Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Systematic Review Article

Volatile Oil Containing Plants as Phytopharmaceuticals to Treat Psoriasis: A Review

Author(s): Priyanka J. Vyas, Shivani S. Wagh, Mohan G. Kalaskar, Kalpesh R. Patil, Ajay K. Sharma*, Imran Kazmi, Fahad A. Al-Abbasi, Sami I. Alzarea, Obaid Afzal, Abdulmalik S.A. Altamimi, Gaurav Gupta and Chandragouda R. Patil*

Volume 25, Issue 3, 2024

Published on: 26 June, 2023

Page: [313 - 339] Pages: 27

DOI: 10.2174/1389201024666230607140404

Price: $65

Abstract

Introduction: Psoriasis is a chronic skin condition caused by an autoimmune response that accelerates the life cycle of skin cells, resulting in the characteristic symptoms of scaling, inflammation, and itching.

Methods: Palliative treatment options for psoriasis often prioritize the use of volatile oils. These oils contain monoterpenes, sesquiterpenes, and phenylpropanoids that are intricately linked to the molecular cascades involved in the pathogenesis and symptoms of psoriasis. To evaluate the antipsoriatic efficacy of volatile oils and their components, we conducted a systematic review of scientific studies. Our literature search encompassed various online databases, including PubMed, BIREME, SCIELO, Open Grey, Scopus, and ScienceDirect. The selected studies included experimental in vitro/in vivo assessments as well as clinical studies that examined the potential of volatile oils and their extracts as antipsoriatic agents. We excluded conference proceedings, case reports, editorials, and abstracts. Ultimately, we identified and evaluated a total of 12 studies for inclusion in our analysis.

Results: The data collected, compiled, and analyzed strongly support the interaction between volatile oils and their constituents with the key molecular pathways involved in the pathogenesis of psoriasis and the development of its symptoms. Volatile oils play a significant role in the palliative treatment of psoriasis, while their chemical constituents have the potential to reduce the symptoms and recurrence of this condition.

Conclusion: The current review highlights that the constituents found in volatile oils offer distinct chemical frameworks that can be regarded as promising starting points for the exploration and development of innovative antipsoriatic agents.

Graphical Abstract

[1]
Ayala-Fontánez, N.; Soler, D.C.; McCormick, T.S. Current knowledge on psoriasis and autoimmune diseases. Psoriasis, 2016, 6, 7-32.
[PMID: 29387591]
[2]
Fu, Y.; Lee, C.H.; Chi, C.C. Association of psoriasis with inflammatory bowel disease: A systematic review and meta-analysis. JAMA Dermatol., 2018, 154(12), 1417-1423.
[http://dx.doi.org/10.1001/jamadermatol.2018.3631] [PMID: 30422277]
[3]
García-Sánchez, L.; Montiel-Jarquín, A.J.; Vázquez-Cruz, E.; May-Salazar, A.; Gutiérrez-Gabriel, I.; Loría-Castellanoso, J. Quality of life in patients with psoriasis. Gac. Med. Mex., 2017, 153(2), 185-189.
[PMID: 28474705]
[4]
Lai, C.Y.; Su, Y.W.; Lin, K.I.; Hsu, L.C. Natural modulators of endosomal toll-like receptor-mediated psoriatic skin inflammation. J. Immunol. Res., 2017, 2017, 7807313.
[5]
Boutet, M.A.; Nerviani, A.; Gallo Afflitto, G.; Pitzalis, C. Role of the IL-23/IL-17 Axis in Psoriasis and Psoriatic Arthritis: The clinical importance of its divergence in skin and joints. Int. J. Mol. Sci., 2018, 19(2), 530.
[http://dx.doi.org/10.3390/ijms19020530] [PMID: 29425183]
[6]
Langrish, C.L.; Chen, Y.; Blumenschein, W.M.; Mattson, J.; Basham, B.; Sedgwick, J.D.; McClanahan, T.; Kastelein, R.A.; Cua, D.J. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med., 2005, 201(2), 233-240.
[http://dx.doi.org/10.1084/jem.20041257] [PMID: 15657292]
[7]
Park, H.; Li, Z.; Yang, X.O.; Chang, S.H.; Nurieva, R.; Wang, Y.H.; Wang, Y.; Hood, L.; Zhu, Z.; Tian, Q.; Dong, C. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol., 2005, 6(11), 1133-1141.
[http://dx.doi.org/10.1038/ni1261] [PMID: 16200068]
[8]
Georgescu, S.R.; Tampa, M.; Caruntu, C.; Sarbu, M.I. Advances in understanding the immunological pathways in psoriasis. Int. J. Mol. Sci., 2019, 20(3), 739.
[9]
Lipton, J.O.; Sahin, M. The neurology of mTOR. Neuron, 2014, 84(2), 275-291.
[http://dx.doi.org/10.1016/j.neuron.2014.09.034] [PMID: 25374355]
[10]
Bürger, C.; Shirsath, N.; Lang, V.; Diehl, S.; Kaufmann, R.; Weigert, A.; Han, Y.Y.; Ringel, C.; Wolf, P. Blocking mTOR Signalling with Rapamycin Ameliorates Imiquimod-induced Psoriasis in Mice. Acta Derm. Venereol., 2017, 97(9), 1087-1094.
[http://dx.doi.org/10.2340/00015555-2724] [PMID: 28597024]
[11]
Chamcheu, J.C.; Chaves-Rodriquez, M.I.; Adhami, V.M.; Siddiqui, I.A.; Wood, G.S.; Longley, B.J.; Mukhtar, H. Upregulation of PI3K/AKT/mTOR, FABP5 and PPARβ/δ in Human Psoriasis and Imiquimod-induced Murine Psoriasiform Dermatitis Model. Acta Derm. Venereol., 2016, 96(6), 854-856.
[PMID: 26833029]
[12]
Tang, L.; Yang, X.; Liang, Y.; Xie, H.; Dai, Z.; Zheng, G. Transcription factor retinoid-related orphan receptor γt: A promising target for the treatment of psoriasis. Front. Immunol., 2018, 9, 1210.
[http://dx.doi.org/10.3389/fimmu.2018.01210] [PMID: 29899748]
[13]
Aaronson, D.S.; Horvath, C.M. A road map for those who don’t know JAK-STAT. Science, 2002, 296(5573), 1653-1655.
[http://dx.doi.org/10.1126/science.1071545] [PMID: 12040185]
[14]
Damsky, W.; King, B.A. JAK inhibitors in dermatology: The promise of a new drug class. J. Am. Acad. Dermatol., 2017, 76(4), 736-744.
[http://dx.doi.org/10.1016/j.jaad.2016.12.005] [PMID: 28139263]
[15]
Welsch, K.; Holstein, J.; Laurence, A.; Ghoreschi, K. Targeting JAK/STAT signalling in inflammatory skin diseases with small molecule inhibitors. Eur. J. Immunol., 2017, 47(7), 1096-1107.
[16]
Hsu, L.; Armstrong, A.W. JAK inhibitors: Treatment efficacy and safety profile in patients with psoriasis. J. Immunol. Res., 2014, 2014, 283617.
[http://dx.doi.org/10.1155/2014/283617] [PMID: 24883332]
[17]
Johansen, C.; Rittig, A.H.; Mose, M.; Bertelsen, T.; Weimar, I.; Nielsen, J.; Andersen, T.; Rasmussen, T.K.; Deleuran, B.; Iversen, L. STAT2 is involved in the pathogenesis of psoriasis by promoting CXCL11 and CCL5 production by keratinocytes. PLoS One, 2017, 12(5), e0176994.
[http://dx.doi.org/10.1371/journal.pone.0176994] [PMID: 28472186]
[18]
Tsuji, F.; Aono, H. Role of transient receptor potential vanilloid 1 in inflammation and autoimmune diseases. Pharmaceuticals (Basel), 2012, 5(8), 837-852.
[http://dx.doi.org/10.3390/ph5080837] [PMID: 24280677]
[19]
Lee, Y.M.; Kang, S.M.; Chung, J.H. The role of TRPV1 channel in aged human skin. J. Dermatol. Sci., 2012, 65(2), 81-85.
[http://dx.doi.org/10.1016/j.jdermsci.2011.11.003] [PMID: 22154816]
[20]
Zhou, Y.; Follansbee, T.; Wu, X.; Han, D.; Yu, S.; Domocos, D.T.; Shi, Z.; Carstens, M.; Carstens, E.; Hwang, S.T. TRPV1 mediates inflammation and hyperplasia in imiquimod (IMQ)-induced psoriasiform dermatitis (PsD) in mice. J. Dermatol. Sci., 2018, 92(3), 264-271.
[http://dx.doi.org/10.1016/j.jdermsci.2018.11.009] [PMID: 30527377]
[21]
Romac, J.; Liddle, R.A. Transient Receptor Potential Vanilloid 1 (TRPV1), Pancreapedia; The Exocrine Pancreas Knowledge Base, 2012.
[22]
Malakou, L.S.; Gargalionis, A.N.; Piperi, C.; Papadavid, E.; Papavassiliou, A.G.; Basdra, E.K. Molecular mechanisms of mechanotransduction in psoriasis. Ann. Transl. Med., 2018, 6(12), 245.
[http://dx.doi.org/10.21037/atm.2018.04.09] [PMID: 30069447]
[23]
Woo, Y.R.; Cho, D.H.; Park, H.J. Molecular mechanisms and management of a cutaneous inflammatory disorder. Psoriasis. Int. J. Mol. Sci., 2017, 18(12), 2684.
[http://dx.doi.org/10.3390/ijms18122684] [PMID: 29232931]
[24]
Rácz, E.; Prens, E.P. Molecular pathophysiology of psoriasis and molecular targets of antipsoriatic therapy. Expert Rev. Mol. Med., 2009, 11, e38.
[http://dx.doi.org/10.1017/S146239940900129X] [PMID: 20003607]
[25]
Rigano, D.; Sirignano, C.; Taglialatela-Scafati, O. The potential of natural products for targeting PPARα. Acta Pharm. Sin. B, 2017, 7(4), 427-438.
[http://dx.doi.org/10.1016/j.apsb.2017.05.005] [PMID: 28752027]
[26]
Sertznig, P.; Reichrath, J. Peroxisome proliferator-activated receptors (PPARs) in dermatology: Challenge and promise. Dermatoendocrinol, 2011, 3(3), 130-135.
[http://dx.doi.org/10.4161/derm.15025] [PMID: 22110772]
[27]
Mavropoulos, A.; Rigopoulou, E.I.; Liaskos, C.; Bogdanos, D.P.; Sakkas, L.I. The role of p38 MAPK in the aetiopathogenesis of psoriasis and psoriatic arthritis. Clin. Dev. Immunol., 2013, 2013, 569751.
[http://dx.doi.org/10.1155/2013/569751] [PMID: 24151518]
[28]
Tse, W.P.; Che, C.T.; Liu, K.; Lin, Z.X. Evaluation of the antiproliferative properties of selected psoriasis-treating Chinese medicines on cultured HaCaT cells. J. Ethnopharmacol., 2006, 108(1), 133-141.
[http://dx.doi.org/10.1016/j.jep.2006.04.023] [PMID: 16730935]
[29]
Lin, Z.X.; Jiao, B.W.; Che, C.T.; Zuo, Z.; Mok, C.F.; Zhao, M.; Ho, W.K.K.; Tse, W.P.; Lam, K.Y.; Fan, R.Q.; Yang, Z.J.; Cheng, C.H.K. Ethyl acetate fraction of the root of Rubia cordifolia L. inhibits keratinocyte proliferation in vitro and promotes keratinocyte differentiation in vivo: Potential application for psoriasis treatment. Phytother. Res., 2010, 24(7), 1056-1064.
[http://dx.doi.org/10.1002/ptr.3079] [PMID: 19960426]
[30]
Togni, S.; Maramaldi, G.; Di Pierro, F.; Biondi, M. A cosmeceutical formulation based on boswellic acids for the treatment of erythematous eczema and psoriasis. Clin. Cosmet. Investig. Dermatol., 2014, 7, 321-327.
[PMID: 25419153]
[31]
Gramosa, N.; Silveira, E.; Cavalcanti, B.; Ferreira, J.d.O.; Almeida, F.; Rao, V.; Costa-Lotufo, L.; de Moraes, M.; Pessoa, C. Chemistry and pharmacology of Copaifera langsdorffii Desf.: an overview. Drug plants I, 2010, 235-260.
[32]
Li, K.; Yang, W.; Li, Z.; Jia, W.; Li, J.; Zhang, P.; Xiao, T. Bitter apricot essential oil induces apoptosis of human HaCaT keratinocytes. Int. Immunopharmacol., 2016, 34, 189-198.
[http://dx.doi.org/10.1016/j.intimp.2016.02.019] [PMID: 26971222]
[33]
Kumar, S.; Singh, K.K.; Rao, R. Enhanced anti-psoriatic efficacy and regulation of oxidative stress of a novel topical babchi oil (Psoralea corylifolia) cyclodextrin-based nanogel in a mouse tail model. J. Microencapsul., 2019, 36(2), 140-155.
[http://dx.doi.org/10.1080/02652048.2019.1612475] [PMID: 31030587]
[34]
Lee, Y.J.; Hong, I.K.; Kim, H.; Heo, S.I.; Kwon, D.J.; Ahn, W.G.; Kim, Y.H.; Seo, E.J.; Han, S.I.; Cho, H.J.; Kim, S.Y.; Yang, H. The Amelioration Effect of the Ethanolic Extract of Cnidium officinale in Mice with Imiquimod-induced Psoriasis-like Skin Lesion. Nat. Prod. Sci., 2018, 24(1), 21-27.
[http://dx.doi.org/10.20307/nps.2018.24.1.21]
[35]
Pazyar, N.; Yaghoobi, R. Tea tree oil as a novel antipsoriasis weapon. Skin Pharmacol. Physiol., 2012, 25(3), 162-163.
[http://dx.doi.org/10.1159/000337936] [PMID: 22473218]
[36]
Enshaieh, S.; Jooya, A.; Siadat, A.H.; Iraji, F. The efficacy of 5% topical tea tree oil gel in mild to moderate acne vulgaris: a randomized, double-blind placebo-controlled study. Indian J. Dermatol. Venereol. Leprol., 2007, 73(1), 22-25.
[http://dx.doi.org/10.4103/0378-6323.30646] [PMID: 17314442]
[37]
Okasha, E.F.; Bayomy, N.A.; Abdelaziz, E.Z. Effect of topical application of black seed oil on imiquimod-induced psoriasis-like lesions in the thin skin of adult male albino rats. Anat. Rec. (Hoboken), 2018, 301(1), 166-174.
[http://dx.doi.org/10.1002/ar.23690] [PMID: 28926201]
[38]
Sharma, M.; Levenson, C.; Clements, I.; Castella, P.; Gebauer, K.; Cox, M.E. East Indian sandalwood oil (EISO) alleviates inflammatory and proliferative pathologies of psoriasis. Front. Pharmacol., 2017, 8, 125.
[http://dx.doi.org/10.3389/fphar.2017.00125] [PMID: 28360856]
[39]
Langley, R.G.B.; Feldman, S.R.; Nyirady, J.; van de Kerkhof, P.; Papavassilis, C. The 5-point Investigator’s Global Assessment (IGA) Scale: A modified tool for evaluating plaque psoriasis severity in clinical trials. J. Dermatolog. Treat., 2015, 26(1), 23-31.
[http://dx.doi.org/10.3109/09546634.2013.865009] [PMID: 24354461]
[40]
Muttalib, L.; Adham, A.; Ali, S.; Naqishbandi, A. Open-label uncontrolled pilot study on antipsoriatic activity of Rosa hemisphaerica. Zanco J. Med. Sci., 2017, 21(1), 1636-1644.
[http://dx.doi.org/10.15218/zjms.2017.014]
[41]
Jou, Y.J.; Hua, C.H.; Lin, C.S.; Wang, C.Y.; Wan, L.; Lin, Y.J.; Huang, S.H.; Lin, C.W. Anticancer activity of γ-bisabolene in human neu-roblastoma cells via induction of p53-mediated mitochondrial apoptosis. Molecules, 2016, 21(5), 601.
[http://dx.doi.org/10.3390/molecules21050601] [PMID: 27164076]
[42]
Zhang, Y.; Wang, X.; Ma, L.; Dong, L.; Zhang, X.; Chen, J.; Fu, X. Anti-inflammatory, antinociceptive activity of an essential oil recipe consisting of the supercritical fluid CO2 extract of white pepper, long pepper, cinnamon, saffron and myrrh in vivo. J. Oleo Sci., 2014, 63(12), 1251-1260.
[http://dx.doi.org/10.5650/jos.ess14061] [PMID: 25263165]
[43]
Leyva-López, N.; Nair, V.; Bang, W.Y.; Cisneros-Zevallos, L.; Heredia, J.B. Protective role of terpenes and polyphenols from three species of Oregano (Lippia graveolens, Lippia palmeri and Hedeoma patens) on the suppression of lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J. Ethnopharmacol., 2016, 187, 302-312.
[http://dx.doi.org/10.1016/j.jep.2016.04.051] [PMID: 27131433]
[44]
Sitarek, P.; Rijo, P.; Garcia, C.; Skała, E.; Kalemba, D.; Białas, A.J.; Szemraj, J.; Pytel, D.; Toma, M.; Wysokińska, H.; Śliwiński, T. Anti-bacterial, anti-inflammatory, antioxidant, and antiproliferative properties of essential oils from hairy and normal roots of Leonurus sibiricus L. and their chemical composition. Oxid. Med. Cell. Longev., 2017, 2017, 7384061.
[PMID: 28191277]
[45]
Chandra, M.; Prakash, O.; Kumar, R.; Bachheti, R.K.; Bhushan, B.; Kumar, M.; Pant, A.K. β-Selinene-rich essential oils from the parts of Callicarpa macrophylla and their antioxidant and pharmacological activities. Medicines, 2017, 4(3), 52.
[http://dx.doi.org/10.3390/medicines4030052] [PMID: 28930267]
[46]
Choo, G.S.; Lim, D.P.; Kim, S.M.; Yoo, E.S.; Kim, S.H.; Kim, C.H.; Woo, J.S.; Kim, H.J.; Jung, J.Y. Anti-inflammatory effects of Dendropanax morbifera in lipopolysaccharide stimulated RAW264.7 macrophages and in an animal model of atopic dermatitis. Mol. Med. Rep., 2019, 19(3), 2087-2096.
[PMID: 30747232]
[47]
Jeena, K.; Liju, V.B.; Kuttan, R. Antioxidant, anti-inflammatory and antinociceptive activities of essential oil from ginger. Indian J. Physiol. Pharmacol., 2013, 57(1), 51-62.
[PMID: 24020099]
[48]
Mahboubi, M. Zingiber officinale Rosc. essential oil, a review on its composition and bioactivity. Clinical Phytoscience, 2019, 5(1), 6.
[http://dx.doi.org/10.1186/s40816-018-0097-4]
[49]
Martins, F.T.; Doriguetto, A.C.; de Souza, T.C.; de Souza, K.R.D.; Dos Santos, M.H.; Moreira, M.E.C.; Barbosa, L.C.A. Composition, and anti-inflammatory and antioxidant activities of the volatile oil from the fruit peel of Garcinia brasiliensis. Chem. Biodivers., 2008, 5(2), 251-258.
[http://dx.doi.org/10.1002/cbdv.200890022] [PMID: 18293438]
[50]
Queiroz, J.C.C.; Antoniolli, Â.R.; Quintans-Júnior, L.J.; Brito, R.G.; Barreto, R.S.; Costa, E.V.; da Silva, T.B.; Prata, A.P.N.; de Lucca, W., Jr; Almeida, J.R.; Lima, J.T.; Quintans, J.S. Evaluation of the anti-inflammatory and antinociceptive effects of the essential oil from leaves of Xylopia laevigata in experimental models. Sci. World J., 2014, 2014, 816450.
[PMID: 25097889]
[51]
Wan Salleh, W.M.N.H.; Kammil, M.F.; Ahmad, F.; Sirat, H.M. Antioxidant and anti-inflammatory activities of essential oil and extracts of Piper miniatum. Nat. Prod. commun., 2015, 10(11), 1934578-1501001151.
[52]
da Silva, J.K.; da Trindade, R.; Moreira, E.C.; Maia, J.G.S.; Dosoky, N.S.; Miller, R.S.; Cseke, L.J.; Setzer, W.N. Chemical diversity, bio-logical activity, and genetic aspects of three Ocotea species from the Amazon. Int. J. Mol. Sci., 2017, 18(5), 1081.
[http://dx.doi.org/10.3390/ijms18051081] [PMID: 28524091]
[53]
Han, X.; Beaumont, C.; Stevens, N. Chemical composition analysis and in vitro biological activities of ten essential oils in human skin cells. Biochim. Open, 2017, 5, 1-7.
[http://dx.doi.org/10.1016/j.biopen.2017.04.001] [PMID: 29450150]
[54]
Purnima, B.M.; Kothiyal, P. A review article on phytochemistry and pharmacological profiles of Nardostachys jatamansi DC-medicinal herb. J. Pharmacogn. Phytochem., 2015, 3(5), 102-106.
[55]
Marques, F.M.; Figueira, M.M.; Schmitt, E.F.P.; Kondratyuk, T.P.; Endringer, D.C.; Scherer, R.; Fronza, M. In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway. Inflammopharmacology, 2019, 27(2), 281-289.
[http://dx.doi.org/10.1007/s10787-018-0483-z] [PMID: 29675712]
[56]
de Lavor, É.M.; Fernandes, A.W.C.; de Andrade Teles, R.B.; Leal, A.E.B.P.; de Oliveira Júnior, R.G.; Gama, E. Silva, M.; de Oliveira, A.P.; Silva, J.C.; de Moura Fontes Araújo, M.T.; Coutinho, H.D.M.; de Menezes, I.R.A.; Picot, L.; da Silva Almeida, J.R.G. Essential oils and their major compounds in the treatment of chronic inflammation: A review of antioxidant potential in preclinical studies and molecular mechanisms. Oxid. Med. Cell. Longev., 2018, 2018, 6468593.
[http://dx.doi.org/10.1155/2018/6468593] [PMID: 30671173]
[57]
de Cássia da Silveira e Sá. R.; Andrade, L.N.; de Sousa, D.P. A review on anti-inflammatory activity of monoterpenes. Molecules, 2013, 18(1), 1227-1254.
[http://dx.doi.org/10.3390/molecules18011227] [PMID: 23334570]
[58]
Huo, M.; Cui, X.; Xue, J.; Chi, G.; Gao, R.; Deng, X.; Guan, S.; Wei, J.; Soromou, L.W.; Feng, H. Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J. Surg. Res., 2013, 180(1), e47-e54.
[59]
Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D.L. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine, 2002, 9(8), 721-726.
[http://dx.doi.org/10.1078/094471102321621322] [PMID: 12587692]
[60]
Batista, P.A.; Werner, M.F.; Oliveira, E.C.; Burgos, L.; Pereira, P.; Brum, L.F.; Story, G.M.; Santos, A.R.S. The antinociceptive effect of (-)-linalool in models of chronic inflammatory and neuropathic hypersensitivity in mice. J. Pain, 2010, 11(11), 1222-1229.
[http://dx.doi.org/10.1016/j.jpain.2010.02.022] [PMID: 20452289]
[61]
Valente, J.; Zuzarte, M.; Gonçalves, M.J.; Lopes, M.C.; Cavaleiro, C.; Salgueiro, L.; Cruz, M.T. Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food Chem. Toxicol., 2013, 62, 349-354.
[http://dx.doi.org/10.1016/j.fct.2013.08.083] [PMID: 24012643]
[62]
Karimian, P.; Kavoosi, G.; Amirghofran, Z. Anti-oxidative and anti-inflammatory effects of Tagetes minuta essential oil in activated macrophages. Asian Pac. J. Trop. Biomed., 2014, 4(3), 219-227.
[http://dx.doi.org/10.1016/S2221-1691(14)60235-5] [PMID: 25182441]
[63]
Kummer, R.; Fachini-Queiroz, F.C.; Estevão-Silva, C.F.; Grespan, R.; Silva, E.L.; Bersani-Amado, C.A.; Cuman, R.K.N. Evaluation of anti-inflammatory activity of Citrus latifolia Tanaka essential oil and limonene in experimental mouse models. Evid. Based Complement. Alternat. Med., 2013, 2013, 859083.
[PMID: 23762165]
[64]
Chi, G.; Wei, M.; Xie, X.; Soromou, L.W.; Liu, F.; Zhao, S. Suppression of MAPK and NF-κB pathways by limonene contributes to attenuation of lipopolysaccharide-induced inflammatory responses in acute lung injury. Inflammation, 2013, 36(2), 501-511.
[http://dx.doi.org/10.1007/s10753-012-9571-1] [PMID: 23180366]
[65]
Bayala, B.; Bassole, I.H.N.; Gnoula, C.; Nebie, R.; Yonli, A.; Morel, L.; Figueredo, G.; Nikiema, J.B.; Lobaccaro, J.M.A.; Simpore, J. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso. PLoS One, 2014, 9(3), e92122.
[http://dx.doi.org/10.1371/journal.pone.0092122] [PMID: 24662935]
[66]
Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; L D Jayaweera, S.; A Dias, D.; Sharopov, F; Taheri,, Y.; Martins, N.; Baghalpour, N.; Cho, W.C.; Sharifi-Rad, J. Therapeutic potential of α- and β-Pinene: A miracle gift of nature. Biomolecules, 2019, 9(11), 738.
[http://dx.doi.org/10.3390/biom9110738] [PMID: 31739596]
[67]
Bhoir, S.S.; Vishwapathi, V.; Singh, K.K. Antipsoriatic potential of Annona squamosa seed oil: An in vitro and in vivo evaluation. Phytomedicine, 2019, 54, 265-277.
[http://dx.doi.org/10.1016/j.phymed.2018.07.003] [PMID: 30668377]
[68]
Muruganantham, N.; Basavaraj, K.H.; Dhanabal, S.P.; Praveen, T.K.; Shamasundar, N.M.; Rao, K.S. Screening of Caesalpinia bonduc leaves for antipsoriatic activity. J. Ethnopharmacol., 2011, 133(2), 897-901.
[http://dx.doi.org/10.1016/j.jep.2010.09.026] [PMID: 20920562]
[69]
Singh, S.K.; Chouhan, H.S.; Sahu, A.N.; Narayan, G. Assessment of in vitro antipsoriatic activity of selected Indian medicinal plants. Pharm. Biol., 2015, 53(9), 1295-1301.
[http://dx.doi.org/10.3109/13880209.2014.976713] [PMID: 25856701]
[70]
Saelee, C.; Thongrakard, V.; Tencomnao, T. Effects of Thai medicinal herb extracts with anti-psoriatic activity on the expression on NF-κB signaling biomarkers in HaCaT keratinocytes. Molecules, 2011, 16(5), 3908-3932.
[http://dx.doi.org/10.3390/molecules16053908] [PMID: 21555979]
[71]
Vijayalakshmi, A.; Geetha, M. Anti-psoriatic activity of Givotia rottleriformis in rats. Indian J. Pharmacol., 2014, 46(4), 386-390.
[http://dx.doi.org/10.4103/0253-7613.135949] [PMID: 25097275]
[72]
Müller, K.; Ziereis, K.; Gawlik, I. The antipsoriatic Mahonia aquifolium and its active constituents; II. Antiproliferative activity against cell growth of human keratinocytes. Planta Med., 1995, 61(1), 74-75.
[http://dx.doi.org/10.1055/s-2006-958005] [PMID: 7700998]
[73]
Dhanabal, S.P.; Muruganantham, N.; Basavaraj, K.H.; Wadhwani, A.; Shamasundar, N.M. Antipsoriatic activity of extracts and fractions obtained from Memecylon malabaricum leaves. J. Pharm. Pharmacol., 2012, 64(10), 1501-1509.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01528.x] [PMID: 22943181]
[74]
García-Pérez, M.E.; Allaeys, I.; Rusu, D.; Pouliot, R.; Janezic, T.S.; Poubelle, P.E. Picea mariana polyphenolic extract inhibits phlogogenic mediators produced by TNF-α-activated psoriatic keratinocytes: Impact on NF-κB pathway. J. Ethnopharmacol., 2014, 151(1), 265-278.
[http://dx.doi.org/10.1016/j.jep.2013.10.034] [PMID: 24189030]
[75]
Vijayalakshmi, A.; Ravichandiran, V.; Velraj, M.; Nirmala, S.; Male, A.; Jayakumari, S.; Masilamani, K. Anti-Psoriatic activity of smilax china linn. rhizome. Indian J. Pharmaceut. Educat. Res., 2013, 47(1), 82-89.
[76]
Dhanabal, S.P.; Priyanka Dwarampudi, L.; Muruganantham, N.; Vadivelan, R. Evaluation of the antipsoriatic activity of Aloe vera leaf extract using a mouse tail model of psoriasis. Phytother. Res., 2012, 26(4), 617-619.
[http://dx.doi.org/10.1002/ptr.3589] [PMID: 21915932]
[77]
Parlapally, S.; Cherukupalli, N.; Bhumireddy, S.R.; Sripadi, P.; Anisetti, R.; Giri, C.C.; Khareedu, V.R.; Reddy Vudem, D. Chemical profil-ing and anti-psoriatic activity of methanolic extract of Andrographis nallamalayana J.L. Ellis. Nat. Prod. Res., 2016, 30(11), 1256-1261.
[http://dx.doi.org/10.1080/14786419.2015.1054825] [PMID: 26153074]
[78]
Parmar, K.M.; Itankar, P.R.; Joshi, A.; Prasad, S.K. Anti-psoriatic potential of Solanum xanthocarpum stem in Imiquimod-induced psoriatic mice model. J. Ethnopharmacol., 2017, 198, 158-166.
[http://dx.doi.org/10.1016/j.jep.2016.12.046] [PMID: 28052238]
[79]
Shrivastav, S.; Sindhu, R.; Kumar, S.; Kumar, P. Antipsoriatic and phytochemical evaluation of Thespesia populnea bark extracts. Int. J. Pharm. Pharm. Sci., 2009, 1(sup 1)
[80]
Rajesh, B.; Albin, F.; Shilpesh, D.; Ramchandra, R.; Rajesh, S. Antipsoriatic effect of Tribulus terrestris extract by topical application in mouse model of contact dermatitis. Int. J. Vet. Sci., 2013, 2(1), 7-11.
[81]
Dogra, N.K.; Kumar, S.; Thakur, K.; Kumar, D. Antipsoriatic effect of fatty acid enriched fraction of Vernonia anthelmintica Willd. fruits. J. Ethnopharmacol., 2018, 224, 85-90.
[http://dx.doi.org/10.1016/j.jep.2018.05.038] [PMID: 29807119]
[82]
Gelmini, F.; Beretta, G.; Anselmi, C.; Centini, M.; Magni, P.; Ruscica, M.; Cavalchini, A.; Maffei Facino, R. GC-MS profiling of the phytochemical constituents of the oleoresin from Copaifera langsdorffii Desf. and a preliminary in vivo evaluation of its antipsoriatic effect. Int. J. Pharm., 2013, 440(2), 170-178.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.021] [PMID: 22939967]
[83]
Sung, Y.Y.; Kim, H.K. Illicium verum extract suppresses IFN-γ-induced ICAM-1 expression via blockade of JAK/STAT pathway in Ha CaT human keratinocytes. J. Ethnopharmacol., 2013, 149(3), 626-632.
[http://dx.doi.org/10.1016/j.jep.2013.07.013] [PMID: 23872327]
[84]
Li, K.; Zhou, R.; Wang Jia, W. Li, Z.; Li, J.; Zhang, P.; Xiao, T. Zanthoxylum bungeanum essential oil induces apoptosis of HaCaT human keratinocytes. J. Ethnopharmacol., 2016, 186, 351-361.
[http://dx.doi.org/10.1016/j.jep.2016.03.054] [PMID: 27041402]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy