Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Characterization and In-vitro Study of Micro-encapsulation Chitosan Alginate of Single-bulb Garlic Extract

Author(s): Sri Rahayu Lestari*, Abdul Gofur, Dra. Hartatiek, Yuslinda Annisa, Dimas Nur Ramadhani, Amalia Nur Rahma, Dahniar Nur Aisyah, Ikfi Nihayatul Mufidah and Nadiya Dini Rifqi

Volume 12, Issue 2, 2024

Published on: 15 August, 2023

Page: [155 - 164] Pages: 10

DOI: 10.2174/2211738511666230607121118

Price: $65

Abstract

Background: Single-bulb garlic extract (SBGE) contains more active compounds than regular garlic, but it is unstable and easily degraded in the digestive tract. SBGE is expected to be protected by microencapsulation chitosan-alginate (MCA).

Objective: The present study aimed to characterize and assess the antioxidant activity, hemocompatibility, and toxicity of MCA-SBGE in 3T3-L1 cells.

Methods: The research procedures consist of extraction of single bulb garlic, preparation of MCASBGE, Particle Size Analyzer (PSA), FTIR analysis, DPPH assay, hemocompatibility test, and MTT assay.

Results: The average size of MCA-SGBE was 423.7 ± 2.8 nm, the polydispersity index (PdI) was 0.446 ± 0.022, and the zeta potential was -24.5 ± 0.4 mV. MCA-SGBE was spherical with a diameter range of 0.65-0.9 μm. A shift in absorption and addition of functional groups was found in SBGE after encapsulation. MCA-SBGE, at a concentration of 24 x 103 ppm, has higher antioxidants than SBGE. The hemocompatibility test shows the hemolysis of MCA-SBGE lower than SBGE. MCA-SBGE was not toxic to 3T3-L1 cells with cell viability percentage above 100% at all concentrations.

Conclusion: MCA-SBGE characterization has microparticle criteria with homogeneous PdI values, low particle stability, and spherical morphology. The results showed that SBGE and MCA-SBGE are nonhemolytic, compatible with red blood cells, and non-toxic to 3T3-L1 cells.

Graphical Abstract

[1]
Arifah SN, Atho’illah MF, Lukiati B, Lestari SR. Herbal medicine from single clove garlic oil extract ameliorates hepatic steatosis and oxidative status in high fat diet mice. Malays J Med Sci 2020; 27(1): 46-56.
[http://dx.doi.org/10.21315/mjms2020.27.1.5] [PMID: 32158344]
[2]
Arifah SN, Lukiati B, Lestari SR. Potency of single garlic oil from Indonesian tropical plant in high fat diet-induced hyperlipidemia mice. AIP Conf Proc 2018; 2014(1): 020110.
[http://dx.doi.org/10.1063/1.5054514]
[3]
De Greef D, Barton EM, Sandberg EN, et al. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin Cancer Biol 2021; 73: 219-64.
[http://dx.doi.org/10.1016/j.semcancer.2020.11.020] [PMID: 33301861]
[4]
Ebrahimi M, Mohammad Hassan Z, Mostafaie A, Zare Mehrjardi N, Ghazanfari T. Purified protein fraction of garlic extract modulates cellular immune response against breast transplanted tumors in BALB/c mice model. Cell J 2013; 15(1): 65-75.
[PMID: 23700562]
[5]
Lestari SR, Atho’illah MF, Christina YI, Rifa’i M. Single garlic oil modulates T cells activation and proinflammatory cytokine in mice with high fat diet. J Ayurveda Integr Med 2020; 11(4): 414-20.
[http://dx.doi.org/10.1016/j.jaim.2020.06.009]
[6]
Rouf R, Uddin SJ, Sarker DK, et al. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci Technol 2020; 104(April): 219-34.
[http://dx.doi.org/10.1016/j.tifs.2020.08.006] [PMID: 32836826]
[7]
Shang A, Cao SY, Xu XY, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019; 8(7): 246.
[http://dx.doi.org/10.3390/foods8070246] [PMID: 31284512]
[8]
Borlinghaus J, Albrecht F, Gruhlke M, Nwachukwu I, Slusarenko A. Allicin: Chemistry and biological properties. Molecules 2014; 19(8): 12591-618.
[http://dx.doi.org/10.3390/molecules190812591] [PMID: 25153873]
[9]
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative delivery systems loaded with plant bioactive ingredients: Formulation approaches and applications. Plants 2021; 10(6): 1238.
[http://dx.doi.org/10.3390/plants10061238] [PMID: 34207139]
[10]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 29321058]
[11]
Alavi M, Karimi N, Safaei M. Application of various types of liposomes in drug delivery systems. Adv Pharm Bull 2017; 7(1): 3-9.
[http://dx.doi.org/10.15171/apb.2017.002] [PMID: 28507932]
[12]
Chauhan A. Dendrimers for drug delivery. Molecules 2018; 23(4): 938.
[http://dx.doi.org/10.3390/molecules23040938] [PMID: 29670005]
[13]
Lestari SR, Gofur A, Fajaroh F, Maslikah SL, Annisa Y, Malek NANN. Self-nanoemulsifying drug delivery system (SNEEDS) for improved bioavailability of active compound on single clove garlic: Optimization of PEG 400 and glycerol as co-surfactant. AIP Conference Proceedings 2021; 2353(1): 030004.
[http://dx.doi.org/10.1063/5.0052638]
[14]
Unagolla JM, Jayasuriya AC. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur J Pharm Sci 2018; 114: 199-209.
[http://dx.doi.org/10.1016/j.ejps.2017.12.012]
[15]
Guzman-Villanueva D, El-Sherbiny IM, Herrera-Ruiz D, Smyth HDC. Design and in vitro evaluation of a new nano-microparticulate system for enhanced aqueous-phase solubility of curcumin. BioMed Res Int 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/724763] [PMID: 23984402]
[16]
Pedroso-Santana S, Fleitas-Salazar N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym Int 2020; 69(5): 443-7.
[http://dx.doi.org/10.1002/pi.5970]
[17]
Azizi S, Rezazadeh-Bari M, Almasi H, Amiri S. Microencapsulation of Lactobacillus rhamnosus using sesame protein isolate: Effect of encapsulation method and transglutaminase: Microencapsulated L. rhamnosus using sesame protein. Food Biosci 2021; 41: 101012.
[http://dx.doi.org/10.1016/j.fbio.2021.101012]
[18]
Fornaguera C, Calderó G, Mitjans M, Vinardell MP, Solans C, Vauthier C. Interactions of PLGA nanoparticles with blood components: Protein adsorption, coagulation, activation of the complement system and hemolysis studies. Nanoscale 2015; 7(14): 6045-58.
[http://dx.doi.org/10.1039/C5NR00733J] [PMID: 25766431]
[19]
Sorasitthiyanukarn FN, Muangnoi C, Ratnatilaka Na Bhuket P, Rojsitthisak P, Rojsitthisak P. Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. Mater Sci Eng C 2018; 93(July): 178-90.
[http://dx.doi.org/10.1016/j.msec.2018.07.069] [PMID: 30274050]
[20]
Natrajan D, Srinivasan S, Sundar K, Ravindran A. Formulation of essential oil-loaded chitosan–alginate nanocapsules. J Food Drug Anal 2015; 23(3): 560-8.
[http://dx.doi.org/10.1016/j.jfda.2015.01.001] [PMID: 28911716]
[21]
Jacob J, Haponiuk JT, Thomas S, Gopi S. Biopolymer based nanomaterials in drug delivery systems: A review. Mater Today Chem 2018; 9: 43-55.
[http://dx.doi.org/10.1016/j.mtchem.2018.05.002]
[22]
Chandrasekar V, Coupland JN, Anantheswaran RC. Characterization of nisin containing chitosan-alginate microparticles. Food Hydrocoll 2017; 69: 301-7.
[http://dx.doi.org/10.1016/j.foodhyd.2017.02.011]
[23]
Varenne F, Makky A, Gaucher-Delmas M, Violleau F, Vauthier C. Multimodal dispersion of nanoparticles: A comprehensive evaluation of size distribution with 9 size measurement methods. Pharm Res 2016; 33(5): 1220-34.
[http://dx.doi.org/10.1007/s11095-016-1867-7] [PMID: 26864858]
[24]
Guo S, Shi Y, Liang Y, Liu L, Sun K, Li Y. Relationship and improvement strategies between drug nanocarrier characteristics and hemocompatibility: What can we learn from the literature. Asian J Pharmaceut Sci 2021; 16(5): 551-76.
[http://dx.doi.org/10.1016/j.ajps.2020.12.002] [PMID: 34849162]
[25]
Rosenblatt KM, Bunjes H. Evaluation of the drug loading capacity of different lipid nanoparticle dispersions by passive drug loading. Eur J Pharm Biopharm 2017; 117: 49-59.
[http://dx.doi.org/10.1016/j.ejpb.2017.03.010] [PMID: 28315731]
[26]
Miasih DS, Annisa Y, Lestari SR, Susanto H, Sunaryono S. Novel self-nanoemulsifying drug delivery system of single bulb garlic: Stability, toxicity, and antiinflammation in 3T3-L1 cells. Sci Tech Indonesia 2022; 7(4): 417-26.
[http://dx.doi.org/10.26554/sti.2022.7.4.417-426]
[27]
Paiva Filho JC, Morais SM, Nogueira Sobrinho AC, Cavalcante GS, Silva NA, Abreu FOMS. Design of chitosan-alginate core-shell nanoparticules loaded with anacardic acid and cardol for drug delivery. Polímeros 2019; 29(4): e2019060.
[http://dx.doi.org/10.1590/0104-1428.08118]
[28]
Panatarani C, Praseptiangga D, Widjanarko PI, et al. Synthesis, characterization, and performance of semi-refined kappa carrageenan-based film incorporating cassava starch. Membranes 2023; 13(1): 100.
[http://dx.doi.org/10.3390/membranes13010100] [PMID: 36676907]
[29]
Tailor CS, Goyal A. Antioxidant activity by DPPH radical scavenging method of ageratum conyzoides Linn. leaves. Am J Ethnomedicine 2014; 1: 244-9.
[30]
Kang Z, Zhu H, Jiang W, Zhang S. Protocatechuic acid induces angiogenesis through PI3K-Akt-eNOS-VEGF signalling pathway. Basic Clin Pharmacol Toxicol 2013; 113(4): 221-7.
[http://dx.doi.org/10.1111/bcpt.12094] [PMID: 23738793]
[31]
Peanparkdee M, Iwamoto S, Yamauchi R. Microencapsulation: A review of applications in the food and pharmaceutical industries. Rev Agricultur Sci 2016; 4(0): 56-65.
[http://dx.doi.org/10.7831/ras.4.56]
[32]
Dias MI, Ferreira ICFR, Barreiro MF. Microencapsulation of bioactives for food applications. Food Funct 2015; 6(4): 1035-52.
[http://dx.doi.org/10.1039/C4FO01175A] [PMID: 25710906]
[33]
Koo SY, Cha KH, Song DG, Chung D, Pan CH. Microencapsulation of peppermint oil in an alginate-pectin matrix using a coaxial electrospray system. Int J Food Sci Technol 2014; 49(3): 733-9.
[http://dx.doi.org/10.1111/ijfs.12358]
[34]
Bagheri L, Madadlou A, Yarmand M, Mousavi ME. Spray-dried alginate microparticles carrying caffeine-loaded and potentially bioactive nanoparticles. Food Res Int 2014; 62: 1113-9.
[http://dx.doi.org/10.1016/j.foodres.2014.05.040]
[35]
Sinala S, Manggau MA. Sartini, Hartono R. Characteristics nanoparticle of propolis ethanol extracts with variations of chitosan-sodium alginat. Indian J Forensic Med Toxicol 2020; 14(3): 2149-54.
[http://dx.doi.org/10.37506/ijfmt.v14i3.10750]
[36]
Chopra M, Kaur P, Bernela M, Thakur R. Synthesis and optimization of streptomycin loaded chitosan-alginate nanoparticles. Int J Sci Technol Res 2012; 1(10): 31-4.
[37]
Li Z, Jiang H, Xu C, Gu L. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocoll 2015; 43: 153-64.
[http://dx.doi.org/10.1016/j.foodhyd.2014.05.010]
[38]
Haina Wang XJ. Drug metabolism and pharmacokinetics of organosulfur compounds from garlic. J Drug Metab Toxicol 2013; 4(5): 1-10.
[http://dx.doi.org/10.4172/2157-7609.1000159]
[39]
Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules 2015; 20(7): 13384-421.
[http://dx.doi.org/10.3390/molecules200713384]
[40]
M GA, C SK, Henry LJK, Natesan S, Kandasamy R. Atrial natriuretic peptide-conjugated chitosan-hydrazone-mPEG copolymer nanoparticles as pH-responsive carriers for intracellular delivery of prednisone. Carbohydr Polym 2017; 157: 1677-86.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.049] [PMID: 27987883]
[41]
Ali Attia Shafie M. Formulation and evaluation of betamethasone sodium phosphate loaded nanoparticles for ophthalmic delivery. J Clin Exp Ophthalmol 2013; 4(2)
[http://dx.doi.org/10.4172/2155-9570.1000273]
[42]
Akhoond Zardini A, Mohebbi M, Farhoosh R, Bolurian S. Production and characterization of nanostructured lipid carriers and solid lipid nanoparticles containing lycopene for food fortification. J Food Sci Technol 2018; 55(1): 287-98.
[http://dx.doi.org/10.1007/s13197-017-2937-5] [PMID: 29358821]
[43]
Kumar A, Dixit CK. Methods for characterization of nanoparticles. Adv Nanomedicine Deliv Ther Nucleic Acids 2017; 2017: 44-58.
[http://dx.doi.org/10.1016/B978-0-08-100557-6.00003-1]
[44]
Siti SA, Amirnordin SH, Rahman HA, Abdullah HZ, Taib H. Effect of zeta potential of stanum oxide (SnO2) on electrophoretic deposition (EPD) on porous alumina. Adv Mat Res 2013; 795: 334-7.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.795.334]
[45]
Meléndez-Villanueva MA, Morán-Santibañez K, Martínez-Sanmiguel JJ, et al. Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses 2019; 11(12): 1111.
[http://dx.doi.org/10.3390/v11121111] [PMID: 31801280]
[46]
Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci Pharm 2019; 87(3): 20.
[http://dx.doi.org/10.3390/scipharm87030020]
[47]
Maesaroh U, Dono ND, Zuprizal Z. Aplikasi teknologi nanoenkapsulasi sebagai delivery system fitobiotik alami untuk ternak. Buletin Profesi Insinyur 2019; 2(2): 91-5.
[http://dx.doi.org/10.20527/bpi.v2i2.48]
[48]
Ma G. Microencapsulation of protein drugs for drug delivery: Strategy, preparation, and applications. J Control Release 2014; 193: 324-40.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.003] [PMID: 25218676]
[49]
Chithrani BD, Chan WCW. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 2007; 7(6): 1542-50.
[http://dx.doi.org/10.1021/nl070363y] [PMID: 17465586]
[50]
Divya BJ, Suman B, Venkataswamy M, Thyagaraju K. A study on phytochemicals, functional groups and mineral composition of Allium Sativum (Garlic) cloves. Int J Curr Pharm Res 2017; 9(3): 42.
[http://dx.doi.org/10.22159/ijcpr.2017.v9i3.18888]
[51]
Szabó L, Gerber-Lemaire S, Wandrey C. Strategies to functionalize the anionic biopolymer na-alginate without restricting its polyelectrolyte properties. Polymers 2020; 12(4): 919.
[http://dx.doi.org/10.3390/polym12040919] [PMID: 32326625]
[52]
Ahmad I, Fikri JAN, Arifianti AE, Abdullah S, Mun’im A. The combination of ATR-FTIR and chemometrics for rapid analysis of essential oil from Myrtaceae plants – A review. J Appl Pharm Sci 2022; 12(6): 120604.
[http://dx.doi.org/10.7324/JAPS.2022.120604]
[53]
Ionita P. The chemistry of dpph∙ free radical and congeners. Int J Mol Sci 2021; 22(4): 1545.
[http://dx.doi.org/10.3390/ijms22041545] [PMID: 33546504]
[54]
Liang N, Kitts D. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules 2014; 19(11): 19180-208.
[http://dx.doi.org/10.3390/molecules191119180] [PMID: 25415479]
[55]
Abbaspour-Gilandeh Y, Kaveh M, Fatemi H, Aziz M. Combined hot air, microwave, and infrared drying of hawthorn fruit: Effects of ultrasonic pretreatment on drying time, energy, qualitative, and bioactive compounds’ properties. Foods 2021; 10(5): 1006.
[http://dx.doi.org/10.3390/foods10051006] [PMID: 34064476]
[56]
Kurnia D, Ajiati D, Heliawati L, Sumiarsa D. Antioxidant properties and structure-antioxidant activity relationship of allium species leaves. Molecules 2021; 26(23): 7175.
[http://dx.doi.org/10.3390/molecules26237175] [PMID: 34885755]
[57]
Bagheri R, Izadi Amoli R, Tabari Shahndasht N, Shahosseini SR. Comparing the effect of encapsulated and unencapsulated fennel extracts on the shelf life of minced common kilka (C lupeonella cultriventris caspia) andP seudomonas aeruginosa inoculated in the mince. Food Sci Nutr 2016; 4(2): 216-22.
[http://dx.doi.org/10.1002/fsn3.275] [PMID: 27004111]
[58]
Sriyanti I, Edikresnha D, Rahma A, Munir MM, Rachmawati H, Khairurrijal K. Correlation between structures and antioxidant activities of polyvinylpyrrolidone/Garcinia mangostana L. extract composite nanofiber mats prepared using electrospinning. J Nanomater 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/9687896]
[59]
Radünz M, da Trindade MLM, Camargo TM, et al. Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chem 2019; 276: 180-6.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.173] [PMID: 30409582]
[60]
Kumar A, Vimal A, Kumar A. Why Chitosan? From properties to perspective of mucosal drug delivery. Int J Biol Macromol 2016; 91: 615-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.054] [PMID: 27196368]
[61]
Jesus S, Marques AP, Duarte A, et al. Chitosan nanoparticles: Shedding light on immunotoxicity and hemocompatibility. Front Bioeng Biotechnol 2020; 8(February): 100.
[http://dx.doi.org/10.3389/fbioe.2020.00100] [PMID: 32154232]
[62]
Balan V, Verestiuc L. Strategies to improve chitosan hemocompatibility: A review. Eur Polym J 2014; 53: 171-88.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.01.033]
[63]
Li N, Chen K, Dong H, et al. Alliin inhibits adipocyte differentiation by downregulating Akt expression: Implications for metabolic disease. Exp Ther Med 2021; 21(6): 563.
[http://dx.doi.org/10.3892/etm.2021.9995] [PMID: 33850535]
[64]
Li S, Zhang H, Chen K, et al. Application of chitosan/alginate nanoparticle in oral drug delivery systems: Prospects and challenges. Drug Deliv 2022; 29(1): 1142-9.
[http://dx.doi.org/10.1080/10717544.2022.2058646] [PMID: 35384787]
[65]
Sorasitthiyanukarn FN, Ratnatilaka Na Bhuket P, Muangnoi C, Rojsitthisak P, Rojsitthisak P. Chitosan/alginate nanoparticles as a promising carrier of novel curcumin diethyl diglutarate. Int J Biol Macromol 2019; 131: 1125-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.120] [PMID: 30902713]
[66]
Szekalska M, Puciłowska A, Szymańska E, Ciosek P, Winnicka K. Alginate: Current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci 2016; 2016: 1-17.
[http://dx.doi.org/10.1155/2016/7697031]
[67]
Homem NC, Pessoa de Amorim MTS, Felgueiras HP. Modification of Ca2+-Crosslinked Sodium Alginate/Gelatin films with propolis for an improved antimicrobial action. First International Conference on “Green” Polymer Materials 2020; 69(1): 4.
[http://dx.doi.org/10.3390/CGPM2020-07180]
[68]
Ghasemi M, Turnbull T, Sebastian S, Kempson I. The mtt assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci 2021; 22(23): 12827.
[http://dx.doi.org/10.3390/ijms222312827] [PMID: 34884632]
[69]
Mahmood T, Batool R, Aziz E, et al. In vitro antioxidant and anti-cancer activities and phytochemical analysis of Commelina benghalensis L. root extracts. Asian Pac J Trop Biomed 2020; 10(9): 417-25.
[http://dx.doi.org/10.4103/2221-1691.290133]
[70]
Heimfarth L, Loureiro SO, Pierozan P, et al. Methylglyoxal-induced cytotoxicity in neonatal rat brain: A role for oxidative stress and MAP kinases. Metab Brain Dis 2013; 28(3): 429-38.
[http://dx.doi.org/10.1007/s11011-013-9379-1] [PMID: 23378107]
[71]
Pereira-Fernandes A, Vanparys C, Vergauwen L, Knapen D, Jorens PG, Blust R. Toxicogenomics in the 3T3-L1 cell line, a new approach for screening of obesogenic compounds. Toxicol Sci 2014; 140(2): 352-63.
[http://dx.doi.org/10.1093/toxsci/kfu092] [PMID: 24848799]
[72]
Mahnashi MH, Alqahtani YS, Alyami BA, et al. Cytotoxicity, antiangiogenic, anti-tumor and molecular docking studies on phytochemicals isolated from Polygonum hydropiper L. BMC Complement Med Ther 2021; 21(1): 239.
[http://dx.doi.org/10.1186/s12906-021-03411-1] [PMID: 34560864]
[73]
George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 2019; 561(March): 244-64.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.011] [PMID: 30851391]
[74]
Buntum T, Kakumyan P, Surassmo S, Thanomsilp C, Suwantong O. Potential of longan seed extract–loaded alginate–chitosan beads as drug delivery system. Front Mater 2022; 9(February): 818595.
[http://dx.doi.org/10.3389/fmats.2022.818595]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy