Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Systematic Review Article

The Golden Spice for Life: Turmeric with the Pharmacological Benefits of Curcuminoids Components, Including Curcumin, Bisdemethoxycurcumin, and Demethoxycurcumins

Author(s): Mohamad Hesam Shahrajabian and Wenli Sun*

Volume 21, Issue 5, 2024

Published on: 19 July, 2023

Page: [665 - 683] Pages: 19

DOI: 10.2174/1570179420666230607124949

Price: $65

Abstract

Background: Turmeric (Curcuma longa L.), belonging to the Zingiberaceae family, is a perennial rhizomatous plant of tropical and subtropical regions. The three major chemical components responsible for the biological activities of turmeric are curcumin, demethoxycurcumin, and bisdemethoxycurcumin.

Methods: The literature search included review articles, analytical studies, randomized control experiments, and observations, which have been gathered from various sources, such as Scopus, Google Scholar, PubMed, and ScienceDirect. A review of the literature was carried out using the keywords: turmeric, traditional Chinese medicine, traditional Iranian medicine, traditional Indian medicine, curcumin, curcuminoids, pharmaceutical benefits, turmerone, demethoxycurcumin, and bisdemethoxycurcumin. The main components of the rhizome of the leaf are α-turmerone, β-turmerone, and arturmerone.

Results: The notable health benefits of turmeric are antioxidant activity, gastrointestinal effects, anticancer effects, cardiovascular and antidiabetic effects, antimicrobial activity, photoprotector activity, hepatoprotective and renoprotective effects, and appropriate for the treatment of Alzheimer's disease and inflammatory and edematic disorders.

Discussion: Curcuminoids are phenolic compounds usually used as pigment spices with many health benefits, such as antiviral, antitumour, anti-HIV, anti-inflammatory, antiparasitic, anticancer, and antifungal effects. Curcumin, bisdemethoxycurcumin, and demethoxycurcumin are the major active and stable bioactive constituents of curcuminoids. Curcumin, which is a hydroponic polyphenol, and the main coloring agent in the rhizomes of turmeric, has anti-inflammatory, antioxidant, anti-cancer, and anticarcinogenic activities, as well as beneficial effects for infectious diseases and Alzheimer's disease. Bisdemethoxycurcumin possesses antioxidant, anti-cancer, and anti-metastasis activities. Demethoxycurcumin, which is another major component, has anti-inflammatory, antiproliferative, and anti-cancer activities and is the appropriate candidate for the treatment of Alzheimer's disease.

Conclusion: The goal of this review is to highlight the health benefits of turmeric in both traditional and modern pharmaceutical sciences by considering the important roles of curcuminoids and other major chemical constituents of turmeric.

Graphical Abstract

[1]
Hashemi-Nasab, F.S.; Talebian, S.; Parastar, H. Multiple adulterants detection in turmeric powder using Vis-SWNIR hyperspectral imaging followed by multivariate curve resolution and classification techniques. Microchem. J., 2023, 185, 108203.
[http://dx.doi.org/10.1016/j.microc.2022.108203]
[2]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): a review. Int. J. Food Prop., 2020, 23(1), 1961-1970.
[http://dx.doi.org/10.1080/10942912.2020.1828456]
[3]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Traditional herbal medicine for the prevention and treatment of cold and flu in the autumn of 2020, overlapped with Covid-19. Nat. Prod. Commun., 2020, 15(8), 1934578X2095143.
[http://dx.doi.org/10.1177/1934578X20951431]
[4]
Shahrajabian, M.H.; Sun, W.; Shen, H.; Cheng, Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agric. Scand. B Soil Plant Sci., 2020, 70(5), 437-443.
[http://dx.doi.org/10.1080/09064710.2020.1763448]
[5]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Rev. Med. Chem., 2021, 21(6), 724-730.
[http://dx.doi.org/10.2174/18755607MTEx4OTAn5] [PMID: 33245271]
[6]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceutical uses. Isr. J. Plant Sci., 2021, 68(1-2), 61-71.
[http://dx.doi.org/10.1163/22238980-bja10019]
[7]
An, N.; Lv, W.; Li, D.; Wang, L.; Wang, Y. Effects of hot-air microwave rolling blanching pretreatment on the drying of turmeric (Curcuma longa L.): Physiochemical properties and microstructure evaluation. Food Chem., 2023, 398, 133925.
[http://dx.doi.org/10.1016/j.foodchem.2022.133925] [PMID: 35987004]
[8]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric. Scand. B Soil Plant Sci., 2019, 69(6), 546-556.
[http://dx.doi.org/10.1080/09064710.2019.1606930]
[9]
Marmitt, D.J.; Shahrajabian, M.H. Plant species used in Brazil and Asia regions with toxic properties. Phytother. Res., 2021, 35(9), 4703-4726.
[http://dx.doi.org/10.1002/ptr.7100] [PMID: 33793002]
[10]
Katiyar, P.; Gupta, K.; Katiyar, P.; Khanam, S. Supercritical fluid extraction of turmeric root oil using CO2: Experimental analysis and process modelling. Industrial Crops and Products, 2022, 188(A), 115559.
[http://dx.doi.org/10.1016/j.indcrop.2022.115559]
[11]
Dutta, C.; Yadav, D.K.; Arora, V.K.; Malakar, S. Drying characteristics and quality analysis of pre-treated turmeric (Curcuma longa) using evacuated tube solar dryer with and without thermal energy storage. Sol. Energy, 2023, 251, 392-403.
[http://dx.doi.org/10.1016/j.solener.2023.01.032]
[12]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Molecular breeding and the impacts of some important genes families on agronomic traits, a review. Genet. Resour. Crop Evol., 2021, 68(5), 1709-1730.
[http://dx.doi.org/10.1007/s10722-021-01148-x]
[13]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Spanish chamomile (Anacyclus pyrethrum) and pyrethrum (Tanacetum cineraiifolium): organic and natural pesticides and treasure of medicinal herbs. Not. Sci. Biol., 2021, 13(1), 10816.
[http://dx.doi.org/10.15835/nsb13110816]
[14]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Asafoetida, a natural medicine for a future. Curr. Nutr. Food Sci., 2021, 17(9), 922-926.
[http://dx.doi.org/10.2174/1573401317666210222161609]
[15]
Freitas e Silva-Santana, N.C.; Rodrigues, H.C.N.; Pereira Martins, T.F.; Braga, C.C.; Silva, M.A.C.; Carlos da Cunha, L.; de Souza Freitas, A.T.V.; Costa, N.A.; Peixoto, M.R.G. Turmeric supplementation with piperine is more effective than turmeric alone in attenuating oxidative stress and inflammation in hemodialysis patients: A randomized, double-blind clinical trial. Free Radic. Biol. Med., 2022, 193(Pt 2), 648-655.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.11.008] [PMID: 36370961]
[16]
Kandasamy, K.P.; Ravichandran, M.; Imas, P.; Assaraf, M. Application of potassium and magnesium on turmeric (Curcuma longa) to increase productivity in Inceptisols. Arch. Agron. Soil Sci., 2012, 58(S1), S147-S150.
[http://dx.doi.org/10.1080/03650340.2012.695866]
[17]
Pikulthong, V.; Teerakathiti, T.; Thamchaipenet, A.; Peyachoknagul, S. Development of somatic embryos for genetic transformation in Curcuma longa L. and Curcuma mangga Valeton & Zijp. Agric. Nat. Resour. (Bangk.), 2016, 50(4), 276-285.
[http://dx.doi.org/10.1016/j.anres.2015.08.004]
[18]
Serpa Guerra, A.M.; Gómez Hoyos, C.; Velásquez-Cock, J.A.; Vélez Acosta, L.; Gañán Rojo, P.; Velásquez Giraldo, A.M.; Zuluaga Gallego, R. The nanotech potential of turmeric (Curcuma longa L.) in food technology: A review. Crit. Rev. Food Sci. Nutr., 2020, 60(11), 1842-1854.
[http://dx.doi.org/10.1080/10408398.2019.1604490] [PMID: 31017458]
[19]
Khan, M.A.; El-Khatib, R.; Rainsford, K.D.; Whitehouse, M.W. Synthesis and anti-inflammatory properties of some aromatic and heterocyclic aromatic curcuminoids. Bioorg. Chem., 2012, 40(1), 30-38.
[http://dx.doi.org/10.1016/j.bioorg.2011.11.004] [PMID: 22172598]
[20]
Yue, G.G.L.; Chan, B.C.L.; Hon, P.M.; Kennelly, E.J.; Yeung, S.K.; Cassileth, B.R.; Fung, K.P.; Leung, P.C.; Lau, C.B.S. Immunostimulatory activities of polysaccharide extract isolated from Curcuma longa. Int. J. Biol. Macromol., 2010, 47(3), 342-347.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.05.019] [PMID: 20609432]
[21]
Liu, Y.; Nair, M.G. Curcuma longa and Curcuma mangga leaves exhibit functional food property. Food Chem., 2012, 135(2), 634-640.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.129] [PMID: 22868139]
[22]
Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[23]
Huang, Y.; Cao, S.; Zhang, Q.; Zhang, H.; Fan, Y.; Qiu, F.; Kang, N. Biological and pharmacological effects of hexahydrocurcumin, a metabolite of curcumin. Arch. Biochem. Biophys., 2018, 646, 31-37.
[http://dx.doi.org/10.1016/j.abb.2018.03.030] [PMID: 29596797]
[24]
Maurya, S.; Singh, A.; Mishra, A.; Singh, U.P. Taphrina maculans reduces the therapeutic value of turmeric (Curcuma longa). Arch. Phytopathol. Pflanzenschutz, 2011, 44(12), 1142-1146.
[http://dx.doi.org/10.1080/03235408.2010.482740]
[25]
Singh, S.; Sahoo, S.; Dash, S.; Nayak, S. Association of growth and yield parameters with bioactive phytoconstituents in selection of promising turmeric genotypes. Ind. Crops Prod., 2014, 62, 373-379.
[http://dx.doi.org/10.1016/j.indcrop.2014.09.001]
[26]
Dutta, S.C.; Neog, B. Accumulation of secondary metabolites in response to antioxidant activity of turmeric rhizomes co-inoculated with native arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Sci. Hortic. (Amsterdam), 2016, 204, 179-184.
[http://dx.doi.org/10.1016/j.scienta.2016.03.028]
[27]
Ushamailini, C.; Nakkeeran, S.; Marimuthu, T. Development of biomanure for the management of turmeric rhizome rot. Arch. Phytopathol. Pflanzenschutz, 2008, 41(5), 365-376.
[http://dx.doi.org/10.1080/03235400600796711]
[28]
Chenniappan, C.; Narayanasamy, M.; Daniel, G.M.; Ramaraj, G.B.; Ponnusamy, P.; Sekar, J.; Vaiyapuri Ramalingam, P. Biocontrol efficiency of native plant growth promoting rhizobacteria against rhizome rot disease of turmeric. Biol. Control, 2019, 129, 55-64.
[http://dx.doi.org/10.1016/j.biocontrol.2018.07.002]
[29]
Braga, M.C.; Vieira, E.C.S.; de Oliveira, T.F. Curcuma longa L. leaves: Characterization (bioactive and antinutritional compounds) for use in human food in Brazil. Food Chem., 2018, 265, 308-315.
[http://dx.doi.org/10.1016/j.foodchem.2018.05.096] [PMID: 29884387]
[30]
Gupta, A.; Mahajan, S.; Sharma, R. Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotechnol. Rep. (Amst.), 2015, 6, 51-55.
[http://dx.doi.org/10.1016/j.btre.2015.02.001] [PMID: 28626697]
[31]
Gökdemir, B.; Baylan, N.; Çehreli, S. Application of a novel ionic liquid as an alternative green solvent for the extraction of curcumin from turmeric with response surface methodology: determination and optimization study. Anal. Lett., 2020, 53(13), 2111-2121.
[http://dx.doi.org/10.1080/00032719.2020.1730394]
[32]
Xu, L.; Shang, Z.; Lu, Y.; Li, P.; Sun, L.; Guo, Q.; Bo, T.; Le, Z.; Bai, Z.; Zhang, X.; Qiao, X.; Ye, M. Analysis of curcuminoids and volatile components in 160 batches of turmeric samples in China by high-performance liquid chromatography and gas chromatography mass spectrometry. J. Pharm. Biomed. Anal., 2020, 188, 113465.
[http://dx.doi.org/10.1016/j.jpba.2020.113465] [PMID: 32683284]
[33]
Akter, J.; Hossain, M.A.; Takara, K.; Islam, M.Z.; Hou, D.X. Antioxidant activity of different species and varieties of turmeric (Curcuma spp): Isolation of active compounds. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2019, 215, 9-17.
[http://dx.doi.org/10.1016/j.cbpc.2018.09.002] [PMID: 30266519]
[34]
Cooksey, C.J. Turmeric: old spice, new spice. Biotech. Histochem., 2017, 92(5), 309-314.
[http://dx.doi.org/10.1080/10520295.2017.1310924] [PMID: 28506084]
[35]
Peram, M.R.; Jalalpure, S.S.; Joshi, S.A.; Palkar, M.B.; Diwan, P.V. Single robust RP-HPLC analytical method for quantification of curcuminoids in commercial turmeric products, Ayurvedic medicines, and nanovesicular systems. J. Liq. Chromatogr. Relat. Technol., 2017, 40(10), 487-498.
[http://dx.doi.org/10.1080/10826076.2017.1329742]
[36]
Niranjan, A.; Singh, S.; Dhiman, M.; Tewari, S.K. Biochemical composition of Curcuma longa L. accessions. Anal. Lett., 2013, 46(7), 1069-1083.
[http://dx.doi.org/10.1080/00032719.2012.751541]
[37]
Avanço, G.B.; Ferreira, F.D.; Bomfim, N.S.; Santos, P.A.S.R.; Peralta, R.M.; Brugnari, T.; Mallmann, C.A.; Abreu Filho, B.A.; Mikcha, J.M.G.; Machinski, M., Jr Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production. Food Control, 2017, 73, 806-813.
[http://dx.doi.org/10.1016/j.foodcont.2016.09.032]
[38]
Retnowati, R.; Rahman, M.F.; Yulia, D. Chemical constituents of the essential oils of white turmeric (Curcuma zedoaria (Christm.) Roscoe) from Indonesian and its toxicity toward Artemia salina Leach. J. Essent. Oil-Bear. Plants, 2014, 17(3), 393-396.
[http://dx.doi.org/10.1080/0972060X.2014.895196]
[39]
Sahoo, A.; Kar, B.; Jena, S.; Dash, B.; Ray, A.; Sahoo, S.; Nayak, S. Qualitative and quantitative evaluation of rhizome essential oil of eight different cultivars of Curcuma longa L. (Turmeric). J. Essent. Oil-Bear. Plants, 2019, 22(1), 239-247.
[http://dx.doi.org/10.1080/0972060X.2019.1599734]
[40]
Sharma, R.K.; Misra, B.P.; Sarma, T.C.; Bordoloi, A.K.; Pathak, M.G.; Leclercq, P.A. Essential oils from Curcuma longa L. from Bhutan. J. Essent. Oil Res., 1997, 9(5), 589-592.
[http://dx.doi.org/10.1080/10412905.1997.9700783]
[41]
Sindhu, S.; Chempakam, B.; Leela, N.K.; Suseela Bhai, R. Chemoprevention by essential oil of turmeric leaves (Curcuma longa L.) on the growth of Aspergillus flavus and aflatoxin production. Food Chem. Toxicol., 2011, 49(5), 1188-1192.
[http://dx.doi.org/10.1016/j.fct.2011.02.014] [PMID: 21354246]
[42]
Chane-Ming, J.; Vera, R.; Chalchat, J.C.; Cabassu, P. Chemical composition of essential oils from rhizomes, leaves and flowers of Curcuma longa L. from Reunion Island. J. Essent. Oil Res., 2002, 14(4), 249-251.
[http://dx.doi.org/10.1080/10412905.2002.9699843]
[43]
Pande, C.; Chanotiya, C.S. Constituents of the leaf oil of Curcuma longa L. from Uttaranchal. J. Essent. Oil Res., 2006, 18(2), 166-167.
[http://dx.doi.org/10.1080/10412905.2006.9699056]
[44]
Raina, V.K.; Srivastava, S.K.; Syamsundar, K.V. Rhizome and leaf oil composition of Curcuma longa from the lower Himalayan region of Northern India. J. Essent. Oil Res., 2005, 17(5), 556-559.
[http://dx.doi.org/10.1080/10412905.2005.9698993]
[45]
Chumroenphat, T.; Somboonwatthanakul, I.; Saensouk, S.; Siriamornpun, S. Changes in curcuminoids and chemical components of turmeric (Curcuma longa L.) under freeze-drying and low-temperature drying methods. Food Chem., 2021, 339, 128121.
[http://dx.doi.org/10.1016/j.foodchem.2020.128121] [PMID: 33152891]
[46]
Hossain, A.; Ishimine, Y.; Akamine, H.; Motomura, K. Effects of seed rhizome size on growth and yield of turmeric (Curcuma longa L.). Plant Prod. Sci., 2005, 8(1), 86-94.
[http://dx.doi.org/10.1626/pps.8.86]
[47]
Kim, D.W.; Lee, S.M.; Woo, H.S.; Park, J.Y.; Ko, B.S.; Heo, J.D.; Ryu, Y.B.; Lee, W.S. Chemical constituents and anti-inflammatory activity of the aerial parts of Curcuma longa. J. Funct. Foods, 2016, 26, 485-493.
[http://dx.doi.org/10.1016/j.jff.2016.08.026]
[48]
Xiang, Z.; Wang, X.; Cai, X.; Zeng, S. Metabolomics study on quality control and discrimination of three curcuma species based on gas chromatograph-mass spectrometry. Phytochem. Anal., 2011, 22(5), 411-418.
[http://dx.doi.org/10.1002/pca.1296] [PMID: 21433157]
[49]
Ayer, D.K. Breeding for quality improvement in turmeric (Curcuma longa L.): a review. Adv. Plants Agric. Res., 2017, 6(6), 201-204.
[http://dx.doi.org/10.15406/apar.2017.06.00238]
[50]
Takahashi, M.; Kitamoto, D.; Imura, T.; Oku, H.; Takara, K.; Wada, K. Characterization and bioavailability of liposomes containing a ukon extract. Biosci. Biotechnol. Biochem., 2008, 72(5), 1199-1205.
[http://dx.doi.org/10.1271/bbb.70659] [PMID: 18460803]
[51]
Balada, C.; Castro, M.; Fassio, C.; Zamora, A.; Marchant, M.J.; Acevedo, W.; Guzmán, L. Genetic diversity and biological activity of Curcuma longa ecotypes from Rapa Nui using molecular markers. Saudi J. Biol. Sci., 2021, 28(1), 707-716.
[http://dx.doi.org/10.1016/j.sjbs.2020.10.062] [PMID: 33424358]
[52]
Verma, R.K.; Kumari, P.; Maurya, R.K.; Kumar, V.; Verma, R.B.; Singh, R.K. Medicinal properties of turmeric (Curcuma longa L.): A review. Int. J. Chem. Stud., 2018, 6(4), 1354-1357.
[http://dx.doi.org/10.22271/chemi.2021.v9.i6a.12130]
[53]
Lekshmi, P.C.; Arimboor, R.; Raghu, K.G.; Menon, A.N. Turmerin, the antioxidant protein from turmeric (Curcuma longa) exhibits antihyperglycaemic effects. Nat. Prod. Res., 2012, 26(17), 1654-1658.
[http://dx.doi.org/10.1080/14786419.2011.589386] [PMID: 21972920]
[54]
Pal, K.; Chowdhury, S.; Dutta, S.K.; Chakraborty, S.; Chakraborty, M.; Pandit, G.K.; Dutta, S.; Paul, P.K.; Choudhury, A.; Majumder, B.; Sahana, N.; Mandal, S. Analysis of rhizome colour content, bioactive compound profiling and ex-situ conservation of turmeric genotypes (Curcuma longa L.) from sub-Himalayan terai region of India. Ind. Crops Prod., 2020, 150, 112401.
[http://dx.doi.org/10.1016/j.indcrop.2020.112401]
[55]
Laokuldilok, N.; Thakeow, P.; Kopermsub, P.; Utama-ang, N. Optimisation of microencapsulation of turmeric extract for masking flavour. Food Chem., 2016, 194, 695-704.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.150] [PMID: 26471609]
[56]
Harsha, M.R.; Chandra Prakash, S.V.; Dharmesh, S.M. Modified pectic polysaccharide from turmeric (Curcuma longa): A potent dietary component against gastric ulcer. Carbohydr. Polym., 2016, 138, 143-155.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.043] [PMID: 26794747]
[57]
Vaughn, A.R.; Pourang, A.; Clark, A.K.; Burney, W.; Sivamani, R.K. Dietary supplementation with turmeric polyherbal formulation decreases facial redness: a randomized double-blind controlled pilot study. J. Integr. Med., 2019, 17(1), 20-23.
[http://dx.doi.org/10.1016/j.joim.2018.11.004] [PMID: 30527287]
[58]
Poompavai, S.; Sree, V.G. Anti-proliferative efficiency of pulsed electric field treated Curcuma longa (Turmeric) extracts on breast cancer cell lines. J. Inst. Electron. Telecommun. Eng., 2020.
[http://dx.doi.org/10.1080/03772063.2020.1799873]
[59]
Tajodini, M.; Saeedi, H.R.; Moghbeli, P. Use of black pepper, cinnamon and turmeric as feed additives in the poultry industry. Worlds Poult. Sci. J., 2015, 71(1), 175-183.
[http://dx.doi.org/10.1017/S0043933915000148]
[60]
Al-Arif, M.A.; Warsito, S.H.; Amin, M.; Lamid, M. Substitution of commercial feed with phytase-fermented rice bran and turmeric flour to increase EPA, DHA, and protein depositions in broiler meat. Biocatal. Agric. Biotechnol., 2020, 24, 101535.
[http://dx.doi.org/10.1016/j.bcab.2020.101535]
[61]
Lamid, M.; Al-Arif, M.A.; Amin, M.; Warsito, S.H. Decreasing triglyceride, LDL-c and increasing HDL-c contents in broiler meat by partial replacement of commercial feed with fermented rice bran and turmeric flour. Biocatal. Agric. Biotechnol., 2020, 23, 101450.
[http://dx.doi.org/10.1016/j.bcab.2019.101450]
[62]
Kosti, D.; Dahiya, D.S.; Dalal, R.; Tewatia, B.S.; Vijayalakshmy, K. Role of turmeric supplementation on production, physical and biochemical parameters in laying hens. Worlds Poult. Sci. J., 2020, 76(3), 625-637.
[http://dx.doi.org/10.1080/00439339.2020.1764460]
[63]
Kumar, A.; Luxmi, V. Novel green photo-catalyst ‘turmeric roots’ for pesticides degradation: Preparation and characterizations. Mater. Lett., 2020, 262, 127030.
[http://dx.doi.org/10.1016/j.matlet.2019.127030]
[64]
Wang, H.; Su, G.; Chen, G.; Bai, J.; Pei, Y. 1H NMR-based metabonomics of the protective effect of Curcuma longa and curcumin on cinnabar-induced hepatotoxicity and nephrotoxicity in rats. J. Funct. Foods, 2015, 17, 459-467.
[http://dx.doi.org/10.1016/j.jff.2015.04.014]
[65]
Naveen Kumar, K.; Venkataramana, M.; Allen, J.A.; Chandranayaka, S.; Murali, H.S.; Batra, H.V. Role of Curcuma longa L. essential oil in controlling the growth and zearalenone production of Fusarium graminearum. Lebensm. Wiss. Technol., 2016, 69, 522-528. [REMOVED HYPERLINK FIELD].
[http://dx.doi.org/10.1016/j.lwt.2016.02.005]
[66]
McMullen, M.K. Curcumin/turmeric: their effect on serum uric acid remains unknown. J. Diet. Suppl., 2020.
[http://dx.doi.org/10.1080/19390211.2020.1811827] [PMID: 32885694]
[67]
Santana, Á.L.; Debien, I.C.N.; Meireles, M.A.A. High-pressure phase behavior of turmeric waste and extracts in the presence of carbon dioxide, ethanol and dimethylsulfoxide. J. Supercrit. Fluids, 2017, 124, 38-49.
[http://dx.doi.org/10.1016/j.supflu.2017.01.006]
[68]
Sami, D.G.; Abdellatif, A.; Azzazy, H.M.E. Turmeric/oregano formulations for treatment of diabetic ulcer wounds. Drug Dev. Ind. Pharm., 2020, 46(10), 1613-1621.
[http://dx.doi.org/10.1080/03639045.2020.1811305] [PMID: 32806984]
[69]
Sultana, S.; Munir, N.; Mahmood, Z.; Riaz, M.; Akram, M.; Rebezov, M.; Kuderinova, N.; Moldabayeva, Z.; Shariati, M.A.; Rauf, A.; Rengasamy, K.R.R. Molecular targets for the management of cancer using Curcuma longa Linn. phytoconstituents: A Review. Biomed. Pharmacother., 2021, 135, 111078.
[http://dx.doi.org/10.1016/j.biopha.2020.111078] [PMID: 33433356]
[70]
Krishnaswamy, K.; Goud, V.K.; Sesikeran, B.; Mukundan, M.A.; Krishna, T.P. Retardation of experimental tumorigenesis and reduction in dna adducts by turmeric and curcumin. Nutr. Cancer, 1998, 30(2), 163-166.
[http://dx.doi.org/10.1080/01635589809514657] [PMID: 9589436]
[71]
Azuine, M.A.; Bhide, S.V. Chemopreventive effect of turmeric against stomach and skin tumors induced by chemical carcinogens in Swiss mice. Nutr. Cancer, 1992, 17(1), 77-83.
[http://dx.doi.org/10.1080/01635589209514174] [PMID: 1574446]
[72]
Hesami, S.; kavianpour, M.; Rashidi Nooshabadi, M.; Yousefi, M.; Lalooha, F.; Khadem Haghighian, H. Randomized, double-blind, placebo-controlled clinical trial studying the effects of Turmeric in combination with mefenamic acid in patients with primary dysmenorrhoea. J. Gynecol. Obstet. Hum. Reprod., 2021, 50(4), 101840.
[http://dx.doi.org/10.1016/j.jogoh.2020.101840] [PMID: 32585392]
[73]
Sahebzad, E.S.; Tehranian, N.; Kazemnejad, A.; Sharifi, M.; Mojab, F.; Azin, A. Effect of turmeric on adiponectin, sexual function and sexual hormones in stressed mice. Life Sci., 2021, 277, 119575.
[http://dx.doi.org/10.1016/j.lfs.2021.119575] [PMID: 33961859]
[74]
Liu, X.; Ma, B.; Tan, H.; Jian, S.; Lv, Z.; Chen, P.; Zhang, T.; Qi, H.; Wang, P.; Lu, W. Utilization of turmeric residue for the preparation of ceramic foam. J. Clean. Prod., 2021, 278, 123825.
[http://dx.doi.org/10.1016/j.jclepro.2020.123825]
[75]
Almalki, E.; Al-Shaebi, E.M.; Al-Quarishy, S.; El-Matbouli, M.; Abdel-Baki, A.A.S. In vitro effectiveness of Curcuma longa and Zingiber officinale extracts on Echinococcus protoscoleces. Saudi J. Biol. Sci., 2017, 24(1), 90-94.
[http://dx.doi.org/10.1016/j.sjbs.2016.05.007] [PMID: 28053576]
[76]
Nampoothiri, S.V.; Praseetha, E.K.; Venugopalan, V.V.; Nirmala Menon, A. Process development for the enrichment of curcuminoids in turmeric spent oleoresin and its inhibitory potential against LDL oxidation and angiotensin-converting enzyme. Int. J. Food Sci. Nutr., 2012, 63(6), 696-702.
[http://dx.doi.org/10.3109/09637486.2011.652941] [PMID: 22263555]
[77]
Ling, J.; Wei, B.; Lv, G.; Ji, H.; Li, S. Anti-hyperlipidaemic and antioxidant effects of turmeric oil in hyperlipidaemic rats. Food Chem., 2012, 130(2), 229-235.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.039]
[78]
Manarin, G.; Anderson, D.; Silva, J.M.; Coppede, J.S.; Roxo-Junior, P.; Pereira, A.M.S.; Carmona, F. Curcuma longa L. ameliorates asthma control in children and adolescents: A randomized, double-blind, controlled trial. J. Ethnopharmacol., 2019, 238, 111882.
[http://dx.doi.org/10.1016/j.jep.2019.111882] [PMID: 30991137]
[79]
Akinyemi, A.J.; Thome, G.R.; Morsch, V.M.; Stefanello, N.; da Costa, P.; Cardoso, A.; Goularte, J.F.; Belló-Klein, A.; Akindahunsi, A.A.; Oboh, G.; Chitolina Schetinger, M.R. Effect of dietary supplementation of ginger and turmeric rhizomes on ectonucleotidases, adenosine deaminase and acetylcholinesterase activities in synaptosomes from the cerebral cortex of hypertensive rats. J. Appl. Biomed., 2016, 14(1), 59-70.
[http://dx.doi.org/10.1016/j.jab.2015.06.001]
[80]
Ghaffari, A.; Rafraf, M.; Navekar, R.; Asghari-Jafarabadi, M. Effects of turmeric and chicory seed supplementation on antioxidant and inflammatory biomarkers in patients with non-alcoholic fatty liver disease (NAFLD). Adv. Integr. Med., 2018, 5(3), 89-95.
[http://dx.doi.org/10.1016/j.aimed.2018.01.002]
[81]
Priya, R.; Prathapan, A.; Raghu, K.G.; Menon, A.N. Chemical composition and in vitro antioxidative potential of essential oil isolated from Curcuma longa L. leaves. Asian Pac. J. Trop. Biomed., 2012, 2(2), S695-S699.
[http://dx.doi.org/10.1016/S2221-1691(12)60298-6]
[82]
Hadi, A.; Pourmasoumi, M.; Ghaedi, E.; Sahebkar, A. The effect of Curcumin/Turmeric on blood pressure modulation: A systematic review and meta-analysis. Pharmacol. Res., 2019, 150, 104505.
[http://dx.doi.org/10.1016/j.phrs.2019.104505] [PMID: 31647981]
[83]
Chowdhury, D.K.; Sahu, N.P.; Sardar, P.; Deo, A.D.; Bedekar, M.K.; Singha, K.P.; Maiti, M.K. Feeding turmeric in combination with ginger or garlic enhances the digestive enzyme activities, growth and immunity in Labeo rohita fingerlings. Anim. Feed Sci. Technol., 2021, 277, 114964.
[http://dx.doi.org/10.1016/j.anifeedsci.2021.114964]
[84]
Dairam, A.; Fogel, R.; Daya, S.; Limson, J.L. Antioxidant and iron-binding properties of curcumin, capsaicin, and S-allylcysteine reduce oxidative stress in rat brain homogenate. J. Agric. Food Chem., 2008, 56(9), 3350-3356.
[http://dx.doi.org/10.1021/jf0734931] [PMID: 18422331]
[85]
Akinyemi, A.J.; Adedara, I.A.; Thome, G.R.; Morsch, V.M.; Rovani, M.T.; Mujica, L.K.S.; Duarte, T.; Duarte, M.; Oboh, G.; Schetinger, M.R.C. Dietary supplementation of ginger and turmeric improves reproductive function in hypertensive male rats. Toxicol. Rep., 2015, 2, 1357-1366.
[http://dx.doi.org/10.1016/j.toxrep.2015.10.001] [PMID: 28962478]
[86]
Wang, Y.; Ding, R.; Zhang, Z.; Zhong, C.; Wang, J.; Wang, M. Curcumin-loaded liposomes with the hepatic and lysosomal dual-targeted effects for therapy of hepatocellular carcinoma. Int. J. Pharm., 2021, 602, 120628.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120628] [PMID: 33892061]
[87]
Hadizadeh-Bazaz, M.; Vaezi, G.; khaksari, M.; Hojati, V. Curcumin attenuates spatial memory impairment by anti-oxidative, anti-apoptosis, and anti-inflammatory mechanism against methamphetamine neurotoxicity in male Wistar rats: Histological and biochemical changes. Neurotoxicology, 2021, 84, 208-217.
[http://dx.doi.org/10.1016/j.neuro.2021.03.011] [PMID: 33819551]
[88]
Kim, Y.; You, Y.; Yoon, H.G.; Lee, Y.H.; Kim, K.; Lee, J.; Kim, M.S.; Kim, J.C.; Jun, W. Hepatoprotective effects of fermented Curcuma longa L. on carbon tetrachloride-induced oxidative stress in rats. Food Chem., 2014, 151, 148-153.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.058] [PMID: 24423514]
[89]
Lekshmi, P.C.; Arimboor, R.; Indulekha, P.S.; Nirmala Menon, A. Turmeric (Curcuma longa L.) volatile oil inhibits key enzymes linked to type 2 diabetes. Int. J. Food Sci. Nutr., 2012, 63(7), 832-834.
[http://dx.doi.org/10.3109/09637486.2011.607156] [PMID: 22385048]
[90]
Yan, W.; Kanno, C.; Oshima, E.; Kuzuma, Y.; Kim, S.W.; Bai, H.; Takahashi, M.; Yanagawa, Y.; Nagano, M.; Wakamatsu, J.; Kawahara, M. Enhancement of sperm motility and viability by turmeric by-product dietary supplementation in roosters. Anim. Reprod. Sci., 2017, 185, 195-204.
[http://dx.doi.org/10.1016/j.anireprosci.2017.08.021] [PMID: 28869111]
[91]
Behera, R.; Rath, C.C. Evaluation of antibacterial activity of turmeric (Curcuma longa L.) leaf essential oils of three different states of India against Shigella spp; J Biol Act Prod Nat, 2011.
[92]
Selvam, R.M.; Athinarayanan, G.; Nanthini, A.U.R.; Singh, A.J.A.R.; Kalirajan, K.; Selvakumar, P.M. Extraction of natural dyes from Curcuma longa, Trigonella foenum graecum and Nerium oleander, plants and their application in antimicrobial fabric. Ind. Crops Prod., 2015, 70, 84-90.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.008]
[93]
Ilangovan, M.; Guna, V.; Hu, C.; Nagananda, G.S.; Reddy, N. Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Ind. Crops Prod., 2018, 112, 556-560.
[http://dx.doi.org/10.1016/j.indcrop.2017.12.042]
[94]
Alsammarraie, F.K.; Wang, W.; Zhou, P.; Mustapha, A.; Lin, M. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf. B Biointerfaces, 2018, 171, 398-405.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.059] [PMID: 30071481]
[95]
Karimi, N.; Ghanbarzadeh, B.; Hamishehkar, H.; Mehramuz, B.; Kafil, H.S. Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC). Colloid Interface Sci. Commun., 2018, 22, 18-24.
[http://dx.doi.org/10.1016/j.colcom.2017.11.006]
[96]
Gopi, S.; Amalraj, A.; Kalarikkal, N.; Zhang, J.; Thomas, S.; Guo, Q. Preparation and characterization of nanocomposite films based on gum arabic, maltodextrin and polyethylene glycol reinforced with turmeric nanofiber isolated from turmeric spent. Mater. Sci. Eng. C, 2019, 97, 723-729.
[http://dx.doi.org/10.1016/j.msec.2018.12.089] [PMID: 30678961]
[97]
Sathishkumar, M.; Sneha, K.; Yun, Y.S. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour. Technol., 2010, 101(20), 7958-7965.
[http://dx.doi.org/10.1016/j.biortech.2010.05.051] [PMID: 20541399]
[98]
Mittal, L.; S, R.; M, S.A.; T, J.S.; Akther, T.; S, P.; Camarillo, I.G.; v, G.S.; Sundararajan, R.; S, H. Turmeric-silver-nanoparticles for effective treatment of breast cancer and to break CTX-M-15 mediated antibiotic resistance in Escherichia coli. Inorganic and Nano-Metal Chemistry, 2021, 51(6), 867-874.
[http://dx.doi.org/10.1080/24701556.2020.1812644]
[99]
Pandit, S.; Kim, H.J.; Kim, J.E.; Jeon, J.G. Separation of an effective fraction from turmeric against Streptococcus mutans biofilms by the comparison of curcuminoid content and anti-acidogenic activity. Food Chem., 2011, 126(4), 1565-1570.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.005] [PMID: 25213928]
[100]
Man, S.; Chai, H.; Qiu, P.; Liu, Z.; Fan, W.; Wang, J.; Gao, W. Turmeric enhancing anti-tumor effect of Rhizoma paridis saponins by influencing their metabolic profiling in tumors of H22 hepatocarcinoma mice. Pathol. Res. Pract., 2015, 211(12), 948-954.
[http://dx.doi.org/10.1016/j.prp.2015.09.011] [PMID: 26471217]
[101]
Yue, G.G.L.; Jiang, L.; Kwok, H.F.; Lee, J.K.M.; Chan, K.M.; Fung, K.P.; Leung, P.C.; Lau, C.B.S. Turmeric ethanolic extract possesses stronger inhibitory activities on colon tumour growth than curcumin – The importance of turmerones. J. Funct. Foods, 2016, 22, 565-577.
[http://dx.doi.org/10.1016/j.jff.2016.02.011]
[102]
Tyagi, A.K.; Prasad, S.; Majeed, M.; Aggarwal, B.B. Calebin A, a novel component of turmeric, suppresses NF-κB regulated cell survival and inflammatory gene products leading to inhibition of cell growth and chemosensitization. Phytomedicine, 2017, 34, 171-181.
[http://dx.doi.org/10.1016/j.phymed.2017.08.021] [PMID: 28899500]
[103]
Zhou, J.L.; Zheng, J.Y.; Cheng, X.Q.; Xin, G.Z.; Wang, S.L.; Xie, T. Chemical markers’ knockout coupled with UHPLC-HRMS-based metabolomics reveals anti-cancer integration effects of the curcuminoids of turmeric (Curcuma longa L.) on lung cancer cell line. J. Pharm. Biomed. Anal., 2019, 175, 112738.
[http://dx.doi.org/10.1016/j.jpba.2019.06.035] [PMID: 31362249]
[104]
Yang, Q.Q.; Cheng, L.Z.; Zhang, T.; Yaron, S.; Jiang, H.X.; Sui, Z.Q.; Corke, H. Phenolic profiles, antioxidant, and antiproliferative activities of turmeric (Curcuma longa). Ind. Crops Prod., 2020, 152, 112561.
[http://dx.doi.org/10.1016/j.indcrop.2020.112561]
[105]
Kalluru, H.; Kondaveeti, S.S.; Telapolu, S.; Kalachaveedu, M. Turmeric supplementation improves the quality of life and hematological parameters in breast cancer patients on paclitaxel chemotherapy: A case series. Complement. Ther. Clin. Pract., 2020, 41, 101247.
[http://dx.doi.org/10.1016/j.ctcp.2020.101247] [PMID: 33099272]
[106]
Venkatadri, B.; Shanparvish, E.; Rameshkumar, M.R.; Arasu, M.V.; Al-Dhabi, N.A.; Ponnusamy, V.K.; Agastian, P. Green synthesis of silver nanoparticles using aqueous rhizome extract of Zingiber officinale and Curcuma longa: In-vitro anti-cancer potential on human colon carcinoma HT-29 cells. Saudi J. Biol. Sci., 2020, 27(11), 2980-2986.
[http://dx.doi.org/10.1016/j.sjbs.2020.09.021] [PMID: 33100856]
[107]
Wei, M.M.; Zhao, S.J.; Dong, X.M.; Wang, Y.J.; Fang, C.; Wu, P.; Song, G.Q.; Gao, J.N.; Huang, Z.H.; Xie, T.; Zhou, J.L. A combination index and glycoproteomics-based approach revealed synergistic anticancer effects of curcuminoids of turmeric against prostate cancer PC3 cells. J. Ethnopharmacol., 2021, 267, 113467.
[http://dx.doi.org/10.1016/j.jep.2020.113467] [PMID: 33058923]
[108]
Narayannasamy, A.; Namasivayam, N.; Radha, K. Effect of turmeric on the enzymes of glucose metabolism in diabetic rats. J. Herbs Spices Med. Plants, 2003, 10(1), 75-84.
[http://dx.doi.org/10.1300/J044v10n01_09]
[109]
Khajehdehi, P.; Pakfetrat, M.; Javidnia, K.; Azad, F.; Malekmakan, L.; Nasab, M.H.; Dehghanzadeh, G. Oral supplementation of turmeric attenuates proteinuria, transforming growth factor-β and interleukin-8 levels in patients with overt type 2 diabetic nephropathy: A randomized, double-blind and placebo-controlled study. Scand. J. Urol. Nephrol., 2011, 45(5), 365-370.
[http://dx.doi.org/10.3109/00365599.2011.585622] [PMID: 21627399]
[110]
Sousa, D.F.D.; Araujo, M.F.M.D.; Mello, V.D.D.; Damasceno, M.M.C.; Freitas, R.W.J.F.D. Cost-effectivess of passion fruit albedo versus turmeric in the glycemic and lipaemic control of people with type 2 diabetes: Randomized clinical trial. J. Am. Coll. Nutr., 2020, 40(80), 679-688.
[http://dx.doi.org/10.4268/cjcmm20161921] [PMID: 33141635]
[111]
Hu, Y.; Zhang, J.; Kong, W.; Zhao, G.; Yang, M. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chem., 2017, 220, 1-8.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.179] [PMID: 27855875]
[112]
Wang, B.; Liu, F.; Li, Q.; Xu, S.; Zhao, X.; Xue, P.; Feng, X. Antifungal activity of zedoary turmeric oil against Phytophthora capsici through damaging cell membrane. Pestic. Biochem. Physiol., 2019, 159, 59-67.
[http://dx.doi.org/10.1016/j.pestbp.2019.05.014] [PMID: 31400785]
[113]
Einbond, L.S.; Manservisi, F.; Wu, H.; Balick, M.; Antonetti, V.; Vornoli, A.; Menghetti, I.; Belpoggi, F.; Redenti, S.; Roter, A. A transcriptomic analysis of turmeric: Curcumin represses the expression of cholesterol biosynthetic genes and synergizes with simvastatin. Pharmacol. Res., 2018, 132, 176-187.
[http://dx.doi.org/10.1016/j.phrs.2018.01.023] [PMID: 29408497]
[114]
Rajagopal, H.M.; Manjegowda, S.B.; Serkad, C.; Dharmesh, S.M. A modified pectic polysaccharide from turmeric (Curcuma longa) with antiulcer effects via anti-secretary, mucoprotective and IL-10 mediated anti-inflammatory mechanisms. Int. J. Biol. Macromol., 2018, 118(Prt-A), 864-880.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.053]
[115]
White, C.M.; Pasupuleti, V.; Roman, Y.M.; Li, Y.; Hernandez, A.V. Oral turmeric/curcumin effects on inflammatory markers in chronic inflammatory diseases: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res., 2019, 146, 104280.
[http://dx.doi.org/10.1016/j.phrs.2019.104280] [PMID: 31121255]
[116]
Wang, Y.; Wang, Y.; Cai, N.; Xu, T.; He, F. Anti-inflammatory effects of curcumin in acute lung injury: In vivo and in vitro experimental model studies. Int. Immunopharmacol., 2021, 96, 107600.
[http://dx.doi.org/10.1016/j.intimp.2021.107600] [PMID: 33798807]
[117]
Kim, J.H.; Yang, H.J.; Kim, Y.J.; Park, S.; Lee, O.; Kim, K.S.; Kim, M.J. Korean turmeric is effective for dyslipidemia in human intervention study. Journal of Ethnic Foods, 2016, 3(3), 213-221.
[http://dx.doi.org/10.1016/j.jef.2016.08.006]
[118]
Shi, Y.; Liang, X.; Chi, L.; Chen, Y.; Liang, L.; Zhao, J.; Luo, Y.; Zhang, W.; Cai, Q.; Wu, X.; Tan, Z.; Zhang, L. Ethanol extracts from twelve Curcuma species rhizomes in China: Antimicrobial, antioxidative and anti-inflammatory activities. S. Afr. J. Bot., 2021, 140, 167-172.
[http://dx.doi.org/10.1016/j.sajb.2021.04.003]
[119]
Martinez-Correa, H.A.; Paula, J.T.; Kayano, A.C.A.V.; Queiroga, C.L.; Magalhães, P.M.; Costa, F.T.M.; Cabral, F.A. Composition and antimalarial activity of extracts of Curcuma longa L. obtained by a combination of extraction processes using supercritical CO2, ethanol and water as solvents. J. Supercrit. Fluids, 2017, 119, 122-129.
[http://dx.doi.org/10.1016/j.supflu.2016.08.017]
[120]
Ahamed, M.I.; Inamuddin; Lutfullah; Sharma, G.; Khan, A.; Asiri, A.M. Turmeric/polyvinyl alcohol Th(IV) phosphate electrospun fibers: Synthesis, characterization and antimicrobial studies. J. Taiwan Inst. Chem. Eng., 2016, 68, 407-414.
[http://dx.doi.org/10.1016/j.jtice.2016.08.024]
[121]
Gopi, S.; Amalraj, A.; Jude, S.; Benson, K.T.; Balakrishnan, P.; Haponiuk, J.T.; Thomas, S. Isolation and characterization of stable nanofiber from turmeric spent using chemical treatment by acid hydrolysis and its potential as antimicrobial and antioxidant activities. J. Macromol. Sci. Part A Pure Appl. Chem., 2019, 56(4), 327-340.
[http://dx.doi.org/10.1080/10601325.2019.1578613]
[122]
Kalaycıoğlu, Z.; Torlak, E.; Akın-Evingür, G.; Özen, İ.; Erim, F.B. Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. Int. J. Biol. Macromol., 2017, 101, 882-888.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.174] [PMID: 28366856]
[123]
Mustapha, F.A.; Jai, J.; Nik Raikhan, N.H.; Sharif, Z.I.M.; Yusof, N.M. Response surface methodology analysis towards biodegradability and antimicrobial activity of biopolymer film containing turmeric oil against Aspergillus niger. Food Control, 2019, 99, 106-113.
[http://dx.doi.org/10.1016/j.foodcont.2018.12.042]
[124]
Sharma, M.; Sharma, R. Synergistic antifungal activity of Curcuma longa (Turmeric) and Zingiber officinale (Ginger) essential oils against dermatophyte infections. J. Essent. Oil-Bear. Plants, 2011, 14(1), 38-47.
[http://dx.doi.org/10.1080/0972060X.2011.10643899]
[125]
Messner, D.J.; Robinson, T.; Kowdley, K.V. Curcumin and turmeric modulate the tumor-promoting effects of iron in vitro. Nutr. Cancer, 2017, 69(3), 481-489.
[http://dx.doi.org/10.1080/01635581.2017.1274407] [PMID: 28129008]
[126]
Moghadam, A.R.; Mohajeri, D.; Namvaran-Abbas-Abad, A.; Manafi, H.; Shahi, D.; Mazani, M. Protective effect of turmeric extract on ethotrexate-induced intestinal damage and oxidative stress. Chin. J. Nat. Med., 2013, 11(5), 477-483.
[http://dx.doi.org/10.1016/S1875-5364(13)60087-4] [PMID: 24359770]
[127]
Maniglia, B.C.; Domingos, J.R.; de Paula, R.L.; Tapia-Blácido, D.R. Development of bioactive edible film from turmeric dye solvent extraction residue. Lebensm. Wiss. Technol., 2014, 56(2), 269-277.
[http://dx.doi.org/10.1016/j.lwt.2013.12.011]
[128]
Mancini, S.; Preziuso, G.; Dal Bosco, A.; Roscini, V.; Szendrő, Z.; Fratini, F.; Paci, G. Effect of turmeric powder (Curcuma longa L.) and ascorbic acid on physical characteristics and oxidative status of fresh and stored rabbit burgers. Meat Sci., 2015, 110, 93-100.
[http://dx.doi.org/10.1016/j.meatsci.2015.07.005] [PMID: 26188362]
[129]
Choi, I.; Lee, S.E.; Chang, Y.; Lacroix, M.; Han, J. Effect of oxidized phenolic compounds on cross-linking and properties of biodegradable active packaging film composed of turmeric and gelatin. Lebensm. Wiss. Technol., 2018, 93, 427-433.
[http://dx.doi.org/10.1016/j.lwt.2018.03.065]
[130]
Zabidi, A.R.; Mohd Razif, M.A.; Ismail, S.N.; Sempo, M.W.; Yahaya, N. Antimicrobial and antioxidant activities in “Beluntas” (Pluchea indica), Turmeric (Curcuma longa) and their mixtures. Sains Malays., 2020, 49(6), 1293-1302.
[http://dx.doi.org/10.17576/jsm-2020-4906-07]
[131]
Gomes, J.V.P.; de Oliveira, L.A.; Pereira, S.M.S.; da Conceição, A.R.; Anunciação, P.C.; de Souza, E.C.G.; Perrone, Í.T.; da Silva Junqueira, M.; Pinheiro Sant’Ana, H.M.; Della Lucia, C.M. Comparison of bioactive compounds and nutrient contents in whey protein concentrate admixture of turmeric extract produced by spray drying and foam mat drying. Food Chem., 2021, 345, 128772.
[http://dx.doi.org/10.1016/j.foodchem.2020.128772] [PMID: 33310255]
[132]
Doldolova, K.; Bener, M.; Lalikoğlu, M.; Aşçı, Y.S.; Arat, R.; Apak, R. Optimization and modeling of microwave-assisted extraction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents. Food Chem., 2021, 353, 129337.
[http://dx.doi.org/10.1016/j.foodchem.2021.129337] [PMID: 33752120]
[133]
de Carvalho, F.A.L.; Munekata, P.E.S.; Lopes de Oliveira, A.; Pateiro, M.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Turmeric (Curcuma longa L.) extract on oxidative stability, physicochemical and sensory properties of fresh lamb sausage with fat replacement by tiger nut (Cyperus esculentus L.) oil. Food Res. Int., 2020, 136, 109487.
[http://dx.doi.org/10.1016/j.foodres.2020.109487] [PMID: 32846569]
[134]
Joshi, P.; Joshi, S.; Semwal, D.K.; Bisht, A.; Sharma, S.; Dwivedi, J. Chemical composition, antioxidative and antimicrobial activities of turmeric spent oleoresin. Ind. Crops Prod., 2021, 162, 113278.
[http://dx.doi.org/10.1016/j.indcrop.2021.113278]
[135]
Kim, H.J.; Yoo, H.S.; Kim, J.C.; Park, C.S.; Choi, M.S.; Kim, M.; Choi, H.; Min, J.S.; Kim, Y.S.; Yoon, S.W.; Ahn, J.K. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. J. Ethnopharmacol., 2009, 124(2), 189-196.
[http://dx.doi.org/10.1016/j.jep.2009.04.046] [PMID: 19409970]
[136]
Kim, M.; Choi, H.; Kim, Y.B. Therapeutic targets and biological mechanisms of action of curcumin against Zika virus: In silico and in vitro analyses. Eur. J. Pharmacol., 2021, 904, 174144.
[http://dx.doi.org/10.1016/j.ejphar.2021.174144] [PMID: 33957087]
[137]
Dourado, D.; Freire, D.T.; Pereira, D.T.; Amaral-Machado, L.; N Alencar, É.; de Barros, A.L.B.; Egito, E.S.T. Will curcumin nanosystems be the next promising antiviral alternatives in COVID-19 treatment trials? Biomed. Pharmacother., 2021, 139, 111578.
[http://dx.doi.org/10.1016/j.biopha.2021.111578] [PMID: 33848774]
[138]
Dhar, S.; Bhattacharjee, P. Promising role of curcumin against viral diseases emphasizing COVID-19 management: A review on the mechanistic insights with reference to host-pathogen interaction and immunomodulation. J. Funct. Foods, 2021, 82, 104503.
[http://dx.doi.org/10.1016/j.jff.2021.104503] [PMID: 33897833]
[139]
Mousavi, Z.; Majles Ara, M.H.; Ghafary, B.; Ahanian, I. Magneto-optical properties of olive oil combined with natural turmeric powder as a dye. Opt. Laser Technol., 2021, 137, 106801.
[http://dx.doi.org/10.1016/j.optlastec.2020.106801]
[140]
Mustafa, R.; Blumenthal, E. Immunomodulatory effects of turmeric: Proliferation of spleen cells in mice. J. Immunoassay Immunochem., 2017, 38(2), 140-146.
[http://dx.doi.org/10.1080/15321819.2016.1227835] [PMID: 27559614]
[141]
Chaaban, A.; Gomes, E.N.; Richardi, V.S.; Martins, C.E.N.; Brum, J.S.; Navarro-Silva, M.A.; Deschamps, C.; Molento, M.B. Essential oil from Curcuma longa leaves: Can an overlooked by-product from turmeric industry be effective for myiasis control? Ind. Crops Prod., 2019, 132, 352-364.
[http://dx.doi.org/10.1016/j.indcrop.2019.02.030]
[142]
Navekar, R.; Rafraf, M.; Ghaffari, A.; Asghari-Jafarabadi, M.; Khoshbaten, M. Turmeric supplementation improves serum glucose indices and leptin levels in patients with nonalcoholic fatty liver diseases. J. Am. Coll. Nutr., 2017, 36(4), 261-267.
[http://dx.doi.org/10.1080/07315724.2016.1267597] [PMID: 28443702]
[143]
Yuliani, S.; Mustofa; Partadiredja, G. The neuroprotective effects of an ethanolic turmeric (Curcuma longa L.) extract against trimethyltin-induced oxidative stress in rats. Nutr. Neurosci., 2019, 22(11), 797-804.
[http://dx.doi.org/10.1080/1028415X.2018.1447267] [PMID: 29513140]
[144]
Kumar, F.; Tyagi, P.K.; Mir, N.A.; Dev, K.; Begum, J.; Biswas, A.; Sheikh, S.A.; Tyagi, P.K.; Sharma, D.; Sahu, B.; Biswas, A.K.; Deo, C.; Mandal, A.B. Dietary flaxseed and turmeric is a novel strategy to enrich chicken meat with long chain ω-3 polyunsaturated fatty acids with better oxidative stability and functional properties. Food Chem., 2020, 305, 125458.
[http://dx.doi.org/10.1016/j.foodchem.2019.125458] [PMID: 31505416]
[145]
Chaaban, A.; Richardi, V.S.; Carrer, A.R.; Brum, J.S.; Cipriano, R.R.; Martins, C.E.N.; Silva, M.A.N.; Deschamps, C.; Molento, M.B. Insecticide activity of Curcuma longa (leaves) essential oil and its major compound α-phellandrene against Lucilia cuprina larvae (Diptera: Calliphoridae): Histological and ultrastructural biomarkers assessment. Pestic. Biochem. Physiol., 2019, 153, 17-27.
[http://dx.doi.org/10.1016/j.pestbp.2018.10.002] [PMID: 30744891]
[146]
Muta, K.; Inomata, S.; Fukuhara, T.; Nomura, J.; Nishiyama, T.; Tagawa, Y.; Amano, S. Inhibitory effect of the extract of rhizome of Curcuma longa L in gelatinase activity and its effect on human skin. J. Biosci. Bioeng., 2018, 125(3), 353-358.
[http://dx.doi.org/10.1016/j.jbiosc.2017.10.001] [PMID: 29146529]
[147]
Chen, J.; Ma, Y.; Tao, Y.; Zhao, X.; Xiong, Y.; Chen, Z.; Tian, Y. Formulation and evaluation of a topical liposomal gel containing a combination of zedoary turmeric oil and tretinoin for psoriasis activity. J. Liposome Res., 2020, 31(2), 130-144.
[http://dx.doi.org/10.1080/08982104.2020.1748646] [PMID: 32223352]
[148]
Mata, I.R.D.; Mata, S.R.D.; Menezes, R.C.R.; Faccioli, L.S.; Bandeira, K.K.; Bosco, S.M.D. Benefits of turmeric supplementation for skin health in chronic diseases: a systematic review. Crit. Rev. Food Sci. Nutr., 2020, 61(20), 3421-3435.
[http://dx.doi.org/10.1080/10408398.2020.1798353] [PMID: 32713186]
[149]
Zheng, Y.; Pan, C.; Zhang, Z.; Luo, W.; Liang, X.; Shi, Y.; Liang, L.; Zheng, X.; Zhang, L.; Du, Z. Antiaging effect of Curcuma longa L. essential oil on ultraviolet-irradiated skin. Microchem. J., 2020, 154, 104608.
[http://dx.doi.org/10.1016/j.microc.2020.104608]
[150]
Jaganathan, S.K.; Prasath Mani, M.; Khudzari, A.Z.M.; Fauzi bin Ismail, A. Physicochemical assessment of tailor made fibrous polyurethane scaffolds incorporated with turmeric oil for wound healing applications. IJPAC Int. J. Polym. Anal. Charact., 2019, 24(8), 752-762.
[http://dx.doi.org/10.1080/1023666X.2019.1676010]
[151]
Panahi, Y.; Khalili, N.; Hosseini, M.S.; Abbasinazari, M.; Sahebkar, A. Lipid-modifying effects of adjunctive therapy with curcuminoids–piperine combination in patients with metabolic syndrome: Results of a randomized controlled trial. Complement. Ther. Med., 2014, 22(5), 851-857.
[http://dx.doi.org/10.1016/j.ctim.2014.07.006] [PMID: 25440375]
[152]
Panahi, Y.; Ghanei, M.; Hajhashemi, A.; Sahebkar, A. Effects of curcuminoids-piperine combination on systemic oxidative stress, clinical symptoms and quality of life in subjects with chronic pulmonary complications due to sulfur mustard: A randomized controlled trial. J. Diet. Suppl., 2016, 13(1), 93-105.
[http://dx.doi.org/10.3109/19390211.2014.952865] [PMID: 25171552]
[153]
Purwanto, B.; Harjanto; Sudiana, I.K. Curcuminoid prevents protein oxidation but not lipid peroxidation in exercise induced muscle damage mouse. Procedia Chem., 2016, 18, 190-193.
[http://dx.doi.org/10.1016/j.proche.2016.01.029]
[154]
Ahmed, T.; Gilani, A.H. Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacol. Biochem. Behav., 2009, 91(4), 554-559.
[http://dx.doi.org/10.1016/j.pbb.2008.09.010] [PMID: 18930076]
[155]
Kalaycıoğlu, Z.; Gazioğlu, I.; Erim, F.B. Comparison of antioxidant, anticholinesterase, and antidiabetic activities of three curcuminoids isolated from Curcuma longa L. Nat. Prod. Res., 2017, 31(24), 2914-2917.
[http://dx.doi.org/10.1080/14786419.2017.1299727] [PMID: 28287280]
[156]
Panahi, Y.; Saadat, A.; Beiraghdar, F.; Hosseini Nouzari, S.M.; Jalalian, H.R.; Sahebkar, A. Antioxidant effects of bioavailability-enhanced curcuminoids in patients with solid tumors: A randomized double-blind placebo-controlled trial. J. Funct. Foods, 2014, 6, 615-622.
[http://dx.doi.org/10.1016/j.jff.2013.12.008]
[157]
Nayak, A.P.; Tiyaboonchai, W.; Patankar, S.; Madhusudhan, B.; Souto, E.B. Curcuminoids-loaded lipid nanoparticles: Novel approach towards malaria treatment. Colloids Surf. B Biointerfaces, 2010, 81(1), 263-273.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.020] [PMID: 20688493]
[158]
Dao, T.T.; Nguyen, P.H.; Won, H.K.; Kim, E.H.; Park, J.; Won, B.Y.; Oh, W.K. Curcuminoids from Curcuma longa and their inhibitory activities on influenza A neuraminidases. Food Chem., 2012, 134(1), 21-28.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.015]
[159]
Chang, C.C.; Fu, C.F.; Yang, W.T.; Chen, T.Y.; Hsu, Y.C. The cellular uptake and cytotoxic effect of curcuminoids on breast cancer cells. Taiwan. J. Obstet. Gynecol., 2012, 51(3), 368-374.
[http://dx.doi.org/10.1016/j.tjog.2012.07.009] [PMID: 23040919]
[160]
Li, X.; Mohammadi, A.S.; Ewing, A.G. Single cell amperometry reveals curcuminoids modulate the release of neurotransmitters during exocytosis from PC12 cells. J. Electroanal. Chem. (Lausanne), 2016, 781, 30-35.
[http://dx.doi.org/10.1016/j.jelechem.2016.10.025] [PMID: 28579928]
[161]
Kalpravidh, R.W.; Siritanaratkul, N.; Insain, P.; Charoensakdi, R.; Panichkul, N.; Hatairaktham, S.; Srichairatanakool, S.; Phisalaphong, C.; Rachmilewitz, E.; Fucharoen, S. Improvement in oxidative stress and antioxidant parameters in β-thalassemia/Hb E patients treated with curcuminoids. Clin. Biochem., 2010, 43(4-5), 424-429.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.10.057] [PMID: 19900435]
[162]
Henrotin, Y., Sr; Sahebkar, A., Sr Analgesic efficacy and safety of curcuminoids in clinical practice: A systematic review and meta-analysis of randomized controlled trials. Osteoarthritis Cartilage, 2015, 23(2), A356.
[http://dx.doi.org/10.1016/j.joca.2015.02.657]
[163]
Henrotin, Y.; Dierckxsens, Y.; Delisse, G.; Seidel, L.; Albert, A. Curcuminoids and Boswellia serrata extracts combination decreases tendinopathy symptoms: findings from an open-label post-observational study. Curr. Med. Res. Opin., 2021, 37(3), 423-430.
[http://dx.doi.org/10.1080/03007995.2020.1860923] [PMID: 33287570]
[164]
Gagandeep, K.; Kumar, P.; Kandi, S.K.; Mukhopadhyay, K.; Rawat, D.S. Synthesis of novel monocarbonyl curcuminoids, evaluation of their efficacy against MRSA, including ex vivo infection model and their mechanistic studies. Eur. J. Med. Chem., 2020, 195, 112276.
[http://dx.doi.org/10.1016/j.ejmech.2020.112276] [PMID: 32279050]
[165]
Simental-Mendía, L.E.; Pirro, M.; Gotto, A.M., Jr; Banach, M.; Atkin, S.L.; Majeed, M.; Sahebkar, A. Lipid-modifying activity of curcuminoids: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr., 2019, 59(7), 1178-1187.
[http://dx.doi.org/10.1080/10408398.2017.1396201] [PMID: 29185808]
[166]
Pengjam, Y.; Syazwani, N.; Inchai, J.; Numit, A.; Yodthong, T.; Pitakpornpreecha, T.; Panichayupakaranant, P. High water-soluble curcuminoids-rich extract regulates osteogenic differentiation of MC3T3-E1 cells: Involvement of Wnt/β-catenin and BMP signaling pathway. Chin. Herb. Med., 2021, 13(4), 534-540.
[http://dx.doi.org/10.1016/j.chmed.2021.01.003] [PMID: 36119369]
[167]
Panahi, Y.; Alishiri, G.H.; Parvin, S.; Sahebkar, A. Mitigation of systemic oxidative stress by curcuminoids in osteoarthritis: results of a randomized controlled trial. J. Diet. Suppl., 2016, 13(2), 209-220.
[http://dx.doi.org/10.3109/19390211.2015.1008611] [PMID: 25688638]
[168]
Melo, I.S.V.; Santos, A.F.; Bueno, N.B. Curcumin or combined curcuminoids are effective in lowering the fasting blood glucose concentrations of individuals with dysglycemia: Systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res., 2018, 128, 137-144.
[http://dx.doi.org/10.1016/j.phrs.2017.09.010] [PMID: 28928074]
[169]
Balasubramanian, A.; Pilankatta, R.; Teramoto, T.; Sajith, A.M.; Nwulia, E.; Kulkarni, A.; Padmanabhan, R. Inhibition of dengue virus by curcuminoids. Antiviral Res., 2019, 162, 71-78.
[http://dx.doi.org/10.1016/j.antiviral.2018.12.002] [PMID: 30529358]
[170]
Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Reiner, Ž.; Majeed, M.; Sahebkar, A. Curcuminoids modify lipid profile in type 2 diabetes mellitus: A randomized controlled trial. Complement. Ther. Med., 2017, 33, 1-5.
[http://dx.doi.org/10.1016/j.ctim.2017.05.006] [PMID: 28735818]
[171]
Rubagotti, S.; Croci, S.; Ferrari, E.; Orteca, G.; Iori, M.; Capponi, P.C.; Versari, A.; Asti, M. Uptake of Ga-curcumin derivatives in different cancer cell lines: Toward the development of new potential 68 Ga-labelled curcuminoids-based radiotracers for tumour imaging. J. Inorg. Biochem., 2017, 173, 113-119.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.05.002] [PMID: 28511061]
[172]
Ebrahimkhani, S.; Ghavamzadeh, S.; Mehdizadeh, A. The effects of vitamin D and curcuminoids supplementation on anthropometric measurements and blood pressure in type 2 diabetic patients with coexisting hypovitaminosis D: A double-blind, placebo-controlled randomized clinical trial. Clin. Nutr. ESPEN, 2020, 37, 178-186.
[http://dx.doi.org/10.1016/j.clnesp.2020.02.017] [PMID: 32359741]
[173]
Weeraphan, C.; Srisomsap, C.; Chokchaichamnankit, D.; Subhasitanont, P.; Hatairaktham, S.; Charoensakdi, R.; Panichkul, N.; Siritanaratkul, N.; Fucharoen, S.; Svasti, J.; Kalpravidh, R.W. Role of curcuminoids in ameliorating oxidative modification in β-thalassemia/Hb E plasma proteome. J. Nutr. Biochem., 2013, 24(3), 578-585.
[http://dx.doi.org/10.1016/j.jnutbio.2012.02.008] [PMID: 22818714]
[174]
Ibrahim, J.; Kabiru, A.Y.; Abdulrasheed-Adeleke, T.; Lawal, B.; Adewuyi, A.H. Antioxidant and hepatoprotective potentials of curcuminoid isolates from turmeric (Curcuma longa) rhizome on CCl 4 -induced hepatic damage in Wistar rats. J. Taibah Univ. Sci., 2020, 14(1), 908-915.
[http://dx.doi.org/10.1080/16583655.2020.1790928]
[175]
Saberi-Karimian, M.; Keshvari, M.; Ghayour-Mobarhan, M.; Salehizadeh, L.; Rahmani, S.; Behnam, B.; Jamialahmadi, T.; Asgary, S.; Sahebkar, A. Effects of curcuminoids on inflammatory status in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Complement. Ther. Med., 2020, 49, 102322.
[http://dx.doi.org/10.1016/j.ctim.2020.102322] [PMID: 32147075]
[176]
Khurana, A.; Ho, C.T. High performance liquid chromatographic analysis of curcuminoids and their photo-oxidative decomposition compounds in Curcuma longa L. J. Liq. Chromatogr., 1988, 11(11), 2295-2304.
[http://dx.doi.org/10.1080/01483918808067200]
[177]
Orona-Ortiz, A.; Velazquez-Moyado, J.A.; Pineda-Pena, E.A.; Balderas-Lopez, J.L.; Carvalho, J.C.T.; Navarrete, A. Effect of the proportion of curcuminoids on the gastroprotective action of Curcuma longa L. in rats. Nat. Prod. Res., 2019, 35(11), 1903-1908.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.05.016] [PMID: 31339383]
[178]
Rastogi, M.; Ojha, R.P.; Rajamanickam, G.V.; Agrawal, A.; Aggarwal, A.; Dubey, G.P. Curcuminoids modulates oxidative damage and mitochondrial dysfunction in diabetic rat brain. Free Radic. Res., 2008, 42(11-12), 999-1005.
[http://dx.doi.org/10.1080/10715760802571988] [PMID: 19031318]
[179]
Simental-Mendía, L.E.; Cicero, A.F.G.; Atkin, S.L.; Majeed, M.; Sahebkar, A. A systematic review and meta-analysis of the effect of curcuminoids on adiponectin levels. Obes. Res. Clin. Pract., 2019, 13(4), 340-344.
[http://dx.doi.org/10.1016/j.orcp.2019.04.003] [PMID: 31064708]
[180]
Aditya, N.P.; Chimote, G.; Gunalan, K.; Banerjee, R.; Patankar, S.; Madhusudhan, B. Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Exp. Parasitol., 2012, 131(3), 292-299.
[http://dx.doi.org/10.1016/j.exppara.2012.04.010] [PMID: 22561991]
[181]
Najafi, M.; Mortezaee, K.; Rahimifard, M.; Farhood, B.; Haghi-Aminjan, H. The role of curcumin/curcuminoids during gastric cancer chemotherapy: A systematic review of non-clinical study. Life Sci., 2020, 257, 118051.
[http://dx.doi.org/10.1016/j.lfs.2020.118051] [PMID: 32634426]
[182]
Sang, J.; Chu, J.; Zhao, X.; Quan, H.; Ji, Z.; Wang, S.; Tang, Y.; Hu, Z.; Li, H.; Li, L.; Ge, R. Curcuminoids inhibit human and rat placental 3β-hydroxysteroid dehydrogenases: Structure-activity relationship and in silico docking analysis. J. Ethnopharmacol., 2023, 305, 116051.
[http://dx.doi.org/10.1016/j.jep.2022.116051] [PMID: 36572324]
[183]
Giménez-Bastida, J.A.; Ávila-Gálvez, M.Á.; Carmena-Bargueño, M.; Pérez-Sánchez, H.; Espín, J.C.; González-Sarrías, A. Physiologically relevant curcuminoids inhibit angiogenesis via VEGFR2 in human aortic endothelial cells. Food Chem. Toxicol., 2022, 166, 113254.
[http://dx.doi.org/10.1016/j.fct.2022.113254] [PMID: 35752269]
[184]
Xiang, C.; Chen, C.; Li, X.; Wu, Y.; Xu, Q.; Wen, L.; Xiong, W.; Liu, Y.; Zhang, T.; Dou, C.; Ding, X.; Hu, L.; Chen, F.; Yan, Z.; Liang, L.; Wei, G. Computational approach to decode the mechanism of curcuminoids against neuropathic pain. Comput. Biol. Med., 2022, 147, 105739.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105739] [PMID: 35763932]
[185]
Fança-Berthon, P.; Tenon, M.; Bouter-Banon, S.L.; Manfré, A.; Maudet, C.; Dion, A.; Chevallier, H.; Laval, J.; van Breemen, R.B. Pharmacokinetics of a single dose of turmeric curcuminoids depends on formulation: Results of a human crossover study. J. Nutr., 2021, 151(7), 1802-1816.
[http://dx.doi.org/10.1093/jn/nxab087] [PMID: 33877323]
[186]
Jin, S.; Song, C.; Jia, S.; Li, S.; Zhang, Y.; Chen, C.; Feng, Y.; Xu, Y.; Xiong, C.; Xiang, Y.; Jiang, H. An integrated strategy for establishment of curcuminoid profile in turmeric using two LC–MS/MS platforms. J. Pharm. Biomed. Anal., 2017, 132, 93-102.
[http://dx.doi.org/10.1016/j.jpba.2016.09.039] [PMID: 27697575]
[187]
Yuan, F.; Wu, W.; Ma, L.; Wang, D.; Hu, M.; Gong, J.; Fang, K.; Xu, L.; Dong, H.; Lu, F. Turmeric and curcuminiods ameliorate disorders of glycometabolism among subjects with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res., 2022, 177, 106121.
[http://dx.doi.org/10.1016/j.phrs.2022.106121] [PMID: 35143971]
[188]
Aarthi, S.; Suresh, J.; Leela, N.K.; Prasath, D. Multi environment testing reveals genotype-environment interaction for curcuminoids in turmeric (Curcuma longa L.). Ind. Crops Prod., 2020, 145, 112090.
[http://dx.doi.org/10.1016/j.indcrop.2020.112090]
[189]
Goëlo, V.; Chaumun, M.; Gonçalves, A.; Estevinho, B.N.; Rocha, F. Polysaccharide-based delivery systems for curcumin and turmeric powder encapsulation using a spray-drying process. Powder Technol., 2020, 370, 137-146.
[http://dx.doi.org/10.1016/j.powtec.2020.05.016]
[190]
Valizadeh Kiamahalleh, M.; Najafpour-Darzi, G.; Rahimnejad, M.; Moghadamnia, A.A.; Valizadeh Kiamahalleh, M. High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1022, 191-198.
[http://dx.doi.org/10.1016/j.jchromb.2016.04.021] [PMID: 27107245]
[191]
Ahsan, H.; Parveen, N.; Khan, N.U.; Hadi, S.M. Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem. Biol. Interact., 1999, 121(2), 161-175.
[http://dx.doi.org/10.1016/S0009-2797(99)00096-4] [PMID: 10418962]
[192]
Sahoo, A.; Kar, B.; Sahoo, S.; Jena, S.; Kuanar, A.; Parameswaran, S.; Patnaik, J.; Nayak, S. De Novo transcriptome sequencing explored cultivar specific sequence variation and differential expression of pigment synthesis genes in turmeric (Curcuma longa L.). Ind. Crops Prod., 2019, 134, 388-402.
[http://dx.doi.org/10.1016/j.indcrop.2019.04.021]
[193]
Rivera-Mancía, S.; Trujillo, J.; Chaverri, J.P. Utility of curcumin for the treatment of diabetes mellitus: Evidence from preclinical and clinical studies. J. Nutr. Intermed. Metab., 2018, 14, 29-41.
[http://dx.doi.org/10.1016/j.jnim.2018.05.001]
[194]
GHorbani, Z.; Hekmatdoost, A.; Mirmiran, P. Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin. Int. J. Endocrinol. Metab., 2014, 12(4), e18081.
[http://dx.doi.org/10.5812/ijem.18081] [PMID: 25745485]
[195]
Ramesh, T.N.; Paul, M.; Manikanta, K.; Girish, K.S. Structure and morphological studies of curcuminoids and curcuminoid mixture. J. Cryst. Growth, 2020, 547, 125812.
[http://dx.doi.org/10.1016/j.jcrysgro.2020.125812]
[196]
Dhanya, C.S.; Paul, W.; Victor, S.P.; Joseph, R. On improving the physiological stability of curcuminoids: Curcumininoid-silver nanoparticle complex as a better and efficient therapeutic agent. Nano-Structures & Nano-Objects, 2021, 25, 100661.
[http://dx.doi.org/10.1016/j.nanoso.2020.100661]
[197]
Wang, H.; Luo, J.; Zhang, Y.; He, D.; Jiang, R.; Xie, X.; Yang, Q.; Li, K.; Xie, J.; Zhang, J. Phospholipid/hydroxypropyl-β-cyclodextrin supramolecular complexes are promising candidates for efficient oral delivery of curcuminoids. Int. J. Pharm., 2020, 582, 119301.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119301] [PMID: 32268184]
[198]
Hay, E.; Lucariello, A.; Contieri, M.; Esposito, T.; De Luca, A.; Guerra, G.; Perna, A. Therapeutic effects of turmeric in several diseases: An overview. Chem. Biol. Interact., 2019, 310, 108729.
[http://dx.doi.org/10.1016/j.cbi.2019.108729] [PMID: 31255636]
[199]
Tamaddonfard, E.; Erfanparast, A.; Hamzeh-Gooshchi, N.; Yousofizadeh, S. Effect of curcumin, the active constituent of turmeric, on penicillin-induced epileptiform activity in rats. Avicenna J. Phytomed., 2012, 2(4), 196-205.
[http://dx.doi.org/10.1016/S1734-1140(12)70735-1] [PMID: 25050250]
[200]
Li, Y.L.; Du, Z.Y.; Li, P.H.; Yan, L.; Zhou, W.; Tang, Y.D.; Liu, G.R.; Fang, Y.X.; Zhang, K.; Dong, C.Z.; Chen, H.X. Aromatic-turmerone ameliorates imiquimod-induced psoriasis-like inflammation of BALB/c mice. Int. Immunopharmacol., 2018, 64, 319-325.
[http://dx.doi.org/10.1016/j.intimp.2018.09.015] [PMID: 30243067]
[201]
Tinello, F.; Lante, A. Accelerated storage conditions effect on ginger- and turmeric-enriched soybean oils with comparing a synthetic antioxidant BHT. Lebensm. Wiss. Technol., 2020, 131, 109797.
[http://dx.doi.org/10.1016/j.lwt.2020.109797]
[202]
Taebi, R.; Mirzaiey, M.R.; Mahmoodi, M.; Khoshdel, A.; Fahmidehkar, M.A.; Mohammad-Sadeghipour, M.; Hajizadeh, M.R. The effect of Curcuma longa extract and its active component (curcumin) on gene expression profiles of lipid metabolism pathway in liver cancer cell line (HepG2). Gene Rep., 2020, 18, 100581.
[http://dx.doi.org/10.1016/j.genrep.2019.100581]
[203]
Sagnou, M.; Mitsopoulou, K.P.; Koliopoulos, G.; Pelecanou, M.; Couladouros, E.A.; Michaelakis, A. Evaluation of naturally occurring curcuminoids and related compounds against mosquito larvae. Acta Trop., 2012, 123(3), 190-195.
[http://dx.doi.org/10.1016/j.actatropica.2012.05.006] [PMID: 22634203]
[204]
Liu, J.; Li, M.; Wang, Y.; Luo, J. Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition. J. Drug Target., 2017, 25(7), 645-652.
[http://dx.doi.org/10.1080/1061186X.2017.1315686] [PMID: 28391715]
[205]
Packiavathy, I.A.S.V.; Priya, S.; Pandian, S.K.; Ravi, A.V. Inhibition of biofilm development of uropathogens by curcumin – An anti-quorum sensing agent from Curcuma longa. Food Chem., 2014, 148, 453-460.
[http://dx.doi.org/10.1016/j.foodchem.2012.08.002] [PMID: 24262582]
[206]
Camacho-Barquero, L.; Villegas, I.; Sánchez-Calvo, J.M.; Talero, E.; Sánchez-Fidalgo, S.; Motilva, V.; Alarcón de la Lastra, C. Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. Int. Immunopharmacol., 2007, 7(3), 333-342.
[http://dx.doi.org/10.1016/j.intimp.2006.11.006] [PMID: 17276891]
[207]
Kumar, A.; Singh, A. Possible nitric oxide modulation in protective effect of (Curcuma longa, Zingiberaceae) against sleep deprivation-induced behavioral alterations and oxidative damage in mice. Phytomedicine, 2008, 15(8), 577-586.
[http://dx.doi.org/10.1016/j.phymed.2008.02.003] [PMID: 18586477]
[208]
Kuo, P.C.; Yang, C.J.; Lee, Y.C.; Chen, P.C.; Liu, Y.C.; Wu, S.N. The comprehensive electrophysiological study of curcuminoids on delayed-rectifier K + currents in insulin-secreting cells. Eur. J. Pharmacol., 2018, 819, 233-241.
[http://dx.doi.org/10.1016/j.ejphar.2017.12.004] [PMID: 29225191]
[209]
Kang, J.Y.; Kim, H.; Mun, D.; Yun, N.; Joung, B. Co-delivery of curcumin and miRNA-144-3p using heart-targeted extracellular vesicles enhances the therapeutic efficacy for myocardial infarction. J. Control. Release, 2021, 331, 62-73.
[http://dx.doi.org/10.1016/j.jconrel.2021.01.018] [PMID: 33460670]
[210]
Don, T.M.; Chang, W.J.; Jheng, P.R.; Huang, Y.C.; Chuang, E.Y. Curcumin-laden dual-targeting fucoidan/chitosan nanocarriers for inhibiting brain inflammation via intranasal delivery. Int. J. Biol. Macromol., 2021, 181, 835-846.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.045] [PMID: 33857519]
[211]
Zia, A.; Farkhondeh, T.; Pourbagher-Shahri, A.M.; Samarghandian, S. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed. Pharmacother., 2021, 134, 111119.
[http://dx.doi.org/10.1016/j.biopha.2020.111119] [PMID: 33360051]
[212]
Sienkiewicz, N.; Członka, S.; Kairyte, A.; Vaitkus, S. Curcumin as a natural compound in the synthesis of rigid polyurethane foams with enhanced mechanical, antibacterial and anti-ageing properties. Polym. Test., 2019, 79, 106046.
[http://dx.doi.org/10.1016/j.polymertesting.2019.106046]
[213]
Chaharband, F.; Kamalinia, G.; Atyabi, F.; Mortazavi, S.A.; Mirzaie, Z.H.; Dinarvand, R. Formulation and in vitro evaluation of curcumin-lactoferrin conjugated nanostructures for cancerous cells. Artif. Cells Nanomed. Biotechnol., 2018, 46(3), 626-636.
[http://dx.doi.org/10.1080/21691401.2017.1337020] [PMID: 28622061]
[214]
Barick, K.C.; Tripathi, A.; Dutta, B.; Shelar, S.B.; Hassan, P.A. Curcumin encapsulated casein nanoparticles: enhanced bioavailability and anticancer efficacy. J. Pharm. Sci., 2021, 110(5), 2114-2120.
[http://dx.doi.org/10.1016/j.xphs.2020.12.011] [PMID: 33338492]
[215]
Sreenivasan, S.; Krishnakumar, S. Synergistic effect of curcumin in combination with anticancer agents in human retinoblastoma cancer cell lines. Curr. Eye Res., 2015, 40(11), 1153-1165.
[http://dx.doi.org/10.3109/02713683.2014.987870] [PMID: 25495096]
[216]
Sahu, B.P.; Hazarika, H.; Bharadwaj, R.; Loying, P.; Baishya, R.; Dash, S.; Das, M.K. Curcumin-docetaxel co-loaded nanosuspension for enhanced anti-breast cancer activity. Expert Opin. Drug Deliv., 2016, 13(8), 1065-1074.
[http://dx.doi.org/10.1080/17425247.2016.1182486] [PMID: 27124646]
[217]
Tabatabaei Mirakabad, F.S.; Akbarzadeh, A.; Milani, M.; Zarghami, N.; Taheri-Anganeh, M.; Zeighamian, V.; Badrzadeh, F.; Rahmati-Yamchi, M. A Comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 423-430.
[http://dx.doi.org/10.3109/21691401.2014.955108] [PMID: 25229832]
[218]
Chen, H.; Chen, L.; Wang, L.; Zhou, X.; Chan, J.Y.W.; Li, J.; Cui, G.; Lee, S.M.Y. Synergistic effect of fenretinide and curcumin for treatment of non-small cell lung cancer. Cancer Biol. Ther., 2016, 17(10), 1022-1029.
[http://dx.doi.org/10.1080/15384047.2016.1219810] [PMID: 27628049]
[219]
Liu, Y.M.; Zhang, Q.Z.; Xu, D.H.; Fu, Y.W.; Lin, D.J.; Zhou, S.Y.; Li, J.P. Antiparasitic efficacy of curcumin from Curcuma longa against Ichthyophthirius multifiliis in grass carp. Vet. Parasitol., 2017, 236, 128-136.
[http://dx.doi.org/10.1016/j.vetpar.2017.02.011] [PMID: 28288756]
[220]
Jose, A.; Labala, S.; Venuganti, V.V.K. Co-delivery of curcumin and STAT3 siRNA using deformable cationic liposomes to treat skin cancer. J. Drug Target., 2017, 25(4), 330-341.
[http://dx.doi.org/10.1080/1061186X.2016.1258567] [PMID: 27819148]
[221]
Seo, H.J.; Wang, S.M.; Han, C.; Lee, S.J.; Patkar, A.A.; Masand, P.S.; Pae, C.U. Curcumin as a putative antidepressant. Expert Rev. Neurother., 2015, 15(3), 269-280.
[http://dx.doi.org/10.1586/14737175.2015.1008457] [PMID: 25644944]
[222]
da Silva Marques, J.G.; Antunes, F.T.T.; da Silva Brum, L.F.; Pedron, C.; de Oliveira, I.B.; de Barros Falcão Ferraz, A.; Martins, M.I.M.; Dallegrave, E.; de Souza, A.H. Adaptogenic effects of curcumin on depression induced by moderate and unpredictable chronic stress in mice. Behav. Brain Res., 2021, 399, 113002.
[http://dx.doi.org/10.1016/j.bbr.2020.113002] [PMID: 33161033]
[223]
Vasileva, L.V.; Saracheva, K.E.; Ivanovska, M.V.; Petrova, A.P.; Marchev, A.S.; Georgiev, M.I.; Murdjeva, M.A.; Getova, D.P. Antidepressant-like effect of salidroside and curcumin on the immunoreactivity of rats subjected to a chronic mild stress model. Food Chem. Toxicol., 2018, 121, 604-611.
[http://dx.doi.org/10.1016/j.fct.2018.09.065] [PMID: 30268794]
[224]
Fusar-Poli, L.; Vozza, L.; Gabbiadini, A.; Vanella, A.; Concas, I.; Tinacci, S.; Petralia, A.; Signorelli, M.S.; Aguglia, E. Curcumin for depression: a meta-analysis. Crit. Rev. Food Sci. Nutr., 2020, 60(15), 2643-2653.
[http://dx.doi.org/10.1080/10408398.2019.1653260] [PMID: 31423805]
[225]
Yao, Q.; Ke, Z.; Guo, S.; Yang, X.; Zhang, F.; Liu, X.; Chen, X.; Chen, H.; Ke, H.; Liu, C. Curcumin protects against diabetic cardiomyopathy by promoting autophagy and alleviating apoptosis. J. Mol. Cell. Cardiol., 2018, 124, 26-34.
[http://dx.doi.org/10.1016/j.yjmcc.2018.10.004] [PMID: 30292723]
[226]
Javidi, M.A.; Kaeidi, A.; Mortazavi Farsani, S.S.; Babashah, S.; Sadeghizadeh, M. Investigating curcumin potential for diabetes cell therapy, in vitro and in vivo study. Life Sci., 2019, 239, 116908.
[http://dx.doi.org/10.1016/j.lfs.2019.116908] [PMID: 31610197]
[227]
Xia, Z.; Zhang, S.; Chen, Y.; Li, K.; Chen, W.; Liu, Y. Curcumin anti-diabetic effect mainly correlates with its anti-apoptotic actions and PI3K/Akt signal pathway regulation in the liver. Food Chem. Toxicol., 2020, 146, 111803.
[http://dx.doi.org/10.1016/j.fct.2020.111803] [PMID: 33035629]
[228]
Li, X.; Wang, X. GW28-e0855 The effect of bisdemethoxycurcumin on myocardial apoptosis induced by staurosporine. J. Am. Coll. Cardiol., 2017, 70(16), C182.
[http://dx.doi.org/10.1016/j.jacc.2017.07.673]
[229]
Chainoglou, E.; Hadjipavlou-Litina, D. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: Structural characteristics and molecular targets. Expert Opin. Drug Discov., 2019, 14(8), 821-842.
[http://dx.doi.org/10.1080/17460441.2019.1614560] [PMID: 31094233]
[230]
Sanduk, F.; Meng, Y.; Widera, D.; Kowalczyk, R.M.; Michael, N.; Kaur, A.; Yip, V.; Zulu, S.; Zavrou, I.; Hana, L.; Yaqoob, M.; Al-Obaidi, H. Enhanced anti-inflammatory potential of degradation resistant curcumin/ferulic acid eutectics embedded in triglyceride-based microemulsions. J. Drug Deliv. Sci. Technol., 2020, 60, 102067.
[http://dx.doi.org/10.1016/j.jddst.2020.102067]
[231]
Fallahi, F.; Borran, S.; Ashrafizadeh, M.; Zarrabi, A.; Pourhanifeh, M.H.; Khaksary Mahabady, M.; Sahebkar, A.; Mirzaei, H. Curcumin and inflammatory bowel diseases: From in vitro studies to clinical trials. Mol. Immunol., 2021, 130, 20-30.
[http://dx.doi.org/10.1016/j.molimm.2020.11.016] [PMID: 33348246]
[232]
Ahmadabady, S.; Beheshti, F.; Shahidpour, F.; Khordad, E.; Hosseini, M. A protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide in rats. Biochem. Biophys. Rep., 2021, 25, 100908.
[http://dx.doi.org/10.1016/j.bbrep.2021.100908] [PMID: 33506115]
[233]
Deka, C.; Aidew, L.; Devi, N.; Buragohain, A.K.; Kakati, D.K. Synthesis of curcumin-loaded chitosan phosphate nanoparticle and study of its cytotoxicity and antimicrobial activity. J. Biomater. Sci. Polym. Ed., 2016, 27(16), 1659-1673.
[http://dx.doi.org/10.1080/09205063.2016.1226051] [PMID: 27564239]
[234]
Roy, S.; Rhim, J.W. Antioxidant and antimicrobial poly(vinyl alcohol)-based films incorporated with grapefruit seed extract and curcumin. J. Environ. Chem. Eng., 2021, 9(1), 104694.
[http://dx.doi.org/10.1016/j.jece.2020.104694]
[235]
Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Anasane, N.; Santos, C.A.D. Curcumin and curcumin-loaded nanoparticles: antipathogenic and antiparasitic activities. Expert Rev. Anti Infect. Ther., 2020, 18(4), 367-379.
[http://dx.doi.org/10.1080/14787210.2020.1730815] [PMID: 32067524]
[236]
Sharma, R.K.; Cwiklinski, K.; Aalinkeel, R.; Reynolds, J.L.; Sykes, D.E.; Quaye, E.; Oh, J.; Mahajan, S.D.; Schwartz, S.A. Immunomodulatory activities of curcumin-stabilized silver nanoparticles: Efficacy as an antiretroviral therapeutic. Immunol. Invest., 2017, 46(8), 833-846.
[http://dx.doi.org/10.1080/08820139.2017.1371908] [PMID: 29058549]
[237]
Tripathi, P.K.; Gupta, S.; Rai, S.; Shrivatava, A.; Tripathi, S.; Singh, S.; Khopade, A.J.; Kesharwani, P. Curcumin loaded poly (amidoamine) dendrimer-plamitic acid core-shell nanoparticles as anti-stress therapeutics. Drug Dev. Ind. Pharm., 2020, 46(3), 412-426.
[http://dx.doi.org/10.1080/03639045.2020.1724132] [PMID: 32011185]
[238]
Serpi, C.; Stanić, Z.; Girousi, S. Electroanalytical study of the interaction between double stranded DNA and antitumor agent curcumin. Anal. Lett., 2010, 43(9), 1491-1506.
[http://dx.doi.org/10.1080/00032710903502199]
[239]
Li, H.; Zhang, N.; Hao, Y.; Wang, Y.; Jia, S.; Zhang, H. Enhancement of curcumin antitumor efficacy and further photothermal ablation of tumor growth by single-walled carbon nanotubes delivery system in vivo. Drug Deliv., 2019, 26(1), 1017-1026.
[http://dx.doi.org/10.1080/10717544.2019.1672829] [PMID: 31578087]
[240]
Wang, H.; Geng, Q.R.; Wang, L.; Lu, Y. Curcumin potentiates antitumor activity of L -asparaginase via inhibition of the AKT signaling pathway in acute lymphoblastic leukemia. Leuk. Lymphoma, 2012, 53(7), 1376-1382.
[http://dx.doi.org/10.3109/10428194.2011.649478] [PMID: 22185211]
[241]
Mohamed, S.A.; El-Shishtawy, R.M.; Al-Bar, O.A.M.; Al-Najada, A.R. Chemical modification of curcumin: Solubility and antioxidant capacity. Int. J. Food Prop., 2017, 20(3), 718-724.
[http://dx.doi.org/10.1080/10942912.2016.1177545]
[242]
Wu, Y.; Wang, X. Binding, stability, and antioxidant activity of curcumin with self-assembled casein–dextran conjugate micelles. Int. J. Food Prop., 2017, 20(12), 3295-3307.
[http://dx.doi.org/10.1080/10942912.2017.1286505]
[243]
Simon, E.; Aswini, P.; Sameer Kumar, V.B.; Mankadath, G. Curcumin and its synthetic analogue dimethoxycurcumin differentially modulates antioxidant status of normal human peripheral blood mononuclear cells. Free Radic. Res., 2018, 52(5), 583-591.
[http://dx.doi.org/10.1080/10715762.2018.1455002] [PMID: 29621898]
[244]
Ebaid, H.; Al-Tamimi, J.; Habila, M.; Hassan, I.; Rady, A.; Alhazza, I.M. Potential therapeutic effect of synthesized AgNP using curcumin extract on CCl4-induced nephrotoxicity in male mice. J. King Saud Univ. Sci., 2021, 33(2), 101356.
[http://dx.doi.org/10.1016/j.jksus.2021.101356]
[245]
Lakshmanan, A.P.; Watanabe, K.; Thandavarayan, R.A.; Sari, F.R.; Meilei, H.; Soetikno, V.; Arumugam, S.; Giridharan, V.V.; Suzuki, K.; Kodama, M. Curcumin attenuates hyperglycaemia-mediated AMPK activation and oxidative stress in cerebrum of streptozotocin-induced diabetic rat. Free Radic. Res., 2011, 45(7), 788-795.
[http://dx.doi.org/10.3109/10715762.2011.579121] [PMID: 21548839]
[246]
Kritis, P.; Karampela, I.; Kokoris, S.; Dalamaga, M. The combination of bromelain and curcumin as an immune-boosting nutraceutical in the prevention of severe COVID-19. Metabolism Open, 2020, 8, 100066.
[http://dx.doi.org/10.1016/j.metop.2020.100066] [PMID: 33205039]
[247]
Thimmulappa, R.K.; Mudnakudu-Nagaraju, K.K.; Shivamallu, C.; Subramaniam, K.J.T.; Radhakrishnan, A.; Bhojraj, S.; Kuppusamy, G. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon, 2021, 7(2), e06350.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06350] [PMID: 33655086]
[248]
Das, K.K.; Razzaghi-Asl, N.; Tikare, S.N.; Di Santo, R.; Costi, R.; Messore, A.; Pescatori, L.; Crucitti, G.C.; Jargar, J.G.; Dhundasi, S.A.; Saso, L. Hypoglycemic activity of curcumin synthetic analogues in alloxan-induced diabetic rats. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 99-105.
[http://dx.doi.org/10.3109/14756366.2015.1004061] [PMID: 25683079]
[249]
Yadav, V.S.; Mishra, K.P.; Singh, D.P.; Mehrotra, S.; Singh, V.K. Immunomodulatory effects of curcumin. Immunopharmacol. Immunotoxicol., 2005, 27(3), 485-497.
[http://dx.doi.org/10.1080/08923970500242244] [PMID: 16237958]
[250]
Alagawany, M.; Farag, M.R.; Abdelnour, S.A.; Dawood, M.A.O.; Elnesr, S.S.; Dhama, K. Curcumin and its different forms: A review on fish nutrition. Aquaculture, 2021, 532, 736030.
[http://dx.doi.org/10.1016/j.aquaculture.2020.736030]
[251]
Darvesh, A.S.; Carroll, R.T.; Bishayee, A.; Novotny, N.A.; Geldenhuys, W.J.; Van der Schyf, C.J. Curcumin and neurodegenerative diseases: a perspective. Expert Opin. Investig. Drugs, 2012, 21(8), 1123-1140.
[http://dx.doi.org/10.1517/13543784.2012.693479] [PMID: 22668065]
[252]
Sanei, M.; Saberi-Demneh, A. Effect of curcumin on memory impairment: A systematic review. Phytomedicine, 2019, 52, 98-106.
[http://dx.doi.org/10.1016/j.phymed.2018.06.016] [PMID: 30599917]
[253]
Cheppudira, B.; Fowler, M.; McGhee, L.; Greer, A.; Mares, A.; Petz, L.; Devore, D.; Loyd, D.R.; Clifford, J.L. Curcumin: a novel therapeutic for burn pain and wound healing. Expert Opin. Investig. Drugs, 2013, 22(10), 1295-1303.
[http://dx.doi.org/10.1517/13543784.2013.825249] [PMID: 23902423]
[254]
Alqahtani, M.S.; Alqahtani, A.; Kazi, M.; Ahmad, M.Z.; Alahmari, A.; Alsenaidy, M.A.; Syed, R. Wound-healing potential of curcumin loaded lignin nanoparticles. J. Drug Deliv. Sci. Technol., 2020, 60, 102020.
[http://dx.doi.org/10.1016/j.jddst.2020.102020]
[255]
Sadeghianmaryan, A.; Yazdanpanah, Z.; Soltani, Y.A.; Sardroud, H.A.; Nasirtabrizi, M.H.; Chen, X. Curcumin‐loaded electrospun polycaprolactone/montmorillonite nanocomposite: wound dressing application with anti‐bacterial and low cell toxicity properties. J. Biomater. Sci. Polym. Ed., 2020, 31(2), 169-187.
[http://dx.doi.org/10.1080/09205063.2019.1680928] [PMID: 31609684]
[256]
Samraj, M.D.; Kirupha, S.D.; Elango, S.; Vadodaria, K. Fabrication of nanofibrous membrance using stingless bee honey and curcumin for wound healing applications. J. Drug Deliv. Sci. Technol., 2021, 63, 102271.
[http://dx.doi.org/10.1016/j.jddst.2020.102271]
[257]
Leng, Q.; Li, Y.; Pang, X.; Wang, B.; Wu, Z.; Lu, Y.; Xiong, K.; Zhao, L.; Zhou, P.; Fu, S. Curcumin nanoparticles incorporated in PVA/collagen composite films promote wound healing. Drug Deliv., 2020, 27(1), 1676-1685.
[http://dx.doi.org/10.1080/10717544.2020.1853280] [PMID: 33251864]
[258]
Dehzad, M.J.; Ghalandari, H.; Nouri, M.; Askarpour, M. Antioxidant and anti-inflammatory effects of curcumin/turmeric supplementation in adults: A GRADE-assessed systematic review and dose–response meta-analysis of randomized controlled trials. Cytokine, 2023, 164, 156144.
[http://dx.doi.org/10.1016/j.cyto.2023.156144] [PMID: 36804260]
[259]
Baruah, K.; Konthoujam, I.; Lyndem, S.; Aguan, K.; Singha Roy, A. Complexation of turmeric and curcumin mediated silver nanoparticles with human serum albumin: Further investigation into the protein-corona formation, anti-bacterial effects and cell cytotoxicity studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2023, 294, 122540.
[http://dx.doi.org/10.1016/j.saa.2023.122540] [PMID: 36848856]
[260]
Mansour-Ghanaei, F.; Pourmasoumi, M.; Hadi, A.; Joukar, F. Efficacy of curcumin/turmeric on liver enzymes in patients with non-alcoholic fatty liver disease: A systematic review of randomized controlled trials. Integr. Med. Res., 2019, 8(1), 57-61.
[http://dx.doi.org/10.1016/j.imr.2018.07.004] [PMID: 30949432]
[261]
Oyemitan, I.A.; Elusiyan, C.A.; Onifade, A.O.; Akanmu, M.A.; Oyedeji, A.O.; McDonald, A.G. Neuropharmacological profile and chemical analysis of fresh rhizome essential oil of Curcuma longa (turmeric) cultivated in Southwest Nigeria. Toxicol. Rep., 2017, 4, 391-398.
[http://dx.doi.org/10.1016/j.toxrep.2017.07.001] [PMID: 28959664]
[262]
Priyanka, K.; Khanam, S. Influence of operating parameters on supercritical fluid extraction of essential oil from turmeric root. J. Clean. Prod., 2018, 188, 816-824.
[http://dx.doi.org/10.1016/j.jclepro.2018.04.052]
[263]
Ajaiyeoba, E.O.; Sama, W.; Essien, E.E.; Olayemi, J.O.; Ekundayo, O.; Walker, T.M.; Setzer, W.N. Larvicidal activity of turmerone-rich essential oils of Curcuma longa. Leaf and rhizome from Nigeria on Anopheles gambiae. Pharm. Biol., 2008, 46(4), 279-282.
[http://dx.doi.org/10.1080/13880200701741138]
[264]
Shan, F.; Yiming, M.; Heying, Z.; Cheng, S.; Qiushi, W.; Xianghong, Y.; Wei, Z.; Huawei, Z.; Shan, F. Maturation and upregulation of functions of murine dendritic cells (DCs) under the influence of purified Aromatic-Turmerone (AR). Hum. Vaccin. Immunother., 2012, 8(10), 1416-1424.
[http://dx.doi.org/10.4161/hv.21526] [PMID: 23095866]
[265]
Yue, G.G.L.; Kwok, H.F.; Lee, J.K.M.; Jiang, L.; Wong, E.C.W.; Gao, S.; Wong, H.L.; Li, L.; Chan, K.M.; Leung, P.C.; Fung, K.P.; Zuo, Z.; Lau, C.B.S. Combined therapy using bevacizumab and turmeric ethanolic extract (with absorbable curcumin) exhibited beneficial efficacy in colon cancer mice. Pharmacol. Res., 2016, 111, 43-57.
[http://dx.doi.org/10.1016/j.phrs.2016.05.025] [PMID: 27241019]
[266]
Lee, H.S. Antiplatelet property of Curcuma longa L. rhizome-derived ar-turmerone. Bioresour. Technol., 2006, 97(12), 1372-1376.
[http://dx.doi.org/10.1016/j.biortech.2005.07.006] [PMID: 16112857]
[267]
Yue, G.G.L.; Jiang, L.; Chan, C.K.M.; Wong, E.C.W.; Fung, K.P.; Leung, P.C.; Lau, C.B.S. Turmerones enhanced anti-proliferative activities of curcumin in human colonic cancer cells and endothelial cells. Eur. J. Integr. Med., 2014, 6(1), 129.
[http://dx.doi.org/10.1016/j.eujim.2013.12.010]
[268]
Li, M.; Yue, G.G.L.; Tsui, S.K.W.; Fung, K.P.; Lau, C.B.S. Turmeric extract, with absorbable curcumin, has potent anti-metastatic effect in vitro and in vivo. Phytomedicine, 2018, 46, 131-141.
[http://dx.doi.org/10.1016/j.phymed.2018.03.065] [PMID: 30097113]
[269]
Park, S.Y.; Jin, M.L.; Kim, Y.H.; Kim, Y.; Lee, S.J. Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. Int. Immunopharmacol., 2012, 14(1), 13-20.
[http://dx.doi.org/10.1016/j.intimp.2012.06.003] [PMID: 22728094]
[270]
Hucklenbroich, J.; Klein, R.; Neumaier, B.; Graf, R.; Fink, G.R.; Schroeter, M.; Rueger, M.A. Aromatic-turmerone induces neural stem cell proliferation in vitro and in vivo. Stem Cell Res. Ther., 2014, 5(4), 100.
[http://dx.doi.org/10.1186/scrt500] [PMID: 25928248]
[271]
Velusami, C.C.; Bethapudi, B.; Murugan, S.; Illuri, R.; Mundkinajeddu, D. Bioactive turmerosaccharides from Curcuma longa Extract (NR-INF-02): Potential ameliorating effect on osteoarthritis pain. Pharmacogn. Mag., 2017, 13(51), 623.
[http://dx.doi.org/10.4103/pm.pm_465_16] [PMID: 29142423]
[272]
Liu, Y.; Liu, M.; Yan, H.; Liu, H.; Liu, J.; Zhao, Y.; Wu, Y.; Zhang, Y.; Han, J. Enhanced solubility of bisdemethoxycurcumin by interaction with Tween surfactants: Spectroscopic and coarse-grained molecular dynamics simulation studies. J. Mol. Liq., 2021, 323, 115073.
[http://dx.doi.org/10.1016/j.molliq.2020.115073]
[273]
Jayaprakasha, G.K.; Jaganmohan Rao, L.; Sakariah, K.K. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem., 2006, 98(4), 720-724.
[http://dx.doi.org/10.1016/j.foodchem.2005.06.037]
[274]
Jin, F.; Jin, Y.; Du, J.; Jiang, L.; Zhang, Y.; Zhao, Z.; Yang, B.; Luo, P.; He, Q. Bisdemethoxycurcumin protects against renal fibrosis via activation of fibroblast apoptosis. Eur. J. Pharmacol., 2019, 847, 26-31.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.012] [PMID: 30660576]
[275]
Xu, J.H.; Yang, H.P.; Zhou, X.D.; Wang, H.J.; Gong, L.; Tang, C.L. Autophagy accompanied with bisdemethoxycurcumin-induced apoptosis in non-small cell lung cancer cells. Biomed. Environ. Sci., 2015, 28(2), 105-115.
[http://dx.doi.org/10.3892/mmr.2015.4356] [PMID: 25716561]
[276]
Mehanny, M.; Hathout, R.M.; Geneidi, A.S.; Mansour, S. Bisdemethoxycurcumin loaded polymeric mixed micelles as potential anti-cancer remedy: Preparation, optimization and cytotoxic evaluation in a HepG-2 cell model. J. Mol. Liq., 2016, 214, 162-170.
[http://dx.doi.org/10.1016/j.molliq.2015.12.007]
[277]
Guo, F.; Xia, T.; Xiao, P.; Wang, Q.; Deng, Z.; Zhang, W.; Diao, G. A supramolecular complex of hydrazide-pillar[5]arene and bisdemethoxycurcumin with potential anti-cancer activity. Bioorg. Chem., 2021, 110, 104764.
[http://dx.doi.org/10.1016/j.bioorg.2021.104764] [PMID: 33657507]
[278]
Fu, M.; Fu, S.; Ni, S.; Wang, D.; Hong, T. Inhibitory effects of bisdemethoxycurcumin on mast cell-mediated allergic diseases. Int. Immunopharmacol., 2018, 65, 182-189.
[http://dx.doi.org/10.1016/j.intimp.2018.10.005] [PMID: 30316076]
[279]
Ponnusamy, S.; Zinjarde, S.; Bhargava, S.; Rajamohanan, P.R.; RaviKumar, A. Discovering Bisdemethoxycurcumin from Curcuma longa rhizome as a potent small molecule inhibitor of human pancreatic α-amylase, a target for type-2 diabetes. Food Chem., 2012, 135(4), 2638-2642.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.110] [PMID: 22980852]
[280]
Mahattanadul, S.; Nakamura, T.; Panichayupakaranant, P.; Phdoongsombut, N.; Tungsinmunkong, K.; Bouking, P. Comparative antiulcer effect of Bisdemethoxycurcumin and Curcumin in a gastric ulcer model system. Phytomedicine, 2009, 16(4), 342-351.
[http://dx.doi.org/10.1016/j.phymed.2008.12.005] [PMID: 19188055]
[281]
Mohammadi, F.; Moeeni, M.; Mahmudian, A.; Hassani, L. Inhibition of amyloid fibrillation of lysozyme by bisdemethoxycurcumin and diacetylbisdemethoxycurcumin. Biophys. Chem., 2018, 235, 56-65.
[http://dx.doi.org/10.1016/j.bpc.2018.02.005] [PMID: 29477768]
[282]
Li, M.; Xin, M.; Guo, C.; Lin, G.; Wu, X. New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Drug Dev. Ind. Pharm., 2017, 43(11), 1846-1857.
[http://dx.doi.org/10.1080/03639045.2017.1349787] [PMID: 28665151]
[283]
Paul, M.; Manikanta, K.; Hemshekhar, M.; Sundaram, M.S.; Naveen, S.; Ramesh, T.N.; Kemparaju, K.; Girish, K.S. Bisdemethoxycurcumin promotes apoptosis in human platelets via activation of ERK signaling pathway. Toxicol. In vitro, 2020, 63, 104743.
[http://dx.doi.org/10.1016/j.tiv.2019.104743] [PMID: 31809793]
[284]
Zhang, J.; Han, H.; Zhang, L.; Wang, T. Dietary bisdemethoxycurcumin supplementation attenuates lipopolysaccharide-induced damages on intestinal redox potential and redox status of broilers. Poult. Sci., 2021, 100(5), 101061.
[http://dx.doi.org/10.1016/j.psj.2021.101061] [PMID: 33756250]
[285]
Jin, F.; Chen, X.; Yan, H.; Xu, Z.; Yang, B.; Luo, P.; He, Q. Bisdemethoxycurcumin attenuates cisplatin-induced renal injury through anti-apoptosis, anti-oxidant and anti-inflammatory. Eur. J. Pharmacol., 2020, 874, 173026.
[http://dx.doi.org/10.1016/j.ejphar.2020.173026] [PMID: 32088177]
[286]
Gullaiya, S.; Nagar, A.; Dubey, V.; Singh, V.; Kumar, A.; Tiwari, P.; Agrawal, S.S. Modulation of disease related immune events by demethoxycurcumin against autoimmune arthritis in rats. Biomed. Aging Pathol., 2013, 3(1), 7-13.
[http://dx.doi.org/10.1016/j.biomag.2013.01.005]
[287]
Zanetti, T.A.; Biazi, B.I.; Coatti, G.C.; Baranoski, A.; Marques, L.A.; Corveloni, A.C.; Mantovani, M.S. Dimethoxycurcumin reduces proliferation and induces apoptosis in renal tumor cells more efficiently than demethoxycurcumin and curcumin. Chem. Biol. Interact., 2021, 338, 109410.
[http://dx.doi.org/10.1016/j.cbi.2021.109410] [PMID: 33582110]
[288]
Lin, H.Y.; Lin, J.N.; Ma, J.W.; Yang, N.S.; Ho, C.T.; Kuo, S.C.; Way, T.D. Demethoxycurcumin induces autophagic and apoptotic responses on breast cancer cells in photodynamic therapy. J. Funct. Foods, 2015, 12, 439-449.
[http://dx.doi.org/10.1016/j.jff.2014.12.014]
[289]
Villaflores, O.B.; Chen, Y.J.; Chen, C.P.; Yeh, J.M.; Wu, T.Y. Effects of curcumin and demethoxycurcumin on amyloid-β precursor and tau proteins through the internal ribosome entry sites: A potential therapeutic for Alzheimer’s disease. Taiwan. J. Obstet. Gynecol., 2012, 51(4), 554-564.
[http://dx.doi.org/10.1016/j.tjog.2012.09.010] [PMID: 23276558]
[290]
Kumar, R.; Lal, N.; Nemaysh, V.; Luthra, P.M. Demethoxycurcumin mediated targeting of MnSOD leading to activation of apoptotic pathway and inhibition of Akt/NF-κB survival signalling in human glioma U87 MG cells. Toxicol. Appl. Pharmacol., 2018, 345, 75-93.
[http://dx.doi.org/10.1016/j.taap.2018.02.020] [PMID: 29510157]
[291]
Hatamipour, M.; Ramezani, M.; Tabassi, S.A.S.; Johnston, T.P.; Sahebkar, A. Demethoxycurcumin: A naturally occurring curcumin analogue for treating non‐cancerous diseases. J. Cell. Physiol., 2019, 234(11), 19320-19330.
[http://dx.doi.org/10.1002/jcp.28626] [PMID: 31344992]
[292]
Yodkeeree, S.; Ampasavate, C.; Sung, B.; Aggarwal, B.B.; Limtrakul, P. Demethoxycurcumin suppresses migration and invasion of MDA-MB-231 human breast cancer cell line. Eur. J. Pharmacol., 2010, 627(1-3), 8-15.
[http://dx.doi.org/10.1016/j.ejphar.2009.09.052] [PMID: 19818349]
[293]
Zhang, L.; Wu, C.; Zhao, S.; Yuan, D.; Lian, G.; Wang, X.; Wang, L.; Yang, J. Demethoxycurcumin, a natural derivative of curcumin attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-κB signaling pathways in N9 microglia induced by lipopolysaccharide. Int. Immunopharmacol., 2010, 10(3), 331-338.
[http://dx.doi.org/10.1016/j.intimp.2009.12.004] [PMID: 20018257]
[294]
Sun, W.; Shahrajabian, M.H.; Lin, M. Research progress fermented functional foods and protein factory-microbial fermentation technology. Fermentation (Basel), 2022, 8(12), 688.
[http://dx.doi.org/10.3390/fermentation8120688]
[295]
Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful. Horticulturae, 2023, 9(2), 193.
[http://dx.doi.org/10.3390/horticulturae9020193]
[296]
Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules, 2023, 28(4), 1845.
[http://dx.doi.org/10.3390/molecules28041845] [PMID: 36838831]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy