Rinklebe, J.; Kitajima, M. Potential emergence of antiviral-resistant pandemic viruses via environmental drug exposure of animal reservoirs. Environ. Sci. Technol., 2020, 54(14), 8503-8505.
[http://dx.doi.org/10.1021/acs.est.0c03105] [PMID: 32609508]
[7]
Aderibigbe, B. Metal-based nanoparticles for the treatment of infectious diseases. Molecules, 2017, 22(8), 1370.
[http://dx.doi.org/10.3390/molecules22081370] [PMID: 28820471]
[8]
Joob, B.; Wiwanitkit, V. Nanotechnology for health: A new useful technology in medicine. Medical Journal of Dr. D.Y. Patil University, 2017, 10(5), 401.
[http://dx.doi.org/10.4103/MJDRDYPU.MJDRDYPU_32_17]
[9]
Prasad, M.; Lambe, U.P.; Brar, B.; Shah, I. J, M.; Ranjan, K.; Rao, R.; Kumar, S.; Mahant, S.; Khurana, S.K.; Iqbal, H.M.N.; Dhama, K.; Misri, J.; Prasad, G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother., 2018, 97, 1521-1537.
[http://dx.doi.org/10.1016/j.biopha.2017.11.026] [PMID: 29793315]
[10]
Nikalje, AP Nanotechnology and its applications in medicine. Med chem, 2015, 5(2), 081-089.
[http://dx.doi.org/10.4172/2161-0444.1000247]
[11]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med., 2019, 4(3), e10143.
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]
[12]
Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver nanoparticles as potential antiviral agents. Molecules, 2011, 16(10), 8894-8918.
[http://dx.doi.org/10.3390/molecules16108894] [PMID: 22024958]
[13]
Zazo, H.; Millán, C.G.; Colino, C.I.; Lanao, J.M. Applications of metallic nanoparticles in antimicrobial therapy. Antimicrobial nanoarchitectonics. Antimicrobial nanoarchitectonics; Elsevier, 2017, pp. 411-444.
[http://dx.doi.org/10.1016/B978-0-323-52733-0.00015-X]
[14]
Elechiguerra, J.L.; Burt, J.L.; Morones, J.R.; Camacho-Bragado, A.; Gao, X.; Lara, H.H.; Yacaman, M.J. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnology, 2005, 3(1), 6.
[http://dx.doi.org/10.1186/1477-3155-3-6] [PMID: 15987516]
[15]
Baram-Pinto, D.; Shukla, S.; Perkas, N.; Gedanken, A.; Sarid, R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug. Chem., 2009, 20(8), 1497-1502.
[http://dx.doi.org/10.1021/bc900215b] [PMID: 21141805]
[16]
Xiang, D.; Chen, Q.; Pang, L.; Zheng, C. Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J. Virol. Methods, 2011, 178(1-2), 137-142.
[http://dx.doi.org/10.1016/j.jviromet.2011.09.003] [PMID: 21945220]
[17]
Gaikwad, S.; Ingle, A.; Gade, A.; Rai, M.; Falanga, A.; Incoronato, N.; Russo, L.; Galdiero, S.; Galdiero, M. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomedicine, 2013, 8, 4303-4314.
[PMID: 24235828]
[18]
Xiang, D.; Zheng, C.; Zheng, Y.; Li, X.; Yin, J.; O’ Conner, M.; Marappan, M.; Miao, Y.; Xiang, B.; Duan, W.; Shigdar, S.; Zhao, X. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int. J. Nanomedicine, 2013, 8, 4103-4113.
[http://dx.doi.org/10.2147/IJN.S53622] [PMID: 24204140]
[19]
Hu, R.L.; Li, S.R.; Kong, F.J.; Hou, R.J.; Guan, X.L.; Guo, F. Inhibition effect of silver nanoparticles on herpes simplex virus 2. Genet. Mol. Res., 2014, 13(3), 7022-7028.
[http://dx.doi.org/10.4238/2014.March.19.2] [PMID: 24682984]
[20]
Orlowski, P.; Tomaszewska, E.; Gniadek, M.; Baska, P.; Nowakowska, J.; Sokolowska, J.; Nowak, Z.; Donten, M.; Celichowski, G.; Grobelny, J.; Krzyzowska, M. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS One, 2014, 9(8), e104113.
[http://dx.doi.org/10.1371/journal.pone.0104113] [PMID: 25117537]
[21]
Murugan, K.; Dinesh, D.; Paulpandi, M.; Althbyani, A.D.M.; Subramaniam, J.; Madhiyazhagan, P.; Wang, L.; Suresh, U.; Kumar, P.M.; Mohan, J.; Rajaganesh, R.; Wei, H.; Kalimuthu, K.; Parajulee, M.N.; Mehlhorn, H.; Benelli, G. Nanoparticles in the fight against mosquito-borne diseases: Bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae). Parasitol. Res., 2015, 114(12), 4349-4361.
[http://dx.doi.org/10.1007/s00436-015-4676-8] [PMID: 26290219]
[22]
Narayanasamy, P.; Switzer, B.L.; Britigan, B.E. Prolonged-acting, multi-targeting gallium nanoparticles potently inhibit growth of both HIV and mycobacteria in co-infected human macrophages. Sci. Rep., 2015, 5(1), 8824.
[http://dx.doi.org/10.1038/srep08824] [PMID: 25744727]
[23]
Rafiei, S.; Rezatofighi, S.E.; Ardakani, M.R.; Madadgar, O. In vitro anti‐foot‐and‐mouth disease virus activity of magnesium oxide nanoparticles. IET Nanobiotechnol., 2015, 9(5), 247-251.
[http://dx.doi.org/10.1049/iet-nbt.2014.0028] [PMID: 26435276]
[24]
Ramya, S.; Shanmugasundaram, T.; Balagurunathan, R. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J. Trace Elem. Med. Biol., 2015, 32, 30-39.
[http://dx.doi.org/10.1016/j.jtemb.2015.05.005] [PMID: 26302909]
[25]
Sujitha, V.; Murugan, K.; Paulpandi, M.; Panneerselvam, C.; Suresh, U.; Roni, M.; Nicoletti, M.; Higuchi, A.; Madhiyazhagan, P.; Subramaniam, J.; Dinesh, D.; Vadivalagan, C.; Chandramohan, B.; Alarfaj, A.A.; Munusamy, M.A.; Barnard, D.R.; Benelli, G. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol. Res., 2015, 114(9), 3315-3325.
[http://dx.doi.org/10.1007/s00436-015-4556-2] [PMID: 26063530]
[26]
Bawage, S.S.; Tiwari, P.M.; Singh, A.; Dixit, S.; Pillai, S.R.; Dennis, V.A.; Singh, S.R. Gold nanorods inhibit respiratory syncytial virus by stimulating the innate immune response. Nanomedicine, 2016, 12(8), 2299-2310.
[http://dx.doi.org/10.1016/j.nano.2016.06.006] [PMID: 27381068]
[27]
Borrego, B.; Lorenzo, G.; Mota-Morales, J.D.; Almanza-Reyes, H.; Mateos, F.; López-Gil, E.; de la Losa, N.; Burmistrov, V.A.; Pestryakov, A.N.; Brun, A.; Bogdanchikova, N. Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. Nanomedicine, 2016, 12(5), 1185-1192.
[http://dx.doi.org/10.1016/j.nano.2016.01.021] [PMID: 26970026]
[28]
Fatima, M. Sadaf Zaidi N-u-S, Amraiz D, Afzal F. in vitro antiviral activity of Cinnamomum cassia and its nanoparticles against H7N3 influenza a virus. J. Microbiol. Biotechnol., 2016, 26(1), 151-159.
[http://dx.doi.org/10.4014/jmb.1508.08024] [PMID: 26403820]
[29]
Kumar, S.D.; Singaravelu, G.; Ajithkumar, S.; Murugan, K.; Nicoletti, M.; Benelli, G. Mangrove-mediated green synthesis of silver nanoparticles with high HIV-1 reverse transcriptase inhibitory potential. J. Cluster Sci., 2017, 28(1), 359-367.
[http://dx.doi.org/10.1007/s10876-016-1100-1]
[30]
Rafiei, S.; Rezatofighi, S.E.; Ardakani, M.R.; Rastegarzadeh, S. Gold nanoparticles impair foot-and-mouth disease virus replication. IEEE Trans. Nanobiosci., 2016, 15(1), 34-40.
[http://dx.doi.org/10.1109/TNB.2015.2508718] [PMID: 26685261]
[31]
Yang, X.X.; Li, C.M.; Huang, C.Z. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale, 2016, 8(5), 3040-3048.
[http://dx.doi.org/10.1039/C5NR07918G] [PMID: 26781043]
[32]
Choi, S.; Britigan, B.E.; Narayanasamy, P. Ga (III) nanoparticles inhibit growth of both Mycobacterium tuberculosis and HIV and release of interleukin-6 (IL-6) and IL-8 in coinfected macrophages. Antimicrob. Agents Chemother., 2017, 61(4), e02505-e02516.
[http://dx.doi.org/10.1128/AAC.02505-16] [PMID: 28167548]
[33]
Huy, T.Q.; Hien Thanh, N.T.; Thuy, N.T.; Chung, P.V.; Hung, P.N.; Le, A.T.; Hong Hanh, N.T. Cytotoxicity and antiviral activity of electrochemical – synthesized silver nanoparticles against poliovirus. J. Virol. Methods, 2017, 241, 52-57.
[http://dx.doi.org/10.1016/j.jviromet.2016.12.015] [PMID: 28040515]
[34]
Sharma, R.K.; Cwiklinski, K.; Aalinkeel, R.; Reynolds, J.L.; Sykes, D.E.; Quaye, E.; Oh, J.; Mahajan, S.D.; Schwartz, S.A. Immunomodulatory activities of curcumin-stabilized silver nanoparticles: Efficacy as an antiretroviral therapeutic. Immunol. Invest., 2017, 46(8), 833-846.
[http://dx.doi.org/10.1080/08820139.2017.1371908] [PMID: 29058549]
[35]
Halder, A.; Das, S.; Ojha, D.; Chattopadhyay, D.; Mukherjee, A. Highly monodispersed gold nanoparticles synthesis and inhibition of herpes simplex virus infections. Mater. Sci. Eng. C, 2018, 89, 413-421.
[http://dx.doi.org/10.1016/j.msec.2018.04.005] [PMID: 29752114]
[36]
Rafiei, S.; Rezatofighi, S.E.; Ardakani, M.R.; Madadgar, O. Restrictive influence of silver nanoparticles on the life cycle of the foot-and-mouth disease virus. Nanosci. Nanotechnol. Asia, 2018, 8(2), 248-254.
[http://dx.doi.org/10.2174/2210681207666170703155244]
[37]
Sharma, V.; Kaushik, S.; Pandit, P.; Dhull, D.; Yadav, J.P.; Kaushik, S. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl. Microbiol. Biotechnol., 2019, 103(2), 881-891.
[http://dx.doi.org/10.1007/s00253-018-9488-1] [PMID: 30413849]
[38]
Sreekanth, T.V.M.; Nagajyothi, P.C.; Muthuraman, P.; Enkhtaivan, G.; Vattikuti, S.V.P.; Tettey, C.O.; Kim, D.H.; Shim, J.; Yoo, K. Ultra-sonication-assisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. J. Photochem. Photobiol. B, 2018, 188, 6-11.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.08.013] [PMID: 30176393]
[39]
Tavakoli, A.; Ataei-Pirkooh, A.M.M.; Sadeghi, G.; Bokharaei-Salim, F.; Sahrapour, P.; Kiani, S.J.; Moghoofei, M.; Farahmand, M.; Javanmard, D.; Monavari, S.H. Polyethylene glycol-coated zinc oxide nanoparticle: An efficient nanoweapon to fight against herpes simplex virus type 1. Nanomedicine, 2018, 13(21), 2675-2690.
[http://dx.doi.org/10.2217/nnm-2018-0089] [PMID: 30346253]
[40]
Ghaffari, H.; Tavakoli, A.; Moradi, A.; Tabarraei, A.; Bokharaei-Salim, F.; Zahmatkeshan, M.; Farahmand, M.; Javanmard, D.; Kiani, S.J.; Esghaei, M.; Pirhajati-Mahabadi, V.; Monavari, S.H.; Ataei-Pirkooh, A. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine. J. Biomed. Sci., 2019, 26(1), 70.
[http://dx.doi.org/10.1186/s12929-019-0563-4] [PMID: 31500628]
[41]
Haggag, E.; Elshamy, A.; Rabeh, M.; Gabr, N.; Salem, M.; Youssif, K.; Samir, A.; Bin Muhsinah, A.; Alsayari, A.; Abdelmohsen, U.R. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int. J. Nanomedicine, 2019, 14, 6217-6229.
[http://dx.doi.org/10.2147/IJN.S214171] [PMID: 31496682]
[42]
Kumar, R.; Nayak, M.; Sahoo, G.C.; Pandey, K.; Sarkar, M.C.; Ansari, Y.; Das, V.N.R.; Topno, R.K. Bhawna; Madhukar, M.; Das, P. Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. J. Infect. Chemother., 2019, 25(5), 325-329.
[http://dx.doi.org/10.1016/j.jiac.2018.12.006] [PMID: 30770182]
[43]
Morris, D.; Ansar, M.; Speshock, J.; Ivanciuc, T.; Qu, Y.; Casola, A.; Garofalo, R. Antiviral and immunomodulatory activity of silver nanoparticles in experimental RSV infection. Viruses, 2019, 11(8), 732.
[http://dx.doi.org/10.3390/v11080732] [PMID: 31398832]
[44]
Pfaff, F.; Glück, B.; Hoyer, T.; Rohländer, D.; Sauerbrei, A.; Zell, R. Tungsten carbide nanoparticles show a broad spectrum virucidal activity against enveloped and nonenveloped model viruses using a guideline‐standardized in vitro test. Lett. Appl. Microbiol., 2019, 69(4), 302-309.
[http://dx.doi.org/10.1111/lam.13208] [PMID: 31436888]
[45]
Choudhary, S.; Kumar, R.; Dalal, U.; Tomar, S.; Reddy, S.N. Green synthesis of nanometal impregnated biomass – antiviral potential. Mater. Sci. Eng. C, 2020, 112, 110934.
[http://dx.doi.org/10.1016/j.msec.2020.110934] [PMID: 32409081]
[46]
Jeremiah, S.S.; Miyakawa, K.; Morita, T.; Yamaoka, Y.; Ryo, A. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem. Biophys. Res. Commun., 2020, 533(1), 195-200.
[http://dx.doi.org/10.1016/j.bbrc.2020.09.018] [PMID: 32958250]
[47]
Kim, J.; Yeom, M.; Lee, T.; Kim, H.O.; Na, W.; Kang, A.; Lim, J.W.; Park, G.; Park, C.; Song, D.; Haam, S. Porous gold nanoparticles for attenuating infectivity of influenza A virus. J. Nanobiotechnology, 2020, 18(1), 54.
[http://dx.doi.org/10.1186/s12951-020-00611-8] [PMID: 32209114]
[48]
Ahmed Mohamed, H.E.; Afridi, S.; Khalil, A.T.; Zohra, T.; Ali, M.; Alam, M.M.; Ikram, A.; Shinwari, Z.K.; Maaza, M. Phyto-fabricated Cr2O3 nanoparticle for multifunctional biomedical applications. Nanomedicine, 2020, 15(17), 1653-1669.
[http://dx.doi.org/10.2217/nnm-2020-0129] [PMID: 32669064]
[49]
Rabiee, N.; Bagherzadeh, M.; Ghadiri, A.M.; Kiani, M.; Aldhaher, A.; Ramakrishna, S.; Tahriri, M.; Tayebi, L.; Webster, T.J. Green synthesis of ZnO NPs via Salvia hispanica: Evaluation of potential antioxidant, antibacterial, mammalian cell viability, H1N1 influenza virus inhibition and photocatalytic activities. J. Biomed. Nanotechnol., 2020, 16(4), 456-466.
[http://dx.doi.org/10.1166/jbn.2020.2916] [PMID: 32970978]
[50]
Tavakoli, A.; Hashemzadeh, M.S. Inhibition of herpes simplex virus type 1 by copper oxide nanoparticles. J. Virol. Methods, 2020, 275, 113688.
[http://dx.doi.org/10.1016/j.jviromet.2019.113688] [PMID: 31271792]
[51]
Almanza-Reyes, H.; Moreno, S.; Plascencia-López, I.; Alvarado-Vera, M.; Patrón-Romero, L.; Borrego, B.; Reyes-Escamilla, A.; Valencia-Manzo, D.; Brun, A.; Pestryakov, A.; Bogdanchikova, N. Evaluation of silver nanoparticles for the prevention of SARS-CoV-2 infection in health workers: in vitro and in vivo. PLoS One, 2021, 16(8), e0256401.
[http://dx.doi.org/10.1371/journal.pone.0256401] [PMID: 34411199]
[52]
Attia, G.H.; Moemen, Y.S.; Youns, M.; Ibrahim, A.M.; Abdou, R.; El Raey, M.A. Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2. Colloids Surf. B Biointerfaces, 2021, 203, 111724.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111724] [PMID: 33838582]
[53]
Babaei, A.; Mousavi, S.M.; Ghasemi, M.; Pirbonyeh, N.; Soleimani, M.; Moattari, A. Gold nanoparticles show potential in vitro antiviral and anticancer activity. Life Sci., 2021, 284, 119652.
[http://dx.doi.org/10.1016/j.lfs.2021.119652] [PMID: 34051217]
[54]
Chang, S.Y.; Huang, K.Y.; Chao, T.L.; Kao, H.C.; Pang, Y.H.; Lu, L.; Chiu, C.L.; Huang, H.C.; Cheng, T.J.R.; Fang, J.M.; Yang, P.C. Nanoparticle composite TPNT1 is effective against SARS-CoV-2 and influenza viruses. Sci. Rep., 2021, 11(1), 8692.
[http://dx.doi.org/10.1038/s41598-021-87254-3] [PMID: 33888738]
[55]
Ismail, G.A.; El-Sheekh, M.M.; Samy, R.M.; Gheda, S.F. Antimicrobial, antioxidant, and antiviral activities of biosynthesized silver nanoparticles by phycobiliprotein crude extract of the cyanobacteria Spirulina platensis and Nostoc linckia. Bionanoscience, 2021, 11(2), 355-370.
[http://dx.doi.org/10.1007/s12668-021-00828-3]
[56]
Paradowska, E. Studzińska, M.; Jabłońska, A.; Lozovski, V.; Rusinchuk, N.; Mukha, I.; Vitiuk, N.; Leśnikowski, Z.J. Antiviral effect of nonfunctionalized gold nanoparticles against herpes simplex virus type-1 (HSV-1) and possible contribution of near-field interaction mechanism. Molecules, 2021, 26(19), 5960.
[http://dx.doi.org/10.3390/molecules26195960] [PMID: 34641506]
[57]
Demchenko, V.; Kobylinskyi, S.; Iurzhenko, M.; Riabov, S.; Vashchuk, A.; Rybalchenko, N.; Zahorodnia, S.; Naumenko, K.; Demchenko, O.; Adamus, G.; Kowalczuk, M. Nanocomposites based on polylactide and silver nanoparticles and their antimicrobial and antiviral applications. React. Funct. Polym., 2022, 170, 105096.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2021.105096]
[58]
Marchi, S.; Trombetta, C.M.; Gasparini, R.; Temperton, N.; Montomoli, E. Epidemiology of herpes simplex virus type 1 and 2 in Italy: A seroprevalence study from 2000 to 2014. J. Prev. Med. Hyg., 2017, 58(1), E27-E33.
[PMID: 28515628]
[59]
Grinde, B. Herpesviruses: latency and reactivation – viral strategies and host response. J. Oral Microbiol., 2013, 5(1), 22766.
[http://dx.doi.org/10.3402/jom.v5i0.22766] [PMID: 24167660]
[60]
Grubman, M.J.; Baxt, B. Foot-and-Mouth Disease. Clin. Microbiol. Rev., 2004, 17(2), 465-493.
[http://dx.doi.org/10.1128/CMR.17.2.465-493.2004] [PMID: 15084510]
[61]
Gladue, D.P.; O’Donnell, V.; Baker-Branstetter, R.; Holinka, L.G.; Pacheco, J.M.; Fernandez-Sainz, I.; Lu, Z.; Brocchi, E.; Baxt, B.; Piccone, M.E.; Rodriguez, L.; Borca, M.V. Foot-and-mouth disease virus nonstructural protein 2C interacts with Beclin1, modulating virus replication. J. Virol., 2012, 86(22), 12080-12090.
[http://dx.doi.org/10.1128/JVI.01610-12] [PMID: 22933281]
[62]
Shang, Z.; Tan, S.; Ma, D. Respiratory syncytial virus: from pathogenesis to potential therapeutic strategies. Int. J. Biol. Sci., 2021, 17(14), 4073-4091.
[http://dx.doi.org/10.7150/ijbs.64762] [PMID: 34671221]
[63]
Lévêque, N.; Semler, B.L.A. 21st century perspective of poliovirus replication. PLoS Pathog., 2015, 11(6), e1004825.
[http://dx.doi.org/10.1371/journal.ppat.1004825] [PMID: 26042673]
[64]
Thiboutot, M.M.; Kannan, S.; Kawalekar, O.U.; Shedlock, D.J.; Khan, A.S.; Sarangan, G.; Srikanth, P.; Weiner, D.B.; Muthumani, K. Chikungunya: A potentially emerging epidemic? PLoS Negl. Trop. Dis., 2010, 4(4), e623.
[http://dx.doi.org/10.1371/journal.pntd.0000623] [PMID: 20436958]
[65]
de St Maurice, A.; Harmon, J.; Nyakarahuka, L.; Balinandi, S.; Tumusiime, A.; Kyondo, J.; Mulei, S.; Namutebi, A.; Knust, B.; Shoemaker, T.; Nichol, S.T.; McElroy, A.K.; Spiropoulou, C.F. Rift valley fever viral load correlates with the human inflammatory response and coagulation pathway abnormalities in humans with hemorrhagic manifestations. PLoS Negl. Trop. Dis., 2018, 12(5), e0006460.
[http://dx.doi.org/10.1371/journal.pntd.0006460] [PMID: 29727450]
[66]
McElroy, A.K.; Harmon, J.R.; Flietstra, T.; Nichol, S.T.; Spiropoulou, C.F. Human Biomarkers of Outcome Following Rift Valley Fever Virus Infection. J. Infect. Dis., 2018, 218(11), 1847-1851.
[http://dx.doi.org/10.1093/infdis/jiy393] [PMID: 29955891]
[67]
Zitzmann, C.; Kaderali, L. Mathematical analysis of viral replication dynamics and antiviral treatment strategies: from basic models to age-based multi-scale modeling. Front. Microbiol., 2018, 9, 1546.
[http://dx.doi.org/10.3389/fmicb.2018.01546] [PMID: 30050523]
[68]
Niewiadomska, A.M.; Jayabalasingham, B.; Seidman, J.C.; Willem, L.; Grenfell, B.; Spiro, D.; Viboud, C. Population-level mathematical modeling of antimicrobial resistance: A systematic review. BMC Med., 2019, 17(1), 81.
[http://dx.doi.org/10.1186/s12916-019-1314-9] [PMID: 31014341]
[69]
Jiang, S.; Wang, K.; Li, C.; Hong, G.; Zhang, X.; Shan, M.; Li, H.; Wang, J. Mathematical models for devising the optimal Ebola virus disease eradication. J. Transl. Med., 2017, 15(1), 124.
[http://dx.doi.org/10.1186/s12967-017-1224-6] [PMID: 28569196]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy