Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Trehalose and its Diverse Biological Potential

Author(s): Eva Sharma, P.S. Shruti, Shagun Singh, Tashvinder Singh, Prabhsimran Kaur, Bhavana Jodha, Yashi Srivastava, Anjana Munshi* and Sandeep Singh*

Volume 24, Issue 6, 2023

Published on: 11 July, 2023

Page: [503 - 517] Pages: 15

DOI: 10.2174/1389203724666230606154719

Price: $65

Abstract

Trehalose, a disaccharide molecule of natural origin, is known for its diverse biological applications, like in drug development, research application, natural scaffold, stem cell preservation, food, and various other industries. This review has discussed one such diverse molecule ‘trehalose aka mycose’, and its diverse biological applications with respect to therapeutics. Due to its inertness and higher stability at variable temperatures, it has been developed as a preservative to store stem cells, and later, it has been found to have anticancer properties. Trehalose has recently been associated with modulating cancer cell metabolism, diverse molecular processes, neuroprotective effect, and so on. This article describes the development of trehalose as a cryoprotectant and protein stabilizer as well as a dietary component and therapeutic agent against various diseases. The article discusses its role in diseases via modulation of autophagy, various anticancer pathways, metabolism, inflammation, aging and oxidative stress, cancer metastasis and apoptosis, thus highlighting its diverse biological potential.

Graphical Abstract

[1]
Doores, K.J.; Gamblin, D.P.; Davis, B.G. Exploring and exploiting the therapeutic potential of glycoconjugates. Chemistry, 2006, 12(3), 656-665.
[http://dx.doi.org/10.1002/chem.200500557] [PMID: 16187378]
[2]
Elbein, A.D.; Pan, Y.T.; Pastuszak, I.; Carroll, D. New insights on trehalose: A multifunctional molecule. Glycobiology, 2003, 13(4), 17R-27.
[http://dx.doi.org/10.1093/glycob/cwg047] [PMID: 12626396]
[3]
Jain, N.K.; Roy, I. Trehalose and protein stability. Curr Protoc Protein Sci, 2010, 59(1), 4.9.1-4.9.12.
[http://dx.doi.org/10.1002/0471140864.ps0409s59]
[4]
Luyckx, J.; Baudouin, C. Trehalose: An intriguing disaccharide with potential for medical application in ophthalmology. Clin. Ophthalmol., 2011, 5, 577-581.
[PMID: 21654884]
[5]
Benaroudj, N.; Lee, D.H.; Goldberg, A.L. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem., 2001, 276(26), 24261-24267.
[http://dx.doi.org/10.1074/jbc.M101487200] [PMID: 11301331]
[6]
Sahebkar, A.; Khalifeh, M.; Barreto, G.E. Therapeutic potential of trehalose in neurodegenerative diseases: the knowns and unknowns. Neural Regen. Res., 2021, 16(10), 2026-2027.
[http://dx.doi.org/10.4103/1673-5374.308085] [PMID: 33642389]
[7]
Tanji, K.; Miki, Y.; Maruyama, A.; Mimura, J.; Matsumiya, T.; Mori, F.; Imaizumi, T.; Itoh, K.; Wakabayashi, K. Trehalose intake induces chaperone molecules along with autophagy in a mouse model of Lewy body disease. Biochem. Biophys. Res. Commun., 2015, 465(4), 746-752.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.076] [PMID: 26299928]
[8]
Jain, N.K.; Roy, I. Effect of trehalose on protein structure. Protein Sci., 2009, 18(1), 24-36.
[PMID: 19177348]
[9]
Hosseinpour-Moghaddam, K.; Caraglia, M.; Sahebkar, A. Autophagy induction by trehalose: Molecular mechanisms and therapeutic impacts. J. Cell. Physiol., 2018, 233(9), 6524-6543.
[http://dx.doi.org/10.1002/jcp.26583] [PMID: 29663416]
[10]
Mardones, P.; Rubinsztein, D.C.; Hetz, C. Mystery solved: Trehalose kickstarts autophagy by blocking glucose transport. Sci. Signal., 2016, 9(416), fs2-fs2.
[http://dx.doi.org/10.1126/scisignal.aaf1937] [PMID: 26905424]
[11]
DeBosch, B.J.; Heitmeier, M.R.; Mayer, A.L.; Higgins, C.B.; Crowley, J.R.; Kraft, T.E.; Chi, M.; Newberry, E.P.; Chen, Z.; Finck, B.N.; Davidson, N.O.; Yarasheski, K.E.; Hruz, P.W.; Moley, K.H. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci. Signal., 2016, 9(416), ra21-ra21.
[http://dx.doi.org/10.1126/scisignal.aac5472] [PMID: 26905426]
[12]
Sarkar, S.; Davies, J.E.; Huang, Z.; Tunnacliffe, A.; Rubinsztein, D.C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem., 2007, 282(8), 5641-5652.
[http://dx.doi.org/10.1074/jbc.M609532200] [PMID: 17182613]
[13]
Chen, X.; Li, M.; Li, L.; Xu, S.; Huang, D.; Ju, M.; Huang, J.; Chen, K.; Gu, H. Trehalose, sucrose and raffinose are novel activators of autophagy in human keratinocytes through an mTOR-independent pathway. Sci. Rep., 2016, 6(1), 28423.
[http://dx.doi.org/10.1038/srep28423] [PMID: 27328819]
[14]
Arai, C.; Arai, N.; Mizote, A.; Kohno, K.; Iwaki, K.; Hanaya, T.; Arai, S.; Ushio, S.; Fukuda, S. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance. Nutr. Res., 2010, 30(12), 840-848.
[http://dx.doi.org/10.1016/j.nutres.2010.10.009] [PMID: 21147367]
[15]
Mizunoe, Y.; Kobayashi, M.; Sudo, Y.; Watanabe, S.; Yasukawa, H.; Natori, D.; Hoshino, A.; Negishi, A.; Okita, N.; Komatsu, M.; Higami, Y. Trehalose protects against oxidative stress by regulating the Keap1–Nrf2 and autophagy pathways. Redox Biol., 2018, 15, 115-124.
[http://dx.doi.org/10.1016/j.redox.2017.09.007] [PMID: 29241092]
[16]
Palmieri, M.; Pal, R.; Nelvagal, H.R.; Lotfi, P.; Stinnett, G.R.; Seymour, M.L.; Chaudhury, A.; Bajaj, L.; Bondar, V.V.; Bremner, L.; Saleem, U.; Tse, D.Y.; Sanagasetti, D.; Wu, S.M.; Neilson, J.R.; Pereira, F.A.; Pautler, R.G.; Rodney, G.G.; Cooper, J.D.; Sardiello, M. Correction: Corrigendum: mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat. Commun., 2017, 8(1), 15793.
[http://dx.doi.org/10.1038/ncomms15793] [PMID: 28607479]
[17]
Echigo, R.; Shimohata, N.; Karatsu, K.; Yano, F.; Kayasuga-Kariya, Y.; Fujisawa, A.; Ohto, T.; Kita, Y.; Nakamura, M.; Suzuki, S.; Mochizuki, M.; Shimizu, T.; Chung, U.; Sasaki, N. Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage. J. Transl. Med., 2012, 10(1), 80.
[http://dx.doi.org/10.1186/1479-5876-10-80] [PMID: 22546323]
[18]
Liu, K.; Jing, M.J.; Liu, C.; Yan, D.Y.; Ma, Z.; Wang, C.; Deng, Y.; Liu, W.; Xu, B. Effect of trehalose on manganese‐induced mitochondrial dysfunction and neuronal cell damage in mice. Basic Clin. Pharmacol. Toxicol., 2019, 125(6), 536-547.
[http://dx.doi.org/10.1111/bcpt.13316] [PMID: 31483928]
[19]
Yamaguchi, R.; Andreyev, A.; Murphy, A.N.; Perkins, G.A.; Ellisman, M.H.; Newmeyer, D.D. Mitochondria frozen with trehalose retain a number of biological functions and preserve outer membrane integrity. Cell Death Differ., 2007, 14(3), 616-624.
[http://dx.doi.org/10.1038/sj.cdd.4402035] [PMID: 16977331]
[20]
Kato, M. Site II-specific inhibition of mitochondrial oxidative phosphorylation by trehalose-6,6′-dimycolate (cord factor) of Mycobacterium tuberculosis. Arch. Biochem. Biophys., 1970, 140(2), 379-390.
[http://dx.doi.org/10.1016/0003-9861(70)90079-2] [PMID: 4319595]
[21]
Fan, R.F.; Li, Z.F.; Zhang, D.; Wang, Z.Y. Involvement of Nrf2 and mitochondrial apoptotic signaling in trehalose protection against cadmium-induced kidney injury. Metallomics, 2020, 12(12), 2098-2107.
[http://dx.doi.org/10.1039/d0mt00213e] [PMID: 33226392]
[22]
Zhu, L.; Yuan, Y.; Yuan, L.; Li, L.; Liu, F.; Liu, J.; Chen, Y.; Lu, Y.; Cheng, J. Activation of TFEB-mediated autophagy by trehalose attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Theranostics, 2020, 10(13), 5829-5844.
[http://dx.doi.org/10.7150/thno.44051] [PMID: 32483422]
[23]
Tang, Q.; Zheng, G.; Feng, Z.; Chen, Y.; Lou, Y.; Wang, C.; Zhang, X.; Zhang, Y.; Xu, H.; Shang, P.; Liu, H. Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death Dis., 2017, 8(10), e3081-e3081.
[http://dx.doi.org/10.1038/cddis.2017.453] [PMID: 28981117]
[24]
Liu, X.H.; Aksan, A.; Menze, M.A.; Hand, S.C.; Toner, M. Trehalose loading through the mitochondrial permeability transition pore enhances desiccation tolerance in rat liver mitochondria. Biochim. Biophys. Acta Biomembr., 2005, 1717(1), 21-26.
[http://dx.doi.org/10.1016/j.bbamem.2005.09.012] [PMID: 16242115]
[25]
Parzych, K.R.; Klionsky, D.J. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid. Redox Signal., 2014, 20(3), 460-473.
[http://dx.doi.org/10.1089/ars.2013.5371] [PMID: 23725295]
[26]
Wang, Y.; Liu, Z.; Shu, S.; Cai, J.; Tang, C.; Dong, Z. AMPK/mTOR signaling in autophagy regulation during cisplatin-induced acute kidney injury. Front. Physiol., 2020, 11, 619730.
[http://dx.doi.org/10.3389/fphys.2020.619730] [PMID: 33391038]
[27]
Sarkar, S.; Ravikumar, B.; Floto, R.A.; Rubinsztein, D.C. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ., 2009, 16(1), 46-56.
[http://dx.doi.org/10.1038/cdd.2008.110] [PMID: 18636076]
[28]
Rusmini, P.; Cortese, K.; Crippa, V.; Cristofani, R.; Cicardi, M.E.; Ferrari, V.; Vezzoli, G.; Tedesco, B.; Meroni, M.; Messi, E.; Piccolella, M.; Galbiati, M.; Garrè, M.; Morelli, E.; Vaccari, T.; Poletti, A. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy, 2019, 15(4), 631-651.
[http://dx.doi.org/10.1080/15548627.2018.1535292] [PMID: 30335591]
[29]
Castillo, K.; Nassif, M.; Valenzuela, V.; Rojas, F.; Matus, S.; Mercado, G.; Court, F.A.; van Zundert, B.; Hetz, C. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy, 2013, 9(9), 1308-1320.
[http://dx.doi.org/10.4161/auto.25188] [PMID: 23851366]
[30]
Sciarretta, S.; Yee, D.; Nagarajan, N.; Bianchi, F.; Saito, T.; Valenti, V.; Tong, M.; Del Re, D.P.; Vecchione, C.; Schirone, L.; Forte, M.; Rubattu, S.; Shirakabe, A.; Boppana, V.S.; Volpe, M.; Frati, G.; Zhai, P.; Sadoshima, J. Trehalose-induced activation of autophagy improves cardiac remodeling after myocardial infarction. J. Am. Coll. Cardiol., 2018, 71(18), 1999-2010.
[http://dx.doi.org/10.1016/j.jacc.2018.02.066] [PMID: 29724354]
[31]
Manai, F.; Azzalin, A.; Morandi, M.; Riccardi, V.; Zanoletti, L.; Dei Giudici, M.; Gabriele, F.; Martinelli, C.; Bozzola, M.; Comincini, S. Trehalose modulates autophagy process to counteract gliadin cytotoxicity in an in vitro celiac disease model. Cells, 2019, 8(4), 348.
[http://dx.doi.org/10.3390/cells8040348] [PMID: 31013754]
[32]
Cristofani, R.; Montagnani Marelli, M.; Cicardi, M.E.; Fontana, F.; Marzagalli, M.; Limonta, P.; Poletti, A.; Moretti, R.M. Dual role of autophagy on docetaxel-sensitivity in prostate cancer cells. Cell Death Dis., 2018, 9(9), 889.
[http://dx.doi.org/10.1038/s41419-018-0866-5] [PMID: 30166521]
[33]
Ouyang, D.Y.; Xu, L.H.; He, X.H.; Zhang, Y.T.; Zeng, L.H.; Cai, J.Y.; Ren, S. Autophagy is differentially induced in prostate cancer LNCaP, DU145 and PC-3 cells via distinct splicing profiles of ATG5. Autophagy, 2013, 9(1), 20-32.
[http://dx.doi.org/10.4161/auto.22397] [PMID: 23075929]
[34]
Chang, M.A.; Morgado, M.; Warren, C.R.; Hinton, C.V.; Farach-Carson, M.C.; Delk, N.A. p62/SQSTM1 is required for cell survival of apoptosis-resistant bone metastatic prostate cancer cell lines. Prostate, 2014, 74(2), 149-163.
[http://dx.doi.org/10.1002/pros.22737] [PMID: 24122957]
[35]
Singh, K.; Sharma, A.; Mir, M.C.; Drazba, J.A.; Heston, W.D.; Magi-Galluzzi, C.; Hansel, D.; Rubin, B.P.; Klein, E.A.; Almasan, A. Autophagic flux determines cell death and survival in response to Apo2L/TRAIL (dulanermin). Mol. Cancer, 2014, 13(1), 70.
[http://dx.doi.org/10.1186/1476-4598-13-70] [PMID: 24655592]
[36]
Klionsky, D.J. Guidelines for the use and interpretation of assays for monitoring autophagy, 3rd ed.; Autophagy, 2016, 12, pp. (1)1-222.
[37]
Yamamoto, A.; Tagawa, Y.; Yoshimori, T.; Moriyama, Y.; Masaki, R.; Tashiro, Y. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct., 1998, 23(1), 33-42.
[http://dx.doi.org/10.1247/csf.23.33] [PMID: 9639028]
[38]
Yoon, Y.S.; Cho, E.D.; Jung Ahn, W.; Won Lee, K.; Lee, S.J.; Lee, H.J. Is trehalose an autophagic inducer? Unraveling the roles of non-reducing disaccharides on autophagic flux and alpha-synuclein aggregation. Cell Death Dis., 2017, 8(10), e3091-e3091.
[http://dx.doi.org/10.1038/cddis.2017.501] [PMID: 28981090]
[39]
El-Magd, M.A.; Khamis, A.; Nasr Eldeen, S.K.; Ibrahim, W.M.; Salama, A.F. Trehalose enhances the antitumor potential of methotrexate against mice bearing Ehrlich ascites carcinoma. Biomed. Pharmacother., 2017, 92, 870-878.
[http://dx.doi.org/10.1016/j.biopha.2017.06.005] [PMID: 28599251]
[40]
Shen, Y.; Yang, J.; Zhao, J.; Xiao, C.; Xu, C.; Xiang, Y. The switch from ER stress-induced apoptosis to autophagy via ROS-mediated JNK/p62 signals: A survival mechanism in methotrexate-resistant choriocarcinoma cells. Exp. Cell Res., 2015, 334(2), 207-218.
[http://dx.doi.org/10.1016/j.yexcr.2015.04.010] [PMID: 25912909]
[41]
Calgarotto, A.K.; da Silva Pereira, G.J.; Bechara, A.; Paredes-Gamero, E.J.; Barbosa, C.M.V.; Hirata, H.; de Souza Queiroz, M.L.; Smaili, S.S.; Bincoletto, C. Autophagy inhibited Ehrlich ascitic tumor cells apoptosis induced by the nitrostyrene derivative compounds: Relationship with cytosolic calcium mobilization. Eur. J. Pharmacol., 2012, 678(1-3), 6-14.
[http://dx.doi.org/10.1016/j.ejphar.2011.12.031] [PMID: 22227332]
[42]
Zheng, G.; Xu, X.; Zheng, J.; Liu, A. Protective effect of seleno-β-lactoglobulin (Se-β-lg) against oxidative stress in D-galactose-induced aging mice. J. Funct. Foods, 2016, 27, 310-318.
[http://dx.doi.org/10.1016/j.jff.2016.09.015]
[43]
Tripathi, R.; Mohan, H.; Kamat, J.P. Modulation of oxidative damage by natural products. Food Chem., 2007, 100(1), 81-90.
[http://dx.doi.org/10.1016/j.foodchem.2005.09.012] [PMID: 26054267]
[44]
Aunan, J.R.; Cho, W.C.; Søreide, K. The biology of aging and cancer: A brief overview of shared and divergent molecular hallmarks. Aging Dis., 2017, 8(5), 628-642.
[http://dx.doi.org/10.14336/AD.2017.0103] [PMID: 28966806]
[45]
Zinger, A.; Cho, W.C.; Ben-Yehuda, A. Cancer and aging-the inflammatory connection. Aging Dis., 2017, 8(5), 611-627.
[http://dx.doi.org/10.14336/AD.2016.1230] [PMID: 28966805]
[46]
Cho, W.C. Molecular connections of aging and cancer. Aging Dis., 2017, 8(5), 685-687.
[http://dx.doi.org/10.14336/AD.2017.0822] [PMID: 28966810]
[47]
Sun, L.; Zhao, Q.; Xiao, Y.; Liu, X.; Li, Y.; Zhang, J.; Pan, J.; Zhang, Z. Trehalose targets Nrf2 signal to alleviate d-galactose induced aging and improve behavioral ability. Biochem. Biophys. Res. Commun., 2020, 521(1), 113-119.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.088] [PMID: 31630800]
[48]
Wang, X.; Yuan, Z.; Zhu, L.; Yi, X.; Ou, Z.; Li, R.; Tan, Z.; Pozniak, B.; Obminska-Mrukowicz, B.; Wu, J.; Yi, J. Protective effects of betulinic acid on intestinal mucosal injury induced by cyclophosphamide in mice. Pharmacol. Rep., 2019, 71(5), 929-939.
[http://dx.doi.org/10.1016/j.pharep.2019.05.004] [PMID: 31450028]
[49]
Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci., 2014, 69(S1), S4-S9.
[http://dx.doi.org/10.1093/gerona/glu057] [PMID: 24833586]
[50]
Schmidlin, C.J.; Dodson, M.B.; Madhavan, L.; Zhang, D.D. Redox regulation by NRF2 in aging and disease. Free Radic. Biol. Med., 2019, 134, 702-707.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.01.016] [PMID: 30654017]
[51]
Balogun, E.; Hoque, M.; Gong, P.; Killeen, E.; Green, C.J.; Foresti, R.; Alam, J.; Motterlini, R. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J., 2003, 371(3), 887-895.
[http://dx.doi.org/10.1042/bj20021619] [PMID: 12570874]
[52]
Mantovani, A. Molecular pathways linking inflammation and cancer. Curr. Mol. Med., 2010, 10(4), 369-373.
[http://dx.doi.org/10.2174/156652410791316968] [PMID: 20455855]
[53]
Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity, 2019, 51(1), 27-41.
[http://dx.doi.org/10.1016/j.immuni.2019.06.025] [PMID: 31315034]
[54]
Liu, Z.; Chen, D.; Chen, X.; Bian, F.; Qin, W.; Gao, N.; Xiao, Y.; Li, J.; Pflugfelder, S.C.; Li, D.Q. Trehalose induces autophagy against inflammation by activating TFEB signaling pathway in human corneal epithelial cells exposed to hyperosmotic stress. Invest. Ophthalmol. Vis. Sci., 2020, 61(10), 26-26.
[http://dx.doi.org/10.1167/iovs.61.10.26] [PMID: 32785678]
[55]
Panigrahi, T.; Shivakumar, S.; Shetty, R.; D’souza, S.; Nelson, E.J.R.; Sethu, S.; Jeyabalan, N.; Ghosh, A. Trehalose augments autophagy to mitigate stress induced inflammation in human corneal cells. Ocul. Surf., 2019, 17(4), 699-713.
[http://dx.doi.org/10.1016/j.jtos.2019.08.004] [PMID: 31412290]
[56]
Minutoli, L.; Altavilla, D.; Bitto, A.; Polito, F.; Bellocco, E.; Laganà, G.; Fiumara, T.; Magazù, S.; Migliardo, F.; Venuti, F.S.; Squadrito, F. Trehalose: A biophysics approach to modulate the inflammatory response during endotoxic shock. Eur. J. Pharmacol., 2008, 589(1-3), 272-280.
[http://dx.doi.org/10.1016/j.ejphar.2008.04.005] [PMID: 18555988]
[57]
Wang, X.Y.; Wang, Z.Y.; Zhu, Y.S.; Zhu, S.M.; Fan, R.F.; Wang, L. Alleviation of cadmium-induced oxidative stress by trehalose via inhibiting the Nrf2-Keap1 signaling pathway in primary rat proximal tubular cells. J. Biochem. Mol. Toxicol., 2018, 32(1), e22011.
[http://dx.doi.org/10.1002/jbt.22011] [PMID: 29140578]
[58]
Deshmukh, P.; Unni, S.; Krishnappa, G.; Padmanabhan, B. The Keap1–Nrf2 pathway: Promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys. Rev., 2017, 9(1), 41-56.
[http://dx.doi.org/10.1007/s12551-016-0244-4] [PMID: 28510041]
[59]
Jiang, Y-L.; Long-Qian, T.; Satoshi, M.; Yasuhiro, I.; Ikuo, S.; Zhao-Peng, L. Synthesis and evaluation of trehalose-based compounds as anti-invasive agents. Bioorg. Med. Chem. Lett., 2011, 21(4), 1089-1091.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.133] [PMID: 21269828]
[60]
van Zijl, F.; Krupitza, G.; Mikulits, W. Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutat. Res. Rev. Mutat. Res., 2011, 728(1-2), 23-34.
[http://dx.doi.org/10.1016/j.mrrev.2011.05.002] [PMID: 21605699]
[61]
Mahecha, A.M.; Wang, H. The influence of vascular endothelial growth factor-A and matrix metalloproteinase-2 and -9 in angiogenesis, metastasis, and prognosis of endometrial cancer. OncoTargets Ther., 2017, 10, 4617-4624.
[http://dx.doi.org/10.2147/OTT.S132558] [PMID: 29033580]
[62]
Nagase, H.; Visse, R.; Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res., 2006, 69(3), 562-573.
[http://dx.doi.org/10.1016/j.cardiores.2005.12.002] [PMID: 16405877]
[63]
Igarashi, Y.; Mogi, T.; Yanase, S.; Miyanaga, S.; Fujita, T.; Sakurai, H.; Saiki, I.; Ohsaki, A. Brartemicin, an inhibitor of tumor cell invasion from the actinomycete Nonomuraea sp. J. Nat. Prod., 2009, 72(5), 980-982.
[http://dx.doi.org/10.1021/np9000575] [PMID: 19358565]
[64]
Tang, L.; Yue, B.; Cheng, Y.; Yao, H.; Ma, X.; Tian, Q.; Ge, L.; Liu, Z.; Han, X. Inhibition of invasion and metastasis by DMBT, a novel trehalose derivative, through Akt/GSK-3β/β-catenin pathway in B16BL6 cells. Chem. Biol. Interact., 2014, 222, 7-17.
[http://dx.doi.org/10.1016/j.cbi.2014.08.004] [PMID: 25148938]
[65]
Ferrara, N.; Kerbel, R.S. Angiogenesis as a therapeutic target. Nature, 2005, 438(7070), 967-974.
[http://dx.doi.org/10.1038/nature04483] [PMID: 16355214]
[66]
MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-catenin signaling: Components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26.
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[67]
Son, Y.O.; Wang, L.; Poyil, P.; Budhraja, A.; Hitron, J.A.; Zhang, Z.; Lee, J.C.; Shi, X. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling. Toxicol. Appl. Pharmacol., 2012, 264(2), 153-160.
[http://dx.doi.org/10.1016/j.taap.2012.07.028] [PMID: 22884995]
[68]
Wahdan-Alaswad, R.S.; Song, K.; Krebs, T.L.; Shola, D.T.N.; Gomez, J.A.; Matsuyama, S.; Danielpour, D. Retraction: Insulin-like growth factor I suppresses bone morphogenetic protein signaling in prostate cancer cells by activating mTOR signaling. Cancer Res., 2020, 80(9), 1902-1902.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-0679] [PMID: 32366529]
[69]
Kuwabara, K.; Ichihara, H.; Matsumoto, Y. Inhibitory effects and anti-invasive activities of trehalose liposomes on the proliferation of lung carcinoma cells. J. Carcinog. Mutagen., 2017, 8(1), 2.
[http://dx.doi.org/10.4172/2157-2518.1000283]
[70]
Arjonen, A.; Kaukonen, R.; Ivaska, J. Filopodia and adhesion in cancer cell motility. Cell Adhes. Migr., 2011, 5(5), 421-430.
[http://dx.doi.org/10.4161/cam.5.5.17723] [PMID: 21975551]
[71]
Bouchet, B.P.; de Fromentel, C.C.; Puisieux, A.; Galmarini, C.M. p53 as a target for anti-cancer drug development. Crit. Rev. Oncol. Hematol., 2006, 58(3), 190-207.
[http://dx.doi.org/10.1016/j.critrevonc.2005.10.005] [PMID: 16690321]
[72]
Stracker, T.H.; Usui, T.; Petrini, J.H.J. Taking the time to make important decisions: The checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair, 2009, 8(9), 1047-1054.
[http://dx.doi.org/10.1016/j.dnarep.2009.04.012] [PMID: 19473886]
[73]
Fridman, J.S.; Lowe, S.W. Control of apoptosis by p53. Oncogene, 2003, 22(56), 9030-9040.
[http://dx.doi.org/10.1038/sj.onc.1207116] [PMID: 14663481]
[74]
Kudo, T.; Takeuchi, K.; Ebina, Y.; Nakazawa, M. Inhibitory effects of trehalose on malignant melanoma cell growth: implications for a novel topical anticancer agent on the ocular surface. ISRN Ophthalmol., 2012, 2012, 1-9.
[http://dx.doi.org/10.5402/2012/968493] [PMID: 24558596]
[75]
Ozeki, Y. In vivo induction of apoptosis in the thymus by administration of mycobacterial cord factor (trehalose 6,6'-dimycolate). Infect. Immun., 1997, 65(5), 1793.
[http://dx.doi.org/10.1128/iai.65.5.1793-1799.1997] [PMID: 9125563]
[76]
Ichihara, H.; Kuwabara, K.; Matsumoto, Y. Trehalose liposomes suppress the growth of tumors on human lung carcinoma-bearing mice by induction of apoptosis in vivo. Anticancer Res., 2017, 37(11), 6133-6139.
[PMID: 29061794]
[77]
Matsumoto, Y.; Kuwabara, K.; Ichihara, H.; Kuwano, M. Therapeutic effects of trehalose liposomes against lymphoblastic leukemia leading to apoptosis in vitro and in vivo. Bioorg. Med. Chem. Lett., 2016, 26(2), 301-305.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.025] [PMID: 26711146]
[78]
Chen, C.H.; Yao, T.; Zhang, Q.; He, Y-M.; Xu, L-H.; Zheng, M.; Zhou, G-R.; Zhang, Y.; Yang, H-J.; Zhou, P. Influence of trehalose on human islet amyloid polypeptide fibrillation and aggregation. RSC Advances, 2016, 6(18), 15240-15246.
[http://dx.doi.org/10.1039/C5RA27689F]
[79]
Tang, K.K.; Liu, X.Y.; Wang, Z.Y.; Qu, K.C.; Fan, R.F. Trehalose alleviates cadmium-induced brain damage by ameliorating oxidative stress, autophagy inhibition, and apoptosis. Metallomics, 2019, 11(12), 2043-2051.
[http://dx.doi.org/10.1039/C9MT00227H] [PMID: 31650140]
[80]
Darabi, S.; Noori-Zadeh, A.; Abbaszadeh, H.A.; Rajaei, F. Trehalose activates autophagy and prevents hydrogen peroxide-induced apoptosis in the bone marrow stromal cells. Iran. J. Pharm. Res., 2018, 17(3), 1141-1149.
[PMID: 30127837]
[81]
S N Chaitanya, N.; Devi, A.; Sahu, S.; Alugoju, P. Molecular mechanisms of action of Trehalose in cancer: A comprehensive review. Life Sci., 2021, 269, 118968.
[http://dx.doi.org/10.1016/j.lfs.2020.118968] [PMID: 33417959]
[82]
Mohseni, M.; Jafarpour, S.M.; Safaei, M.; Salimian, M.; Aliasgharzadeh, A.; Fahood, B. The radioprotective effects of curcumin and trehalose against genetic damage caused by I-131. Indian J. Nucl. Med., 2018, 33(2), 99-104.
[http://dx.doi.org/10.4103/ijnm.IJNM_158_17] [PMID: 29643668]
[83]
Shiga, M.; Miyazaki, J.; Tanuma, K.; Nagumo, Y.; Yoshino, T.; Kandori, S.; Negoro, H.; Kojima, T.; Tanaka, R.; Okiyama, N.; Fujisawa, Y.; Watanabe, M.; Yamasaki, S.; Kiyohara, H.; Watanabe, M.; Sato, T.; Tahara, H.; Nishiyama, H.; Yano, I. The liposome of trehalose dimycolate extracted from M. bovis BCG induces antitumor immunity via the activation of dendritic cells and CD8+ T cells. Cancer Immunol. Immunother., 2021, 70(9), 2529-2543.
[http://dx.doi.org/10.1007/s00262-021-02870-2] [PMID: 33570675]
[84]
Hirano, R.; Kagamiya, T.; Matsumoto, Y.; Furuta, T.; Sakurai, M. Molecular mechanism underlying the selective attack of trehalose lipids on cancer cells as revealed by coarse-grained molecular dynamics simulations. Biochem. Biophys. Rep., 2021, 25, 100913.
[http://dx.doi.org/10.1016/j.bbrep.2021.100913] [PMID: 33521337]
[85]
Khalifeh, M.; Read, M.I.; Barreto, G.E.; Sahebkar, A. Trehalose against Alzheimer’s disease: Insights into a potential therapy. BioEssays, 2020, 42(8), 1900195.
[http://dx.doi.org/10.1002/bies.201900195] [PMID: 32519387]
[86]
Khalifeh, M.; Barreto, G.E.; Sahebkar, A. Trehalose as a promising therapeutic candidate for the treatment of Parkinson’s disease. Br. J. Pharmacol., 2019, 176(9), 1173-1189.
[http://dx.doi.org/10.1111/bph.14623] [PMID: 30767205]
[87]
Mustapha, M.; Ibrahim, N.M.; Hui Yap, K.; Azmin, S.; Makpol, S.; Damanhuri, H.A.; Hamzah, J.C. Profiling neuroprotective potential of trehalose in animal models of neurodegenerative diseases: A systematic review. Neural Regen. Res., 2023, 18(6), 1179-1185.
[http://dx.doi.org/10.4103/1673-5374.360164] [PMID: 36453391]
[88]
Tanaka, M.; Machida, Y.; Niu, S.; Ikeda, T.; Jana, N.R.; Doi, H.; Kurosawa, M.; Nekooki, M.; Nukina, N. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat. Med., 2004, 10(2), 148-154.
[http://dx.doi.org/10.1038/nm985] [PMID: 14730359]
[89]
Yaribeygi, H.; Yaribeygi, A.; Sathyapalan, T.; Sahebkar, A. Molecular mechanisms of trehalose in modulating glucose homeostasis in diabetes. Diabetes Metab. Syndr., 2019, 13(3), 2214-2218.
[http://dx.doi.org/10.1016/j.dsx.2019.05.023] [PMID: 31235159]
[90]
Beattie, G.M.; Crowe, J.H.; Lopez, A.D.; Cirulli, V.; Ricordi, C.; Hayek, A. Trehalose: A cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes, 1997, 46(3), 519-523.
[http://dx.doi.org/10.2337/diab.46.3.519] [PMID: 9032112]
[91]
Pan, H.; Ding, Y.; Yan, N.; Nie, Y.; Li, M.; Tong, L. Trehalose prevents sciatic nerve damage to and apoptosis of Schwann cells of streptozotocin-induced diabetic C57BL/6J mice. Biomed. Pharmacother., 2018, 105, 907-914.
[http://dx.doi.org/10.1016/j.biopha.2018.06.069] [PMID: 30021384]
[92]
Haidar, M.; Loix, M.; Vanherle, S.; Dierckx, T.; Vangansewinkel, T.; Gervois, P.; Wolfs, E.; Lambrichts, I.; Bogie, J.F.J.; Hendriks, J.J.A. Targeting lipophagy in macrophages improves repair in multiple sclerosis. Autophagy, 2022, 18(11), 2697-2710.
[http://dx.doi.org/10.1080/15548627.2022.2047343] [PMID: 35282773]
[93]
Abd-Elsalam, W.H.; Saber, M.M.; Abouelatta, S.M. Trehalosomes: Colon targeting trehalose-based green nanocarriers for the maintenance of remission in inflammatory bowel diseases. Eur. J. Pharm. Biopharm., 2021, 166, 182-193.
[http://dx.doi.org/10.1016/j.ejpb.2021.06.009] [PMID: 34171496]
[94]
Cejka, Č.; Kubinova, S.; Cejkova, J. Trehalose in ophthalmology. Histol. Histopathol., 2019, 34(6), 611-618.
[95]
Pinto-Bonilla, J.C.; Del Olmo-Jimeno, A.; Llovet-Osuna, F.; Hernández-Galilea, E. A randomized crossover study comparing trehalose/hyaluronate eyedrops and standard treatment: patient satisfaction in the treatment of dry eye syndrome. Ther. Clin. Risk Manag., 2015, 11, 595-603.
[PMID: 25926736]
[96]
Vila, M.; Bové, J.; Dehay, B.; Rodríguez-Muela, N.; Boya, P. Lysosomal membrane permeabilization in Parkinson disease. Autophagy, 2011, 7(1), 98-100.
[http://dx.doi.org/10.4161/auto.7.1.13933] [PMID: 21045565]
[97]
Soria Lopez, J.A.; González, H.M.; Léger, G.C. Alzheimer’s disease. Handb. Clin. Neurol., 2019, 167, 231-255.
[http://dx.doi.org/10.1016/B978-0-12-804766-8.00013-3] [PMID: 31753135]
[98]
Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet, 2021, 397(10284), 1577-1590.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[99]
Liu, R.; Barkhordarian, H.; Emadi, S.; Park, C.; Sierks, M. Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiol. Dis., 2005, 20(1), 74-81.
[http://dx.doi.org/10.1016/j.nbd.2005.02.003] [PMID: 16137568]
[100]
Khan, S.H.; Kumar, R. Trehalose induced conformational changes in the amyloid-β peptide. Pathol. Res. Pract., 2017, 213(6), 643-648.
[http://dx.doi.org/10.1016/j.prp.2017.04.018] [PMID: 28552536]
[101]
Krüger, U.; Wang, Y.; Kumar, S.; Mandelkow, E.M. Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol. Aging, 2012, 33(10), 2291-2305.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.11.009] [PMID: 22169203]
[102]
Bonet-Costa, V.; Pomatto, L.C.D.; Davies, K.J.A. The proteasome and oxidative stress in Alzheimer’s disease. Antioxid. Redox Signal., 2016, 25(16), 886-901.
[http://dx.doi.org/10.1089/ars.2016.6802] [PMID: 27392670]
[103]
Pancani, T.; Day, M.; Tkatch, T.; Wokosin, D.L.; González-Rodríguez, P.; Kondapalli, J.; Xie, Z.; Chen, Y.; Beaumont, V.; Surmeier, D.J. Cholinergic deficits selectively boost cortical intratelencephalic control of striatum in male Huntington’s disease model mice. Nat. Commun., 2023, 14(1), 1398.
[http://dx.doi.org/10.1038/s41467-023-36556-3] [PMID: 36914640]
[104]
Fernandez-Estevez, M.A.; Casarejos, M.J.; López Sendon, J.; Garcia Caldentey, J.; Ruiz, C.; Gomez, A.; Perucho, J.; de Yebenes, J.G.; Mena, M.A. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington’s disease patients caused by proteosome inhibition. PLoS One, 2014, 9(2), e90202.
[http://dx.doi.org/10.1371/journal.pone.0090202] [PMID: 24587280]
[105]
Yamamoto, S.; Lee, S.; Ariyasu, T.; Endo, S.; Miyata, S.; Yasuda, A.; Harashima, A.; Ohta, T.; Kumagai-Takei, N.; Ito, T.; Shimizu, Y.; Srinivas, B.; Sada, N.; Nishimura, Y.; Otsuki, T. Ingredients such as trehalose and hesperidin taken as supplements or foods reverse alterations in human T cells, reducing asbestos exposure-induced antitumor immunity. Int. J. Oncol., 2021, 58(4), 2.
[http://dx.doi.org/10.3892/ijo.2021.5182] [PMID: 33655329]
[106]
Nikolova, B.; Antov, G.; Semkova, S.; Tsoneva, I.; Christova, N.; Nacheva, L.; Kardaleva, P.; Angelova, S.; Stoineva, I.; Ivanova, J.; Vasileva, I.; Kabaivanova, L. Bacterial Natural Disaccharide (Trehalose Tetraester): Molecular modeling and in vitro study of anticancer activity on breast cancer cells. Polymers, 2020, 12(2), 499.
[http://dx.doi.org/10.3390/polym12020499] [PMID: 32102469]
[107]
Christova, N.; Lang, S.; Wray, V.; Kaloyanov, K.; Konstantinov, S.; Stoineva, I. Production, structural elucidation, and in vitro antitumor activity of trehalose lipid biosurfactant from Nocardia farcinica strain. J. Microbiol. Biotechnol., 2015, 25(4), 439-447.
[http://dx.doi.org/10.4014/jmb.1406.06025] [PMID: 25370728]
[108]
Jiang, Y.L.; Li, S.X.; Liu, Y.J.; Ge, L.P.; Han, X.Z.; Liu, Z.P. Synthesis and evaluation of trehalose-based compounds as novel inhibitors of cancer cell migration and invasion. Chem. Biol. Drug Des., 2015, 86(5), 1017-1029.
[http://dx.doi.org/10.1111/cbdd.12569] [PMID: 25855371]
[109]
Arai, C.; Miyake, M.; Matsumoto, Y.; Mizote, A.; Yoshizane, C.; Hanaya, Y.; Koide, K.; Yamada, M.; Hanaya, T.; Arai, S.; Fukuda, S. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in mice with established obesity. J. Nutr. Sci. Vitaminol., 2013, 59(5), 393-401.
[http://dx.doi.org/10.3177/jnsv.59.393] [PMID: 24418873]
[110]
Higgins, C.B.; Zhang, Y.; Mayer, A.L.; Fujiwara, H.; Stothard, A.I.; Graham, M.J.; Swarts, B.M.; DeBosch, B.J. Hepatocyte ALOXE3 is induced during adaptive fasting and enhances insulin sensitivity by activating hepatic PPARγ. JCI Insight, 2018, 3(16), e120794.
[http://dx.doi.org/10.1172/jci.insight.120794] [PMID: 30135298]
[111]
Yasugi, T.; Yamada, T.; Nishimura, T. Adaptation to dietary conditions by trehalose metabolism in Drosophila. Sci. Rep., 2017, 7(1), 1619.
[http://dx.doi.org/10.1038/s41598-017-01754-9] [PMID: 28487555]
[112]
Maki, K.C. Acute effects of low insulinemic sweeteners on postprandial insulin and glucose concentrations in obese men. Int. J. Food Sci. Nutr., 2009, 60(S3), 48-55.
[http://dx.doi.org/10.1080/09637480802646923]
[113]
Matsuo, T.; Tsuchida, Y.; Morimoto, N. Trehalose eye drops in the treatment of dry eye syndrome. Ophthalmology, 2002, 109(11), 2024-2029.
[http://dx.doi.org/10.1016/S0161-6420(02)01219-8] [PMID: 12414409]
[114]
Hernandez, E.; Taisne, C.; Lussignol, M.; Esclatine, A.; Labetoulle, M. Commercially available eye drops containing trehalose protect against dry conditions via autophagy induction. J. Ocul. Pharmacol. Ther., 2021, 37(7), 386-393.
[http://dx.doi.org/10.1089/jop.2020.0119] [PMID: 34227851]
[115]
Čejková, J.; Ardan, T.; Čejka, Č.; Luyckx, J. Favorable effects of trehalose on the development of UVB-mediated antioxidant/pro-oxidant imbalance in the corneal epithelium, proinflammatory cytokine and matrix metalloproteinase induction, and heat shock protein 70 expression. Graefes Arch. Clin. Exp. Ophthalmol., 2011, 249(8), 1185-1194.
[http://dx.doi.org/10.1007/s00417-011-1676-y] [PMID: 21494875]
[116]
Cejkova, J.; Cejka, Č.; Luyckx, J. Trehalose treatment accelerates the healing of UVB-irradiated corneas. Comparative immunohistochemical studies on corneal cryostat sections and corneal impression cytology. Histol. Histopathol., 2012, 27(8), 1029-1040.
[117]
Martinetti, D.; Colarossi, C.; Buccheri, S.; Denti, G.; Memeo, L.; Vicari, L. Effect of trehalose on cryopreservation of pure peripheral blood stem cells. Biomed. Rep., 2017, 6(3), 314-318.
[http://dx.doi.org/10.3892/br.2017.859] [PMID: 28451392]
[118]
Scheinkönig, C.; Kappicht, S.; Kolb, H-J.; Schleuning, M. Adoption of long-term cultures to evaluate the cryoprotective potential of trehalose for freezing hematopoietic stem cells. Bone Marrow Transplant., 2004, 34(6), 531-536.
[http://dx.doi.org/10.1038/sj.bmt.1704631] [PMID: 15286692]
[119]
Zhang, X.B.; Li, K.; Yau, K.H.; Tsang, K.S.; Fok, T.F.; Li, C.K.; Lee, S.M.; Yuen, P.M.P. Trehalose ameliorates the cryopreservation of cord blood in a preclinical system and increases the recovery of CFUs, long-term culture-initiating cells, and nonobese diabetic-SCID repopulating cells. Transfusion, 2003, 43(2), 265-272.
[http://dx.doi.org/10.1046/j.1537-2995.2003.00301.x] [PMID: 12559024]
[120]
Motta, J.P.R.; Paraguassú-Braga, F.H.; Bouzas, L.F.; Porto, L.C. Evaluation of intracellular and extracellular trehalose as a cryoprotectant of stem cells obtained from umbilical cord blood. Cryobiology, 2014, 68(3), 343-348.
[http://dx.doi.org/10.1016/j.cryobiol.2014.04.007] [PMID: 24769312]
[121]
Erdag, G.; Eroglu, A.; Morgan, J.R.; Toner, M. Cryopreservation of fetal skin is improved by extracellular trehalose. Cryobiology, 2002, 44(3), 218-228.
[http://dx.doi.org/10.1016/S0011-2240(02)00023-8] [PMID: 12237087]
[122]
Eroglu, A.; Toner, M.; Toth, T.L. Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertil. Steril., 2002, 77(1), 152-158.
[http://dx.doi.org/10.1016/S0015-0282(01)02959-4] [PMID: 11779606]
[123]
Chen, Y.; Foote, R.H.; Brockett, C.C. Effect of sucrose, trehalose, hypotaurine, taurine, and blood serum on survival of frozen bull sperm. Cryobiology, 1993, 30(4), 423-431.
[http://dx.doi.org/10.1006/cryo.1993.1042] [PMID: 8403993]
[124]
Pellerin-Mendes, C.; Million, L.; Marchand-Arvier, M.; Labrude, P.; Vigneron, C. in vitro study of the protective effect of trehalose and dextran during freezing of human red blood cells in liquid nitrogen. Cryobiology, 1997, 35(2), 173-186.
[http://dx.doi.org/10.1006/cryo.1997.2038] [PMID: 9299109]
[125]
Wolkers, W.F.; Walker, N.J.; Tablin, F.; Crowe, J.H. Human platelets loaded with trehalose survive freeze-drying. Cryobiology, 2001, 42(2), 79-87.
[http://dx.doi.org/10.1006/cryo.2001.2306] [PMID: 11448110]
[126]
Sano, F.; Asakawa, N.; Inoue, Y.; Sakurai, M. A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology, 1999, 39(1), 80-87.
[http://dx.doi.org/10.1006/cryo.1999.2188] [PMID: 10458903]
[127]
Behm, C.A. The role of trehalose in the physiology of nematodes. Int. J. Parasitol., 1997, 27(2), 215-229.
[http://dx.doi.org/10.1016/S0020-7519(96)00151-8] [PMID: 9088992]
[128]
Welch, W.J.; Brown, C.R. Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones, 1996, 1(2), 109-115.
[http://dx.doi.org/10.1379/1466-1268(1996)001<0109:IOMACC>2.3.CO;2] [PMID: 9222596]
[129]
Del Bello, B.; Gamberucci, A.; Marcolongo, P.; Maellaro, E. The autophagy inducer trehalose stimulates macropinocytosis in NF1-deficient glioblastoma cells. Cancer Cell Int., 2022, 22(1), 232.
[http://dx.doi.org/10.1186/s12935-022-02652-5] [PMID: 35864494]
[130]
Kuwabara, K.; Ichihara, H.; Matsumoto, Y. Inhibitory effects of trehalose liposomes against breast cancer cells leading to apoptosis in vitro. J. Nanomedine Biotherapeutic Discov., 2018, 8(1), 1000157.
[http://dx.doi.org/10.4172/2155-983X.1000157]
[131]
Matsumoto, Y.; Cao, E.; Ueoka, R. Novel liposomes composed of dimyristoylphosphatidylcholine and trehalose surfactants inhibit the growth of tumor cells along with apoptosis. Biol. Pharm. Bull., 2013, 36(8), 1258-1262.
[http://dx.doi.org/10.1248/bpb.b13-00266] [PMID: 23697966]
[132]
Richards, A.B.; Krakowka, S.; Dexter, L.B.; Schmid, H.; Wolterbeek, A.P.M.; Waalkens-Berendsen, D.H.; Shigoyuki, A.; Kurimoto, M. Trehalose: A review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem. Toxicol., 2002, 40(7), 871-898.
[http://dx.doi.org/10.1016/S0278-6915(02)00011-X] [PMID: 12065209]
[133]
Friend, J.; Kumar, A.H. A network pharmacology approach to assess the comparative pharmacodynamics of pharmaceutical excipient trehalose in human, mouse and rat. bioRxiv, 2023., 2023.01.
[http://dx.doi.org/10.1101/2023.01.23.525154]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy