Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Advances in Pyrazoles Rings’ Syntheses by Heterogeneous Catalysts, Ionic Liquids, and Multicomponent Reactions - A Review

Author(s): Nassima Medjahed, Zahira Kibou*, Amina Berrichi and Noureddine Choukchou-Braham

Volume 27, Issue 6, 2023

Published on: 12 July, 2023

Page: [471 - 509] Pages: 39

DOI: 10.2174/1385272827666230602121855

Price: $65

Abstract

Nitrogen heterocycles represent one of the most important units in modern organic chemistry besides their wide existence broadly in natural products, pharmaceuticals, and functional materials. Among these heterocycles, pyrazole, the molecule of the present work, received much attention in organic synthesis because it delivers significant therapeutic and biological values as it was found to be the core unit of many drugs, agrochemicals, and related candidates. Due to this fact, the development of practical methodologies for the preparation of pyrazoles has attracted the long-standing interest of synthetic chemists. Synthetic heterocyclic chemistry using green methods has captivated many researchers in the recent past due to its easy operation and environmentally friendliness. In this review, we summarized systematic approaches for the synthesis of pyrazole derivatives via heterogeneous catalysis, ionic liquid catalysis, and multicomponent reactions.

Graphical Abstract

[1]
Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 2013, 113(5), 2958-3043.
[http://dx.doi.org/10.1021/cr300176g] [PMID: 23347156]
[2]
Ju, Y.; Varma, R.S. Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: Microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. J. Org. Chem., 2006, 71(1), 135-141.
[http://dx.doi.org/10.1021/jo051878h] [PMID: 16388628]
[3]
Zárate-Zárate, D.; Aguilar, R.; Hernández-Benitez, R.I.; Labarrios, E.M.; Delgado, F.; Tamariz, J. Synthesis of α-ketols by functionalization of captodative alkenes and divergent preparation of heterocycles and natural products. Tetrahedron, 2015, 71(38), 6961-6978.
[http://dx.doi.org/10.1016/j.tet.2015.07.010]
[4]
Gordon, E.M.; Barrett, R.W.; Dower, W.J.; Fodor, S.P.A.; Gallop, M.A. Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthe-sis, library screening strategies, and future directions. J. Med. Chem., 1994, 37(10), 1385-1401.
[http://dx.doi.org/10.1021/jm00036a001] [PMID: 8182695]
[5]
Karad, S.C.; Purohit, V.B.; Thakor, P.; Thakkar, V.R.; Raval, D.K. Novel morpholinoquinoline nucleus clubbed with pyrazoline scaffolds: Synthesis, antibacterial, an-titubercular and antimalarial activities. Eur. J. Med. Chem., 2016, 112, 270-279.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.016] [PMID: 26900659]
[6]
Li, P.H.; Zeng, P.; Chen, S.B.; Yao, P.F.; Mai, Y.W.; Tan, J.H.; Ou, T.M.; Huang, S.L.; Li, D.; Gu, L.Q.; Huang, Z.S. Synthesis and mechanism studies of 1, 3-benzoazolyl substituted pyrrolo [2, 3-b] pyrazine derivatives as nonintercalative topoisomerase II catalytic inhibitors. J. Med. Chem., 2016, 59(1), 238-252.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01284] [PMID: 26649766]
[7]
Anderson, M.O.; Zhang, J.; Liu, Y.; Yao, C.; Phuan, P.W.; Verkman, A.S. Nanomolar potency and metabolically stable inhibitors of kidney urea transporter UT-B. J. Med. Chem., 2012, 55(12), 5942-5950.
[http://dx.doi.org/10.1021/jm300491y] [PMID: 22694147]
[8]
Omar, A.M.M.E.; Aboulwafa, O.M.; Issa, D.A.E.; El-Shoukrofy, M.S.M.; Amr, M.E.; El-Ashmawy, I.M. Design, facile synthesis and anthelmintic activity of new O-substituted 6-methoxybenzothiazole-2-carbamates. Part II. MedChemComm, 2017, 8(7), 1440-1451.
[http://dx.doi.org/10.1039/C7MD00140A] [PMID: 30108855]
[9]
Engers, J.L.; Bollinger, K.A.; Weiner, R.L.; Rodriguez, A.L.; Long, M.F.; Breiner, M.M.; Chang, S.; Bollinger, S.R.; Bubser, M.; Jones, C.K.; Morrison, R.D.; Bridges, T.M.; Blobaum, A.L.; Niswender, C.M.; Conn, P.J.; Emmitte, K.A.; Lindsley, C.W. Design and synthesis of N-aryl phenoxyethoxy pyridinones as highly selective and CNS penetrant mGlu3 NAMs. ACS Med. Chem. Lett., 2017, 8(9), 925-930.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00249] [PMID: 28947938]
[10]
Kuroiwa, K.; Ishii, H.; Matsuno, K.; Asai, A.; Suzuki, Y. Synthesis and structure–activity relationship study of 1-phenyl-1-(quinazolin-4-yl) ethanols as anticancer agents. ACS Med. Chem. Lett., 2015, 6(3), 287-291.
[http://dx.doi.org/10.1021/ml5004684] [PMID: 25815147]
[11]
Roa Linares, V.C.; Gamito, A.M. Ángeles Castro, Ma. New 1, 4-anthracenedione derivatives with fused heterocyclic rings: Synthesis and biological evaluation. RSC Adv., 2015, 5.
[12]
Godoi, B.; Schumacher, R.F.; Zeni, G. Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chem. Rev., 2011, 111(4), 2937-2980.
[http://dx.doi.org/10.1021/cr100214d] [PMID: 21425870]
[13]
Eicher, T.; Hauptmann, S.; Speicher, A. The chemistry of heterocycles: Structures, reactions, synthesis, and applications; John Wiley & Sons, 2013.
[14]
Xing, X.; Zhu, X.; Li, H.; Jiang, Y.; Ni, J. Electrochemical oxidation of nitrogen-heterocyclic compounds at boron-doped diamond electrode. Chemosphere, 2012, 86(4), 368-375.
[http://dx.doi.org/10.1016/j.chemosphere.2011.10.020] [PMID: 22071370]
[15]
Walsh, C.T. Nature loves nitrogen heterocycles. Tetrahedron Lett., 2015, 56(23), 3075-3081.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.046]
[16]
Dar, A.; Shamsuzzaman, S. A concise review on the synthesis of pyrazole heterocycles. J. Nucl. Med. Radiat. Ther., 2015, 5, 250.
[17]
Abdou, M. Chemical Aspects of Fusion Technology – 1982. Nucl. Fusion, 1983, 23(7), 955-973.
[http://dx.doi.org/10.1088/0029-5515/23/7/010]
[18]
Dai, H.X.; Stepan, A.F.; Plummer, M.S.; Zhang, Y.H.; Yu, J.Q. Divergent C-H functionalizations directed by sulfonamide pharmacophores: Late-stage diversification as a tool for drug discovery. J. Am. Chem. Soc., 2011, 133(18), 7222-7228.
[http://dx.doi.org/10.1021/ja201708f] [PMID: 21488638]
[19]
Hwang, S.H.; Wagner, K.M.; Morisseau, C. Synthesis and structure− activity relationship studies of urea-containing pyrazoles as dual inhibitors of cyclooxygenase-2 and soluble epoxide hydrolase. J. Med. Chem., 2011, 54(8), 3037-3050.
[20]
Lamberth, C. Pyrazole chemistry in crop protection. Heterocycles, 2007, 71(7), 1467-1502.
[http://dx.doi.org/10.3987/REV-07-613]
[21]
Singh, P.; Paul, K.; Holzer, W. Synthesis of pyrazole-based hybrid molecules: Search for potent multidrug resistance modulators. Bioorganic & Medicinal Chemistry, 2006, 14(14), 5061-5071.
[http://dx.doi.org/10.1016/j.bmc.2006.02.046]
[22]
Bhanuchandra, M.; Kuram, M.R.; Sahoo, A.K. Silver(I)-catalyzed reaction between pyrazole and propargyl acetates: Stereoselective synthesis of the scorpionate ligands (E)-allyl-gem-dipyrazoles (ADPs). J. Org. Chem., 2013, 78(23), 11824-11834.
[http://dx.doi.org/10.1021/jo401867e] [PMID: 24188006]
[23]
Burling, S.; Field, L.D.; Messerle, B.A.; Rumble, S.L. Late transition metal catalyzed intramolecular hydroamination: The effect of ligand and substrate structure. Organometallics, 2007, 26(17), 4335-4343.
[http://dx.doi.org/10.1021/om700428q]
[24]
Jiang, B.; Ning, Y.; Fan, W.; Tu, S.J.; Li, G. Oxidative dehydrogenative couplings of pyrazol-5-amines selectively forming azopyrroles. J. Org. Chem., 2014, 79(9), 4018-4024.
[http://dx.doi.org/10.1021/jo5004967] [PMID: 24731223]
[25]
Maeda, H.; Haketa, Y.; Nakanishi, T. Aryl-substituted C3-bridged oligopyrroles as anion receptors for formation of supramolecular organogels. J. Am. Chem. Soc., 2007, 129(44), 13661-13674.
[http://dx.doi.org/10.1021/ja074435z] [PMID: 17927182]
[26]
Olguín, J.; Brooker, S. Spin crossover active iron(II) complexes of selected pyrazole-pyridine/pyrazine ligands. Coord. Chem. Rev., 2011, 255(1-2), 203-240.
[http://dx.doi.org/10.1016/j.ccr.2010.08.002]
[27]
Pan, X.; Luo, Y.; Wu, J. Route to pyrazolo[5,1-a]isoquinolines via a copper-catalyzed tandem reaction of 2-alkynylbromobenzene with pyrazole. J. Org. Chem., 2013, 78(11), 5756-5760.
[http://dx.doi.org/10.1021/jo400523v] [PMID: 23688087]
[28]
Zhu, L.; Cheng, L.; Zhang, Y.; Xie, R.; You, J. Highly efficient copper-catalyzed N-arylation of nitrogen-containing heterocycles with aryl and heteroaryl halides. J. Org. Chem., 2007, 72(8), 2737-2743.
[http://dx.doi.org/10.1021/jo062059f] [PMID: 17348708]
[29]
Wang, L.; Xiaoqiang, Y.; Xiujuan, F.; Bao, M. Synthesis of 3,5-disubstituted pyrazoles via Cope-type hydroamination of 1,3-dialkynes. J. Org. Chem., 2013, 78(4), 1693-1698.
[30]
Yu, X.; Bao, M.; Huang, N.; Feng, X.; Yamamoto, Y. Synthesis of 1, 3, 5-trisubstituted pyrazoles by the Cope-type hydroamination of 1, 3-dialkynes with alkylhydra-zines. Synthesis, 2014, 46(18), 2422-2429.
[http://dx.doi.org/10.1055/s-0034-1378660]
[31]
Zhang, J.; Shao, Y.; Wang, H.; Luo, Q.; Chen, J.; Xu, D.; Wan, X. Dual roles of sulfonyl hydrazides: A three-component reaction to construct fully substituted pyrazoles using TBAI/TBHP. Org. Lett., 2014, 16(12), 3312-3315.
[http://dx.doi.org/10.1021/ol501312s] [PMID: 24911114]
[32]
Andrés, M.; Bravo, M.; Buil, M.A.; Calbet, M.; Castro, J.; Domènech, T.; Eichhorn, P.; Ferrer, M.; Gómez, E.; Lehner, M.D.; Moreno, I.; Roberts, R.S.; Sevilla, S. 2-(1H-Pyrazol-4-yl)acetic acids as CRTh2 antagonists. Bioorg. Med. Chem. Lett., 2013, 23(11), 3349-3353.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.093] [PMID: 23601708]
[33]
Kaur, K.; Kumar, V.; Gupta, G.K. Trifluoromethylpyrazoles as anti-inflammatory and antibacterial agents: A review. J. Fluor. Chem., 2015, 178, 306-326.
[http://dx.doi.org/10.1016/j.jfluchem.2015.08.015]
[34]
Fu, Q.; Cai, P.P.; Cheng, L.; Zhong, L.K.; Tan, C.X.; Shen, Z.H.; Han, L.; Xu, T.M.; Liu, X.H. Synthesis and herbicidal activity of novel pyrazole aromatic ketone analogs as HPPD inhibitor. Pest Manag. Sci., 2020, 76(3), 868-879.
[http://dx.doi.org/10.1002/ps.5591] [PMID: 31429196]
[35]
Gafurov, Z.N.; Bekmukhamedov, G.E.; Kagilev, A.A.; Kantyukov, A.O.; Sakhapov, I.F.; Mikhailov, I.K.; Khayarov, K.R.; Zaripov, R.B.; Islamov, D.R.; Usachev, K.S.; Luconi, L.; Rossin, A.; Giambastiani, G.; Yakhvarov, D.G. Unsymmetrical pyrazole-based PCN pincer NiII halides: Reactivity and catalytic activity in ethylene oli-gomerization. J. Organomet. Chem., 2020, 912, 121163.
[http://dx.doi.org/10.1016/j.jorganchem.2020.121163]
[36]
Knorr, L. Einwirkung von acetessigester auf phenylhydrazin. Ber. Dtsch. Chem. Ges., 1883, 16(2), 2597-2599.
[http://dx.doi.org/10.1002/cber.188301602194]
[37]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[38]
Varma, R.S. Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem., 2014, 16(4), 2027-2041.
[http://dx.doi.org/10.1039/c3gc42640h]
[39]
Gawande, M.B.; Bonifácio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S. Benign by design: Catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev., 2013, 42(12), 5522-5551.
[http://dx.doi.org/10.1039/c3cs60025d] [PMID: 23529409]
[40]
Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[41]
Wang, Z.X.; Qin, H.L. Solventless syntheses of pyrazole derivatives. Green Chem., 2004, 6(2), 90-92.
[http://dx.doi.org/10.1039/b312833d]
[42]
Aggarwal, V.K.; de Vicente, J.; Bonnert, R.V. A novel one-pot method for the preparation of pyrazoles by 1,3-dipolar cycloadditions of diazo compounds generated in situ. J. Org. Chem., 2003, 68(13), 5381-5383.
[http://dx.doi.org/10.1021/jo0268409] [PMID: 12816503]
[43]
Armstrong, A.; Jones, L.H.; Knight, J.D.; Kelsey, R.D. Oxaziridine-mediated amination of primary amines: Scope and application to a one-pot pyrazole synthesis. Org. Lett., 2005, 7(4), 713-716.
[http://dx.doi.org/10.1021/ol0474507] [PMID: 15704932]
[44]
Bhaskaruni, S.V.H.S.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts. Arab. J. Chem., 2020, 13(1), 1142-1178.
[http://dx.doi.org/10.1016/j.arabjc.2017.09.016]
[45]
Grotjahn, D.B.; Van, S.; Combs, D.; Lev, D.A.; Schneider, C.; Rideout, M.; Meyer, C.; Hernandez, G.; Mejorado, L. New flexible synthesis of pyrazoles with different, functionalized substituents at C3 and C5. J. Org. Chem., 2002, 67(26), 9200-9209.
[http://dx.doi.org/10.1021/jo026083e] [PMID: 12492321]
[46]
Becker, C. From Langmuir to Ertl: The “Nobel” History of the Surface Science Approach to Heterogeneous Catalysis; Elsevier, 2018.
[47]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[48]
Poliakoff, M.; Fitzpatrick, J.M.; Farren, T.R.; Anastas, P.T. Green chemistry: Science and politics of change. Science, 2002, 297(5582), 807-810.
[http://dx.doi.org/10.1126/science.297.5582.807] [PMID: 12161647]
[49]
Rogers, R.D. Ionic liquids as green solvents; ACS Publications, 2003.
[http://dx.doi.org/10.1021/bk-2003-0856]
[50]
Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5), 3508-3576.
[http://dx.doi.org/10.1021/cr1003248] [PMID: 21469639]
[51]
Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun., 2001, (23), 2399-2407.
[http://dx.doi.org/10.1039/b107270f] [PMID: 12239988]
[52]
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[53]
Maleki, A. One-pot multicomponent synthesis of diazepine derivatives using terminal alkynes in the presence of silica-supported superparamagnetic iron oxide nano-particles. Tetrahedron Lett., 2013, 54(16), 2055-2059.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.123]
[54]
Maleki, A.; Ghassemi, M.; Firouzi-Haji, R. Green multicomponent synthesis of four different classes of six-membered N -containing and O -containing heterocycles catalyzed by an efficient chitosan-based magnetic bionanocomposite. Pure Appl. Chem., 2018, 90(2), 387-394.
[http://dx.doi.org/10.1515/pac-2017-0702]
[55]
Maleki, A. One-pot three-component synthesis of pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolines using Fe3O4 @SiO2 –OSO3 H as an efficient heterogeneous nanocatalyst. RSC Adv., 2014, 4(109), 64169-64173.
[http://dx.doi.org/10.1039/C4RA10856F]
[56]
Chiappe, C.; Pieraccini, D. Ionic liquids: Solvent properties and organic reactivity. J. Phys. Org. Chem., 2005, 18(4), 275-297.
[http://dx.doi.org/10.1002/poc.863]
[57]
Jain, N.; Kumar, A.; Chauhan, S.M.S. Metalloporphyrin and heteropoly acid catalyzed oxidation of CNOH bonds in an ionic liquid: Biomimetic models of nitric oxide synthase. Tetrahedron Lett., 2005, 46(15), 2599-2602.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.088]
[58]
Chowdhury, S.; Mohan, R.S.; Scott, J.L. Reactivity of ionic liquids. Tetrahedron, 2007, 63(11), 2363-2389.
[http://dx.doi.org/10.1016/j.tet.2006.11.001]
[59]
Maleki, A.; Hajizadeh, Z.; Abbasi, H. Abbasi, Surface modification of graphene oxide by citric acid and its application as a heterogeneous nanocatalyst in organic condensation reaction. Carbon letters, 2018, 27, 42-49.
[60]
Zhang, S.; Chen, Y.; Li, F.; Lu, X.; Dai, W.; Mori, R. Fixation and conversion of CO2 using ionic liquids. Catal. Today, 2006, 115(1-4), 61-69.
[http://dx.doi.org/10.1016/j.cattod.2006.02.021]
[61]
Akhmetova, V.R.; Akhmadiev, N.S.; Ibragimov, A.G. Catalytic multimolecular reactions of 1,3-dicarbonyl CH acids with CH2O and S- and N-nucleophiles. Russ. Chem. Bull., 2016, 65(7), 1653-1666.
[http://dx.doi.org/10.1007/s11172-017-1495-3]
[62]
Chebanov, V.A.; Desenko, S.M. Multicomponent heterocyclization reactions with controlled selectivity (Review). Chem. Heterocycl. Compd., 2012, 48(4), 566-583.
[http://dx.doi.org/10.1007/s10593-012-1030-2]
[63]
Spandl, R.J.; Bender, A.; Spring, D.R. Diversity-oriented synthesis; a spectrum of approaches and results. Org. Biomol. Chem., 2008, 6(7), 1149-1158.
[http://dx.doi.org/10.1039/b719372f] [PMID: 18362950]
[64]
Weber, L. The application of multi-component reactions in drug discovery. Curr. Med. Chem., 2002, 9(23), 2085-2093.
[http://dx.doi.org/10.2174/0929867023368719] [PMID: 12470248]
[65]
Eckert, H. Synergy effects in the chemical synthesis and extensions of multicomponent reactions (mcrs)—The low energy way to ultra-short syntheses of tailor-made molecules. Molecules, 2017, 22(3), 349.
[http://dx.doi.org/10.3390/molecules22030349] [PMID: 28245622]
[66]
D’Souza, D.M.; Müller, T.J.J. Multi-component syntheses of heterocycles by transition-metal catalysis. Chem. Soc. Rev., 2007, 36(7), 1095-1108.
[http://dx.doi.org/10.1039/B608235C] [PMID: 17576477]
[67]
Hagen, J. Industrial catalysis: A practical approach; John Wiley & Sons, 2015.
[http://dx.doi.org/10.1002/9783527684625]
[68]
Scriven, E.F.; Ramsden, C.A. Heterocyclic chemistry in the 21st century: A tribute to Alan Katritzky; Academic Press: Cambridge, MA, USA, 2017.
[69]
Polshettiwar, V.; Varma, R.S. Greener and rapid access to bio-active heterocycles: One-pot solvent-free synthesis of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. Tetrahedron Lett., 2008, 49(5), 879-883.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.165]
[70]
Siddiqui, Z.N.; Farooq, F. Silica supported sodium hydrogen sulfate (NaHSO4–SiO2): A novel, green catalyst for synthesis of pyrazole and pyranyl pyridine derivatives under solvent-free condition via heterocyclic β-enaminones. J. Mol. Catal. Chem., 2012, 363-364, 451-459.
[http://dx.doi.org/10.1016/j.molcata.2012.07.024]
[71]
Yang, G. H4SiW12O40-catalyzed cyclization of epoxides/aldehydes and sulfonyl hydrazides: An efficient synthesis of 3,4-disubstituted 1H-pyrazoles. Chinese Chem. Letters, 2022, 33(3), 1483-1487.
[72]
Meinwald, J.; Labana, S.S.; Chadha, M.S.J.J.o.t.A.C.S. Peracid reactions. III. 1 The oxidation of bicyclo [2.2. 1] heptadiene 2. J. Am. Chem. Soc., 1963, 85(5), 582-585.
[73]
Shi, Y.; Siqi, L.; Lu, Y.; Zhao, Z.; Li, P.; Xu, J. Microwave-assisted organic acid–base-co-catalyzed tandem Meinwald rearrangement and annulation of styrylepoxides. Chem. Comm., 2020, 14
[http://dx.doi.org/10.1039/C9CC09262E]
[74]
Abou Elmaaty, T.; Elsisi, H.; Negm, E.; Ayad, S.; Sofan, M. Novel nano silica assisted synthesis of azo pyrazole for the sustainable dyeing and antimicrobial finishing of cotton fabrics in supercritical carbon dioxide. J. Supercrit. Fluids, 2022, 179, 105354.
[http://dx.doi.org/10.1016/j.supflu.2021.105354]
[75]
Huang, G.; Ma, C.; Li, Y.; Wen, P.; Yan, R.; Ren, Z. Copper (I)-catalyzed synthesis of pyrazoles from phenylhydrazones and dialkyl ethylenedicarboxylates in the pres-ence of bases. Synlett, 2011, 2011(9), 1321-1323.
[http://dx.doi.org/10.1055/s-0030-1260552]
[76]
Bernini, R. Copper‐catalyzed C-C bond formation through C-H functionalization. Synthesis multisubstituted indoles from N‐Aryl enaminones. App. Chem., 2009, 48(43), 8078-8081.
[PMID: 19774575]
[77]
Hu, J.; Chen, S.; Sun, Y.; Yang, J.; Rao, Y. Synthesis of tri- and tetrasubstituted pyrazoles via Ru(II) catalysis: Intramolecular aerobic oxidative C-N coupling. Org. Lett., 2012, 14(19), 5030-5033.
[http://dx.doi.org/10.1021/ol3022353] [PMID: 22988906]
[78]
Schmitt, D.C.; Taylor, A.P.; Flick, A.C.; Kyne, R.E., Jr Synthesis of pyrazoles from 1,3-diols via hydrogen transfer catalysis. Org. Lett., 2015, 17(6), 1405-1408.
[http://dx.doi.org/10.1021/acs.orglett.5b00266] [PMID: 25719568]
[79]
Hamid, M.H.S.; Allen, C.L.; Lamb, G.W.; Maxwell, A.C.; Maytum, H.C.; Watson, A.J.A.; Williams, J.M.J. Ruthenium-catalyzed N-alkylation of amines and sulfona-mides using borrowing hydrogen methodology. J. Am. Chem. Soc., 2009, 131(5), 1766-1774.
[http://dx.doi.org/10.1021/ja807323a]
[80]
Mura, M.G.; Luca, L. De; Taddei, M.; Williams, J.M.J.; Porcheddu, A. Synthesis of α, β-unsaturated aldehydes based on a one-pot phase-switch dehydrogenative cross-coupling of primary alcohols. Org. Lett., 2014, 16(10), 2586-2589.
[81]
Rao, V.K.; Tiwari, R.; Chhikara, B.S.; Shirazi, A.N.; Parang, K.; Kumar, A. Copper triflate-mediated synthesis of 1,3,5-triarylpyrazoles in [bmim][PF6] ionic liquid and evaluation of their anticancer activities. RSC Adv., 2013, 3(35), 15396-15403.
[http://dx.doi.org/10.1039/c3ra41830h] [PMID: 24163734]
[82]
Wang, Q.; He, L.; Li, K.K.; Tsui, G.C. Copper-mediated domino cyclization/trifluoromethylation/deprotection with TMSCF3: Synthesis of 4-(Trifluoromethyl) pyra-zoles. Org. Lett., 2017, 19(3), 658-661.
[83]
Kochi, J.K. Reduction of cupric chloride by carbonyl compounds. J. Am. Chem. Soc., 1955, 77(20), 5274-5278.
[84]
Peng, A-Y.; Hao, F.; Li, B.; Wang, Z.; Du, Y. An efficient route to 4-halophosphaisocoumarins via CuX2-mediated direct halocyclization of 2-(1-alkynyl)phenylphosphonic acid diesters. J. Org. Chem., 2008, 73(22), 9012-9015.
[85]
Shen, Z.; Lu, X.J.A.S. Cupric halide‐mediated intramolecular halocyclization of N‐electron‐withdrawing group‐substituted 2‐alkynylanilines for the synthesis of 3‐haloindoles. Adv. Synth. Catal., 2009, 351, 3170-3112.
[86]
Yamashita, M.; Noro, T.; Iida, A.J.T.L. Copper-catalyzed tandem intramolecular cyclization/coupling reaction: Solvent effect on reaction pathway. Tetrahedron Lett., 2013, 54(50), 6848-6851.
[87]
Lu, J.; Man, Y.; Zhang, Y.; Lin, B.; Lin, Q.; Weng, Z. Copper-catalyzed chemoselective synthesis of 4-trifluoromethyl pyrazoles. RSC Adv., 2019, 9(53), 30952-30956.
[http://dx.doi.org/10.1039/C9RA07694H] [PMID: 35529353]
[88]
Comas-Barceló, J.; Foster, R.S.; Fiser, B.; Gomez-Bengoa, E.; Harrity, J.P.A. Cu-promoted sydnone cycloadditions of alkynes: Scope and mechanism studies. Chemistry, 2015, 21(8), 3257-3263.
[http://dx.doi.org/10.1002/chem.201406118] [PMID: 25557473]
[89]
Hladíková, V.; Váňa, J.; Hanusek, J.J.B.J.o.O.C. [3 + 2]-Cycloaddition reaction of sydnones with alkynes. Beilstein J. Org. Chem., 2018, 14(1), 1317-1348.
[90]
Kolodych, S.; Rasolofonjatovo, E.; Chaumontet, M.; Nevers, M-C.; Créminon, C.; Taran, F. Discovery of chemoselective and biocompatible reactions using a high-throughput immunoassay screening. Angew. Chem. Int. Ed. Engl., 2013, 52(46), 12056-12060.
[91]
Zora, M.; Kivrak, A. Synthesis of pyrazoles via CuI-mediated electrophilic cyclizations of α,β-alkynic hydrazones. J. Org. Chem., 2011, 76(22), 9379-9390.
[http://dx.doi.org/10.1021/jo201685p] [PMID: 21992574]
[92]
Pünner, F.; Sohtome, Y.; Sodeoka, M. Solvent-dependent copper-catalyzed synthesis of pyrazoles under aerobic conditions. Chem. Commun., 2016, 52(98), 14093-14096.
[http://dx.doi.org/10.1039/C6CC06935E] [PMID: 27805203]
[93]
Bach, R.D.; Ayala, P.Y.; Schlegel, H.B. A reassessment of the bond dissociation energies of peroxides. An ab initio study. J. Am. Chem. Soc., 1996, 118(50), 12758-12765.
[http://dx.doi.org/10.1021/ja961838i]
[94]
Benson, S.W. Kinetics of pyrolysis of alkyl hydroperoxides and their O–O bond dissociation energies. J. Chem. Phys., 1964, 40, 1007-1013.
[http://dx.doi.org/10.1063/1.1725239]
[95]
Simmie, J.M.; Black, G.; Curran, H.J.; Hinde, J.P. Enthalpies of formation and bond dissociation energies of lower alkyl hydroperoxides and related hydroperoxy and alkoxy radicals. J. Phys. Chem. A, 2008, 112(22), 5010-5016.
[http://dx.doi.org/10.1021/jp711360z]
[96]
Liu, J.; Xu, E.; Jiang, J.; Huang, Z.; Zheng, L.; Liu, Z.Q. Copper-mediated tandem ring-opening/cyclization reactions of cyclopropanols with aryldiazonium salts: Synthe-sis of N -arylpyrazoles. Chem. Commun., 2020, 56(14), 2202-2205.
[http://dx.doi.org/10.1039/C9CC09657D] [PMID: 31976495]
[97]
Yang, G.P.; He, X.; Yu, B.; Hu, C-W. Cu 1.5 PMo12 O40 -catalyzed condensation cyclization for the synthesis of substituted pyrazoles. Appl. Organomet. Chem., 2018, 32(11), e4532.
[http://dx.doi.org/10.1002/aoc.4532]
[98]
Wang, H.; Sun, X.; Zhang, S.; Liu, G.; Wang, C.; Zhu, L.; Zhang, H. Efficient copper-catalyzed synthesis of substituted pyrazoles at room temperature. Synlett, 2018, 29(20), 2689-2692.
[http://dx.doi.org/10.1055/s-0037-1610330]
[99]
Jang, S.S.; Chang, J.Y.; Kang, G.Y.; Youn, S.W. Oxidant‐controlled divergent syntheses of pyrazoles and pyrroles by Copper(I)‐catalyzed oxidative coupling of β‐enamino esters. Asian J. Org. Chem., 2019, 8(9), 1668-1673.
[http://dx.doi.org/10.1002/ajoc.201900351]
[100]
Tu, K.N.; Kim, S.; Blum, S.A. Copper-catalyzed aminoboration from hydrazones to generate borylated pyrazoles. Org. Lett., 2019, 21(5), 1283-1286.
[http://dx.doi.org/10.1021/acs.orglett.8b04038] [PMID: 30753081]
[101]
da Silva, V.D.; de Faria, B.M.; Colombo, E.; Ascari, L.A.; Freitas, G.P.; Flores, L.S.; Cordeiro, Y.; Romão, L.; Buarque, C.D. Design, synthesis, structural characterization and in vitro evaluation of new 1,4-disubstituted-1,2,3-triazole derivatives against glioblastoma cells. Bioorg. Chem., 2019, 83, 87-97.
[102]
Suero, M.G.; Bayle, E.D.L.; Collins, B.S.; Gaunt, M.J. Copper-catalyzed electrophilic carbofunctionalization of alkynes to highly functionalized tetrasubstituted alkenes. J. Am. Chem. Soc., 2013, 135(14), 5332-5335.
[http://dx.doi.org/10.1021/ja401840j]
[103]
Yang, X.; Zhang, S.; Zhang, L.; Zhang, B.; Ren, T. Rhombic dodecahedral Cu2O‐catalysed synthesis of novel alkenyl pyrazoles. Eur. J. Inorg. Chem., 2020, 2020(7), 613-616.
[http://dx.doi.org/10.1002/ejic.201900959]
[104]
Ma, C.; Wen, P.; Li, J.; Han, X.; Wu, Z.; Huang, G. Palladium and copper cocatalyzed intermolecular cyclization reaction: Synthesis of 5-aminopyrazole derivatives. Adv. Synth. Catal., 2016, 358(7), 1073-1077.
[http://dx.doi.org/10.1002/adsc.201500767]
[105]
Chen, B.; Zhu, C.; Tang, Y.; Ma, S. Copper-mediated pyrazole synthesis from 2,3-allenoates or 2-alkynoates, amines and nitriles. Chem. Commun., 2014, 50(57), 7677-7679.
[106]
Ge, H.; Niphakis, M.J.; Georg, G.I. Palladium(II)-catalyzed direct arylation of enaminones using organotrifluoroborates. J. Am. Chem. Soc., 2008, 130(12), 3708-3709.
[107]
Lian, X-L.; Ren, Z-H.; Wang, Y-Y.; Guan, Z-H. Palladium-catalyzed oxidative cyclization of tertiary enamines for synthesis of 1,3,4-trisubstituted pyrroles and 1,3-disubstituted indoles. Org. Lett., 2014, 16(12), 3360-3363.
[108]
Zhang, X.; Wang, H.; Xie, L.; You, C.; Han, X.; Weng, Z. Copper‐Catalyzed Synthesis of 5‐Aryl‐6‐(Trifluoromethyl)‐2,3‐Dihydropyrazolo[1,2‐ a]Pyrazol‐1(5 H)‐. One. Chem. Asian J., 2021, 16(18), 2669-2673.
[http://dx.doi.org/10.1002/asia.202100693] [PMID: 34313007]
[109]
Keller, M.; Sido, A.S.S.; Pale, P.; Sommer, J. Copper(I) zeolites as heterogeneous and ligand-free catalysts: [3+2] cycloaddition of azomethine imines. Chemistry, 2009, 15(12), 2810-2817.
[http://dx.doi.org/10.1002/chem.200802191] [PMID: 19191242]
[110]
Shao, C.; Zhang, Q.; Cheng, G.; Cheng, C.; Wang, X.; Hu, Y. Copper(I) acetate-catalyzed cycloaddition between azomethine imines and propiolates under additive-free conditions. EurJOC, 2013, 2013(28), 6443-6448.
[111]
Yoshimura, K.; Oishi, T.; Yamaguchi, K.; Mizuno, N. An efficient, ligand-free, heterogeneous supported copper hydroxide catalyst for the synthesis of n,n-bicyclic pyrazolidinone derivatives. Chemistry, 2011, 17(14), 3827-3831.
[112]
Petek, N.; Bibi, E.; Dejan, S.; Aljaž, G.; Bogdan, S.; Marina, K.; Jurij, S. 2-Acyl-1-aryl-6, 7-dihydro-1H, 5H-pyrazolo [1, 2-a] pyrazole derivatives: Versatile fluorescent probes with remarkably large Stokes shift. Faculty Chem. Chem. Technol., 2022, 201, 13.
[113]
Geißler, G.; Angermüller, K.; Behning, I.; Fürneisen, S. Substituierte Pyrazolid-3-on-azomethinimine. J. Chem., 1981, 21(10)
[114]
Petek, N.; Brodnik, H.; Grošelj, U.; Svete, J.; Požgan, F.; Štefane, B. Visible-light driven selective C–N bond scission in anti-Bimane-Like derivatives. Org. Lett., 2021, 23(14), 5294-5298.
[http://dx.doi.org/10.1021/acs.orglett.1c01376]
[115]
Pušavec Kirar, E.; Grošelj, U.; Mirri, G.; Požgan, F.; Strle, G.; Štefane, B.; Jovanovski, V.; Svete, J. Click Chemistry. J. Org. Chem., 2016, 81(14), 5988-5997.
[PMID: 27305104]
[116]
Schulz, M.; West, G.J.J.f.P.C. Photochemical reactions of pyrazolidone‐(3)‐betaines. II. Synthesis of β‐hydrazino‐isovaleric acid. J. Pract. Chem., 1973, 312(161), 1970.
[117]
Sibi, M.P.; Rane, D.; Stanley, L.M.; Soeta, T. Copper(II)-catalyzed exo and enantioselective cycloadditions of azomethine imines. Org. Lett., 2008, 10(14), 2971-2974.
[118]
Štanfel, U.; Slapšak, D.; Grošelj, U.; Požgan, F.; Štefane, B.; Svete, J. Synthesis of 6,7-Dihydro-1H,5H-pyrazolo[1,2-a]pyrazoles by azomethine imine-alkyne cycloaddi-tions using immobilized Cu(II)-catalysts. Molecules, 2021, 26(2), 400.
[http://dx.doi.org/10.3390/molecules26020400] [PMID: 33451154]
[119]
Zhu, Y.F.; Wei, B-L.; Wei, J-J.; Wang, W-Q.; Song, W-B.; Xuan, L-J. Synthesis of pyrazolones and pyrazoles via Pd-catalyzed aerobic oxidative dehydrogenation. Tetrahedron Lett., 2019, 60(17), 1202-1205.
[http://dx.doi.org/10.1016/j.tetlet.2019.03.063]
[120]
Tang, H-T.; Zeng, J-H.; Chen, J-J.; Zhou, Y-B.; Li, R-H.; Zhan, Z-P. Synthesis of pyrazolo [5, 1-a] isoquinolines through copper-catalyzed regioselective bicyclization of N-propargylic sulfonylhydrazones. Org. Chem. Front., 2017, 4(8), 1513-1516.
[121]
Zhu, Y.; Lu, W-T.; Sun, H-C.; Zhan, Z-P. Lewis base catalyzed synthesis of multisubstituted 4-Sulfonyl-1 H-Pyrazole involving a novel 1, 3-Sulfonyl shift. Org. Lett., 2013, 1516, 4146-4149.
[122]
Yang, Y.; Hu, Z-L.; Li, R-H.; Chen, Y-H.; Zhan, Z-P. Pyrazole synthesis via a cascade Sonogashira coupling/cyclization of N-propargyl sulfonylhydrazones. Org. Biomol. Chem., 2018, 16(2), 197-201.
[123]
Shao, J.; Shu, K.; Liu, S.; Zhu, H.; Zhang, J.; Zhang, C.; Zeng, L-H.; Zeng, L.; Chen, W.; An, J. Palladium-catalyzed synthesis of polysubstituted pyrazoles by ring-opening reactions of 2H-azirines with hydrazones. Synlett, 2021, 32(3), 316-320.
[http://dx.doi.org/10.1055/s-0040-1707262]
[124]
Zhao, J.; Goldman, A.S.; Hartwig, J.F.J.S. Oxidative addition of ammonia to form a stable monomeric amido hydride complex. Science, 2005, 307(5712), 1080-1082.
[http://dx.doi.org/10.1126/science.1109389]
[125]
Koroleff, F. Determination of total nitrogen in natural waters by means of persulfate oxidation. Int. Counc.Explor., 1969, 100, 8.
[126]
Guo, H.; Zhang, D.; Zhu, C.; Li, J.; Xu, G.; Sun, J. When aryldiazonium salts meet vinyl diazoacetates: A cobalt-catalyzed regiospecific synthesis of N-arylpyrazoles. Org. Lett., 2014, 16(11), 3110-3113.
[http://dx.doi.org/10.1021/ol5012339] [PMID: 24870247]
[127]
Landstrom, E.B.; Akporji, N.; Lee, N.R.; Gabriel, C.M.; Braga, F.C.; Lipshutz, B.H. One-Pot synthesis of indoles and pyrazoles via pd-catalyzed couplings/cyclizations enabled by aqueous micellar catalysis. Org. Lett., 2020, 22(16), 6543-6546.
[128]
Gong, L.; Thorn, C.F.; Bertagnolli, M.M.; Grosser, T.; Altman, R.B.; Klein, T.E. Celecoxib pathways: Pharmacokinetics and pharmacodynamics. Pharmacogenet. Genomics, 2012, 22(4), 310-318.
[http://dx.doi.org/10.1097/FPC.0b013e32834f94cb]
[129]
Sthalam, V.K.; Singh, A.K.; Pabbaraja, S. An integrated continuous flow Micro-Total Ultrafast Process System (μ-TUFPS) for the synthesis of celecoxib and other cy-clooxygenase inhibitors. Org. Process Res. Dev., 2019, 23(9), 1892-1899.
[130]
Sar, D.; Bag, R.; Yashmeen, A.; Bag, S.S.; Punniyamurthy, T. Synthesis of functionalized pyrazoles via vanadium-catalyzed C–N dehydrogenative cross-coupling and fluorescence switch-on sensing of BSA protein. Org. Lett., 2015, 17(21), 5308-5311.
[http://dx.doi.org/10.1021/acs.orglett.5b02669] [PMID: 26451677]
[131]
Hirao, T. Vanadium in modern organic synthesis. Chem. Rev., 1997, 97(8), 2707-2707–2724.
[http://dx.doi.org/10.1021/cr960014g]
[132]
Katla, R.; Chowrasia, R.; Manjari, P.S.; da Silva, C.D.G.; dos Santos, B.F.; Domingues, N.L.C. [Ce(L -Pro)2]2 (Oxa) as a heterogeneous recyclable catalyst: Synthesis of pyrazoles under mild reaction conditions. New J. Chem., 2016, 40(11), 9471-9476.
[http://dx.doi.org/10.1039/C6NJ01723A]
[133]
Wen, J.J.; Tang, H.T.; Xiong, K.; Ding, Z.C.; Zhan, Z.P. Synthesis of polysubstituted pyrazoles by a platinum-catalyzed sigmatropic rearrangement/cyclization cascade. Org. Lett., 2014, 16(22), 5940-5943.
[http://dx.doi.org/10.1021/ol502968c] [PMID: 25383747]
[134]
Dong, J.; Hu, J.; Chi, Y.; Lin, Z.; Zou, B.; Yang, S.; Hill, C.L.; Hu, C. A polyoxoniobate-polyoxovanadate double-anion catalyst for simultaneous Oxidative and hydro-lytic decontamination of chemical warfare agent simulants. Angew. Chem. Int. Ed. Engl., 2017, 56(16), 4473-4477.
[135]
Yang, G.P. An Atom‐Economical Route to Substituted β‐Arylethyl Ketones. Phosphomolybdic Acid‐Catalyzed Carbohydroxylation of Terminal Alkynes in Organ-ic Carbonate, 2017, 359(6), 926-932.
[136]
Yu, B.; Zou, B.; Hu, C.-W. Recent applications of polyoxometalates in CO2 capture and transformation. J. CO2 Util., 2018, 26, 314-322.
[http://dx.doi.org/10.1016/j.jcou.2018.05.021]
[137]
Yang, G-P.; Shang, S-X.; Yu, B.; Hu, C-W. Ce (iii)-Containing tungstotellurate (vi) with a sandwich structure: An efficient Lewis acid–base catalyst for the condensa-tion cyclization of 1, 3-diketones with hydrazines/hydrazides or diamines. Inorg. Chem. Front., 2018, 5(10), 2472-2477.
[138]
Jeyaveeran, J.C.; Praveen, C.; Arun, Y.M.; Prince, A.A.; Perumal, P.T. Cycloisomerization of acetylenic oximes and hydrazones under gold catalysis: Synthesis and cyto-toxic evaluation of isoxazoles and pyrazoles. J. Chem. Sci., 2016, 128(1), 73-83.
[http://dx.doi.org/10.1007/s12039-015-0993-9]
[139]
Hassani, H.; Jahani, Z. Synthesis of 1,3,5-Trisubstituted pyrazoles and hydrazones using Fe3O4@CeO2 nanocomposite as an efficient heterogeneous nanocatalyst. Russ. J. Org. Chem., 2020, 56(3), 485-490.
[http://dx.doi.org/10.1134/S1070428020030185]
[140]
Zhao, J.; Qiu, J.; Gou, X.; Hua, C.; Chen, B. Iron(III) phthalocyanine chloride-catalyzed oxidation–aromatization of α,β-unsaturated ketones with hydrazine hydrate: Synthesis of 3,5-disubstituted 1H-pyrazoles. Chin. J. Catal., 2016, 37(4), 571-578.
[http://dx.doi.org/10.1016/S1872-2067(15)61043-9]
[141]
Afanasiev, P.; Kudrik, E.V.; Albrieux, F.; Briois, V.; Koifman, O.I.; Sorokin, A.B. Generation and characterization of high-valent iron oxo phthalocyanines. Chem. Commun., 2012, 48(49), 6088-6090.
[http://dx.doi.org/10.1039/c2cc31917a]
[142]
Filipan-Litvić, M.; Litvić, M.; Vinković, V. A highly efficient biomimetic aromatization of Hantzsch-1,4-dihydropyridines with t-butylhydroperoxide, catalysed by iron(III) phthalocyanine chloride. Bioorg. Med. Chem., 2008, 16(20), 9276-9282.
[143]
Hajimohammadi, M.; Mofakham, H.; Safari, N.; Manesh, A.M. Highly efficient conversion of aldehydes to carboxylic acid in the presence of platinum porphyrin sensi-tizers, air and sunlight. J. Porphyr. Phthalocyanines, 2012, 16(1), 93-100.
[http://dx.doi.org/10.1142/S1088424612004483]
[144]
Sorokin, A.B.; Kudrik, E.V. Phthalocyanine metal complexes: Versatile catalysts for selective oxidation and bleaching. Catal. Today, 2011, 159(1), 37-46.
[http://dx.doi.org/10.1016/j.cattod.2010.06.020]
[145]
Panda, N.; Ojha, S. Facile synthesis of pyrazoles by iron-catalyzed regioselective cyclization of hydrazone and 1,2-diol under ligand-free conditions. J. Organomet. Chem., 2018, 861, 244-251.
[http://dx.doi.org/10.1016/j.jorganchem.2018.02.043]
[146]
Peng, X.; Zhang, X.; Li, S.; Lu, Y.; Lan, L.; Yang, C. Silver-mediated synthesis of novel 3-CF 3/CN/phosphonate-substituted pyrazoles as pyrrolomycin analogues from 3-formylchromones and diazo compounds. Org. Chem. Front., 2019, 6(11), 1775-1779.
[http://dx.doi.org/10.1039/C9QO00324J]
[147]
Chen, Z.; Zheng, Y.; Ma, J.A. Use of a traceless activating and directing group for the construction of trifluoromethylpyrazoles: One-pot transformation of nitroolefins and trifluorodiazoethane. Angew. Chem. Int. Ed., 2017, 56(16), 4569-4574.
[http://dx.doi.org/10.1002/anie.201700955] [PMID: 28328171]
[148]
Jia, F.; Luo, J.; Zhang, Bo. Using a traceless directing group for the silver-mediated synthesis of 3-trifluoromethylpyrazoles: A computational study on the mechanism and origins of regioselectivity. Org. Chem. Front., 2018, 5(23), 3374-3381.
[149]
Khatab, T.K.; Hassan, A.S.; Hafez, T.S. V2O5/SiO2 as an efficient catalyst in the synthesis of 5-amino-pyrazole derivatives under solvent free condition. Bull. Chem. Soc. Ethiop., 2019, 33(1), 135-142.
[http://dx.doi.org/10.4314/bcse.v33i1.13]
[150]
Xu, Y.; Chen, Q.; Tian, Y.; Wu, W.; You, Y.; Weng, Z. Silver-catalyzed synthesis of 5-aryl-3-trifluoromethyl pyrazoles. Tetrahedron Lett., 2020, 61(5), 151455.
[http://dx.doi.org/10.1016/j.tetlet.2019.151455]
[151]
Pandit, R.P.; Lee, Y.R. Construction of multifunctionalized azopyrazoles by silver- catalyzed cascade reaction of diazo compounds. Adv. Synth. Catal., 2015, 357(12), 2657-2664.
[http://dx.doi.org/10.1002/adsc.201500197]
[152]
Bachmann, S.; Fielenbach, D.; Jørgensen, K.A. Cu (i)-carbenoid-and Ag (i)-Lewis acid-catalyzed asymmetric intermolecular insertion of α-diazo compounds into N–H bonds. Org. Biomol. Chem., 2004, 2(20), 3044-3049.
[153]
Dias, H.R.; Browning, R.G.; Polach, S.A.; Diyabalanage, H.V.K.; Lovely, C.J. Activation of alkyl halides via a silver-catalyzed carbene insertion process. J. Am. Chem. Soc., 2003, 125(31), 9270-9271.
[154]
Thombal, R.S.; Lee, Y.R. Synergistic indium and silver dual catalysis: A regioselective [2+ 2+ 1]-oxidative N-annulation approach for the diverse and polyfunctional-ized N-arylpyrazoles. Org. Lett., 2018, 20(15), 4681-4685.
[http://dx.doi.org/10.1021/acs.orglett.8b02008] [PMID: 30044635]
[155]
Kobayashi, T.; Nitta, M. Synthesis and properties of the [n](2, 5) pyridinophane ring system. Bull. Chem. Soc. Jpn., 1985, 58(11), 3099-3103.
[http://dx.doi.org/10.1246/bcsj.58.3099]
[156]
Rey, M.; Beaumont, S. Molybdenum-mediated one-pot synthesis of pyrazoles from isoxazoles. Synthesis, 2019, 51(20), 3796-3804.
[http://dx.doi.org/10.1055/s-0039-1690615]
[157]
Mi, P.; Lang, J.; Lin, S. Retraction: Molybdenum-silver co-catalyzed cycloaddition of alkynes with N -isocyanoiminotriphenylphosphorane (NIITP): An efficient strate-gy for the synthesis of monosubstituted pyrazoles. Chem. Commun., 2019, 55(89), 13471-13471.
[http://dx.doi.org/10.1039/C9CC90478F] [PMID: 31657382]
[158]
Gao, M.; He, C.; Chen, H.; Bai, R.; Cheng, B.; Lei, A. Synthesis of pyrroles by click reaction: Silver‐catalyzed cycloaddition of terminal alkynes with isocyanides. Angew. Chem. Int. Ed. Engl., 2013, 52(27), 6958-6961.
[159]
Weinberger, B.; Fehlhammer, W.P.J.A.C.I.E.E. N‐Isocyanoiminotriphenylphosphorane: Synthesis, coordination chemistry, and reactions at the metal. 1980, 19(6), 480-481.
[160]
Weinberger, B.; Fehlhammer, W.P. Metallkomplexe funktioneller isocyanide, VIII. (Isocyanimino)triphenylphosphoran‐metallkomplexe. Chem. Rep., 1985, 118(1), 42-50.
[161]
Zhang, Q.; Tang, M. Regioselective synthesis of highly functionalized pyrazoles from N-tosylhydrazones. Org. Lett., 2019, 21(6), 1917-1920.
[http://dx.doi.org/10.1021/acs.orglett.9b00561] [PMID: 30829036]
[162]
Zhao, P.; Zeng, Z.; Feng, X.; Liu, X. Multisubstituted pyrazole synthesis via [3+ 2] cycloaddition/rearrangement/NH insertion cascade reaction of α-diazoesters and ynones. Chin. Chem. Lett., 2021, 32(1), 132-135.
[163]
Mou, X-Q.; Xu, L.; Wang, S-H.; Yang, C. Copper-catalyzed dicyanation of N, N-disubstituted formamide. Tetrahedron Lett., 2015, 56(21), 2820-2822.
[http://dx.doi.org/10.1016/j.tetlet.2015.04.056]
[164]
Mou, X-Q.; Xu, Z-L.; Xu, L.; Wang, S-H.; Zhang, B-H.; Zhang, D.; Wang, J.; Liu, W-T.; Bao, W. The synthesis of multisubstituted pyrroles via a copper-catalyzed tandem three-component reaction. Org. Lett., 2016, 18(16), 4032-4035.
[http://dx.doi.org/10.1021/acs.orglett.6b01883]
[165]
Zhang, B-H.; Lei, L-S.; Liu, S-Z.; Mou, X-Q.; Liu, W-T.; Wang, S-H.; Wang, J.; Bao, W.; Zhang, K. Zinc-promoted cyclization of tosylhydrazones and 2-(dimethylamino) malononitrile: An efficient strategy for the synthesis of substituted 1-tosyl-1 H-pyrazoles. Chem. Commun., 2017, 53(61), 8545-8548.
[166]
Cui, S-L.; Wang, J.; Wang, Y-G. Facile access to pyrazolines via domino reaction of the Huisgen zwitterions with aziridines. Org. Lett., 2008, 10(1), 13-16.
[http://dx.doi.org/10.1021/ol7022888]
[167]
Ivonin, S.P.; Kurpil, B.B.; Rusanov, E.B.; Grygorenko, O.O.; Volochnyuk, D.M. N-Alkylhydrazones of aliphatic ketones in the synthesis of 1, 3, 4-trisubstituted non-symmetric pyrazoles. Tetrahedron Lett., 2014, 55(14), 2187-2189.
[168]
Kerbal, A.; Vebrel, J.; Cerutti, E.; Laude, B. Reaction of diarylnitrilimines with 3, 3-dimethyl-2-indanone enamines; the first example of a stable zwitterionic ni-trilimine–enamine cycloadduct. J. Chem. Soc. Chem. Commun., 1989, 10, 632-633.
[169]
Wang, Y.; Sun, X.; Yang, D.; Wang, Z.; Fan, X.; Nie, M.; Zhang, F.; Liu, Y.; Li, Y.; Wang, Y.; Gong, P.; Liu, Y. Design, synthesis, and structure-activity relationship of novel and effective apixaban derivatives as FXa inhibitors containing 1,2,4-triazole/pyrrole derivatives as P2 binding element. Bioorg. Med. Chem., 2016, 24(21), 5646-5661.
[170]
Guo, H.; Zhang, Q.; Pan, W.; Yang, H.; Pei, K.; Zhai, J.; Li, T.; Wang, Z.; Wang, Y.; Yin, Y. One‐pot synthesis of substituted pyrazoles from propargyl alcohols via Cyclocondensation of in situ‐Generated α‐Iodo enones/enals and hydrazine hydrate. Asian J. Org. Chem., 2021, 10(8), 2231-2237.
[171]
Cao, G.M.; Zeng, G-D.; Li, K.; Liu, Y-F.; Lin, X-L.; Yang, G-P. 2D network structure of zinc(II) complex: A new easily accessible and efficient catalyst for the synthesis of pyrazoles. Appl. Organomet. Chem., 2021, 35(11), e6379.
[http://dx.doi.org/10.1002/aoc.6379]
[172]
Kumara, K.; Prabhudeva, G.M.; Vagish, C.B.; Vivek, H.K.; Rai, K.M.L.; Lokanath, N.K.; Kumar, K.A. Design, synthesis, characterization, and antioxidant activity stud-ies of novel thienyl-pyrazoles. Heliyon, 2021, 7(7), e07592.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07592]
[173]
Razavian Mofrad, R.; Kabirifard, H.; Tajbakhsh, M.; Pasha, G.F. Amine‐functionalized nano‐NaY zeolite for the synthesis of N‐acetyl pyrazoles and dihydropyrim-idines. Appl. Organomet. Chem., 2021, 35(11), e6383.
[http://dx.doi.org/10.1002/aoc.6383]
[174]
Mahé, O.; Frath, D.; Dez, I.; Marsais, F.; Levacher, V.; Brière, J-F. TBD-organocatalysed synthesis of pyrazolines. Org. Biomol. Chem., 2009, 7(18), 3648-3651.
[http://dx.doi.org/10.1039/b911577c]
[175]
Radai, Z.; Kiss, N.Z.; Keglevich, G. An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr. Org. Chem., 2018, 22(6), 533-556.
[http://dx.doi.org/10.2174/1385272822666171227152013]
[176]
Tang, X.; Wang, Z.; Li, J.; Lei, X. Melting-type acidic quaternary ammonium ionic liquids as catalysts for alkylation desulfurization of FCC gasoline. Catal. Commun., 2020, 138, 105873.
[http://dx.doi.org/10.1016/j.catcom.2019.105873]
[177]
Medjahed, N. Synthesis and Structural Characterization of Imidazolium-Based Dicationic Ionic Liquids., 2020, 3(1), 80.
[178]
Mofaddel, N.; Krajian, H.; Villemin, D.; Desbène, P.L. New ionic liquid for inorganic cations analysis by capillary electrophoresis: 2-hydroxy-N, N, N-trimethyl-1-phenylethanaminium bis (trifluoromethylsulfonyl) imide (phenylcholine NTf2). Anal. Bioanal. Chem., 2009, 393(5), 1545-1554.
[179]
Zhang, Q.; Zhang, S.; Deng, Y. Recent advances in ionic liquid catalysis. Green Chem., 2011, 13(10), 2619-2637.
[http://dx.doi.org/10.1039/c1gc15334j]
[180]
Bhadra, S.; Saha, A.; Ranu, B.C. One-pot copper nanoparticle-catalyzed synthesis of S-aryl-and S-vinyl dithiocarbamates in water: High diastereoselectivity achieved for vinyl dithiocarbamates. Green Chem., 2008, 10(11), 1224-1230.
[http://dx.doi.org/10.1039/b809200a]
[181]
McNeice, P.; Marr, P.C.; Marr, A.C. Basic ionic liquids for catalysis: The road to greater stability. Catal. Sci. Technol., 2021, 11(3), 726-741.
[http://dx.doi.org/10.1039/D0CY02274H]
[182]
Ranu, B.C.; Adak, L.; Banerjee, S. Ionic liquid promoted interrupted Feist–Benary reaction with high diastereoselectivity. Tetrahedron Lett., 2008, 49(31), 4613-4617.
[http://dx.doi.org/10.1016/j.tetlet.2008.05.083]
[183]
Ranu, B.C.; Banerjee, S. Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid,[bmIm] OH, in michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles. Org. Lett., 2005, 7(14), 3049-3052.
[184]
Shahbazi, M.; Tavakoli, A.; Hosseini, M.; Khanian, M. 2-Hydroxyethylammonium bisulfate (2-HEAS) as a brønsted acidic ionic liquid catalyst for esterification. Ind. Eng. Chem. Res., 2022, 61(23), 7874-7880.
[185]
Frizzo, C.P.; Marzari, M.R.B.; Buriol, L.; Moreira, D.N.; Rosa, F.A.; Vargas, P.S.; Zanatta, N.; Bonacorso, H.G.; Martins, M.A.P. Ionic liquid effects on the reaction of β-enaminones and tert-butylhydrazine and applications for the synthesis of pyrazoles. Catal. Commun., 2009, 10(15), 1967-1970.
[http://dx.doi.org/10.1016/j.catcom.2009.07.005]
[186]
Moreira, D.N.; Longhi, K.; Frizzo, C.P.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Ionic liquid promoted cyclocondensation reactions to the formation of isoxazoles, pyrazoles and pyrimidines. Catal. Commun., 2010, 11(5), 476-479.
[http://dx.doi.org/10.1016/j.catcom.2009.12.001]
[187]
Safaei, S.; Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Kia, R. Application of a multi-SO3H Brønsted acidic ionic liquid in water: A highly efficient and reusable catalyst for the regioselective and scaled-up synthesis of pyrazoles under mild conditions. RSC Adv., 2012, 2(13), 5610-5616.
[http://dx.doi.org/10.1039/c2ra20624b]
[188]
Mohammadpoor-Baltork, I.; Khosropour, A.; Safaei, S.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Khavasi, H. [Bmim][InCl4]-Catalyzed addition of hydrazones to β-diketones: An efficient regioselective synthesis of pyrazoles and pyrazole-fused cyclohexanones. Synlett, 2013, 24(9), 1086-1090.
[http://dx.doi.org/10.1055/s-0032-1316900]
[189]
Srivastava, M.; Rai, P.; Singh, J.; Singh, J. An environmentally friendlier approach—ionic liquid catalysed, water promoted and grinding induced synthesis of highly functionalised pyrazole derivatives. RSC Adv., 2013, 3(38), 16994-16998.
[http://dx.doi.org/10.1039/c3ra42493f]
[190]
Qureshi, S. Bronsted acidic ionic liquid as an efficient and reusable catalyst for synthesis of pyrazoles and β-enaminones. Curr. Catal., 2013, 2(1), 70-78.
[http://dx.doi.org/10.2174/2211544711302010011]
[191]
Saha, A.; Payra, S.; Verma, S.K.; Mandal, M.; Thareja, S.; Banerjee, S. in silico binding affinity to cyclooxygenase-II and green synthesis of benzylpyrazolyl coumarin derivatives. RSC Adv., 2015, 5(122), 100978-100983.
[http://dx.doi.org/10.1039/C5RA16643H]
[192]
Patil, D.; Chandam, D.; Mulik, A.; Jagdale, S.; Patil, P.; Deshmukh, M. Novel crown ether functionalized imidazolium-based acidic ionic liquid catalyzed synthesis of pyrazole derivatives under solvent-free conditions. Res. Chem. Intermed., 2015, 41(9), 6843-6858.
[http://dx.doi.org/10.1007/s11164-014-1782-7]
[193]
Zolfigol, M.A.; Afsharnadery, F.; Baghery, S.; Salehzadeh, S.; Maleki, F. Catalytic applications of [HMIM]C(NO2)3: As a nano ionic liquid for the synthesis of pyrazole derivatives under green conditions and a mechanistic investigation with a new approach. RSC Adv., 2015, 5(92), 75555-75568.
[http://dx.doi.org/10.1039/C5RA16289K]
[194]
Noura, S.; Ghorbani, M.; Zolfigol, M.A.; Narimani, M.; Yarie, M.; Oftadeh, M. Biological based (nano) gelatoric ionic liquids (NGILs): Application as catalysts in the synthesis of a substituted pyrazole via vinylogous anomeric based oxidation. J. Mol. Liq., 2018, 271(1), 778-785.
[195]
Yarie, M. Catalytic anomeric based oxidation. Iran. J. Catal., 2017, 7(1), 85-88.
[196]
Khaligh, N.G.; Hamid, S.B.A.; Titinchi, S.J.J. N -Methylimidazolium perchlorate as a new ionic liquid for the synthesis of bis(pyrazol-5-ol)s under solvent-free condi-tions. Chin. Chem. Lett., 2016, 27(1), 104-108.
[http://dx.doi.org/10.1016/j.cclet.2015.07.027]
[197]
Devkate, C.G.; Warad, K.D.; Bhalerao, M.B.; Gaikwad, D.D.; Siddique, M.M. Ionic liquid mediated rapid synthesis of 3-subtituted pyrazoles. J. Chem. Pharm., 2017, 9(3), 401-405.
[198]
Akbari, A. One pot synthesis of pyrazole 4-carboxylic acid ethyl ester derivatives by magnetic ionic liquid and flow oxygen. 2017.
[199]
Konwar, M.; Elnagdy, H.M.F.; Gehlot, P.S.; Khupse, N.D.; Kumar, A.; Sarma, D. Transition metal containing ionic liquid-assisted one-pot synthesis of pyrazoles at room temperature. J. Chem. Sci., 2019, 131(8), 80.
[http://dx.doi.org/10.1007/s12039-019-1659-9]
[200]
Bera, K.; Sarkar, S.; Biswas, S.; Maiti, S.; Jana, U. Iron-catalyzed synthesis of functionalized 2H-chromenes via intramolecular alkyne-carbonyl metathesis. J. Org. Chem., 2011, 76(9), 3539-3544.
[http://dx.doi.org/10.1021/jo2000012] [PMID: 21413813]
[201]
Smietana, M. Multicomponent Reactions in Natural Product Synthesis; Efficiency in Natural Product Total Synthesis, 2018, p. 319.
[202]
Gasperi, T.; Orsini, M.; Vetica, F.; de Figueiredo, R.M. Organocatalytic Asymmetric Multicomponent Reactions.In: Multicomponent Reactions: Concepts and Applica-tions for Design and Synthesis; Herrera, R.P.; Marqués-López, E., Eds.; Wiley Online Library, 2015, pp. 16-71.
[http://dx.doi.org/10.1002/9781118863992.ch2]
[203]
Ros, A.; Matas, I. Metal-catalyzed multicomponent reactions. In: Multicomponent reactions: Concepts and applications for design and synthesis; Herrera, R.P.; Marqués-López, E., Eds.; Wiley Online Library 2015, pp. 72-126.
[http://dx.doi.org/10.1002/9781118863992.ch3]
[204]
Qian, Y.; Jing, C.; Shi, T.; Ji, J.; Tang, M.; Zhou, J.; Zhai, C.; Hu, W. Dual catalysis in highly enantioselective multicomponent reaction with water: An efficient approach to chiral β‐Amino‐α‐Hydroxy acid derivatives. ChemCatChem, 2011, 3(4), 653-656.
[205]
Sarkar, S.; Bera, K.; Maiti, S.; Biswas, S.; Jana, U. Three-component coupling synthesis of diversely substituted N-aryl pyrroles catalyzed by iron (III) chloride. Synth. Commun., 2013, 43(11), 1563-1570.
[http://dx.doi.org/10.1080/00397911.2011.650273]
[206]
Maiti, S.; Biswas, S.; Jana, U. Iron(III)-catalyzed four-component coupling reaction of 1,3-dicarbonyl compounds, amines, aldehydes, and nitroalkanes: A simple and direct synthesis of functionalized pyrroles. J. Org. Chem., 2010, 75(5), 1674-1683.
[http://dx.doi.org/10.1021/jo902661y] [PMID: 20131775]
[207]
Cao, S.; Qian, X.; Shen, L.; Liu, N.; Wu, J.; Zhu, L. Ytterbium (III) perfluorooctanoate catalyzed one-pot, three-component synthesis of fully substituted pyrazoles under solvent-free conditions. Synlett, 2008, 2008(9), 1341-1344.
[http://dx.doi.org/10.1055/s-2008-1072766]
[208]
Suzuki, I.; Suzumura, Y.; Takeda, K. Metal triflimide as a Lewis acid catalyst for Biginelli reactions in water. Tetrahedron Lett., 2006, 47(45), 7861-7864.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.019]
[209]
Ghosh, P.P.; Pal, G.; Paul, S.; Das, A.R. Design and synthesis of benzylpyrazolyl coumarin derivatives via a four-component reaction in water: Investigation of the weak interactions accumulating in the crystal structure of a signified compound. Green Chem., 2012, 14(10), 2691-2698.
[http://dx.doi.org/10.1039/c2gc36021g]
[210]
Kenchappa, R.; Bodke, Y.D.; Chandrashekar, A.; Aruna Sindhe, M.; Peethambar, S.K. Synthesis of coumarin derivatives containing pyrazole and indenone rings as potent antioxidant and antihyperglycemic agents. Arab. J. Chem., 2017, 10(S2), S3895-S3906.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.029]
[211]
Kovvuri, J.; Nagaraju, B.; Kumar, C.G.; Sirisha, K.; Chandrasekhar, C.; Alarifi, A.; Kamal, A. Catalyst-free synthesis of pyrazole-aniline linked coumarin derivatives and their antimicrobial evaluation. J. Saudi Chem. Soc., 2018, 22(6), 665-677.
[http://dx.doi.org/10.1016/j.jscs.2017.12.002]
[212]
Zhang, S-G.; Liang, C-G.; Sun, Y-Q.; Teng, P.; Wang, J-Q.; Zhang, W-H. Design, synthesis and antifungal activities of novel pyrrole-and pyrazole-substituted couma-rin derivatives. Mol. Divers., 2019, 23(4), 915-925.
[http://dx.doi.org/10.1007/s11030-019-09920-z]
[213]
Mofatehnia, P.; Ziarani, G.M.; Elhamifar, D.; Badiei, A. A new yolk-shell hollow mesoporous nanocomposite, Fe3O4@SiO2@MCM41-IL/WO42-, as a catalyst in the synthesis of novel pyrazole coumarin compounds. J. Phys. Chem. Solids, 2021, 155, 110097.
[214]
Mohammadpoor-Baltork, I.; Khosropour, A.; Safaei, S.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Regioselective multicomponent synthesis of fully substituted pyrazoles and bispyrazoles catalyzed by zinc triflate. Synlett, 2011, 2011(15), 2214-2222.
[http://dx.doi.org/10.1055/s-0030-1261202]
[215]
Jawale, D.V.; Pratap, U.R.; Mali, J.R.; Mane, R.A. Silica chloride catalyzed one-pot synthesis of fully substituted pyrazoles. Chin. Chem. Lett., 2011, 22(10), 1187-1190.
[http://dx.doi.org/10.1016/j.cclet.2011.05.016]
[216]
Dömling, A. Recent advances in isocyanide-based multicomponent chemistry. Curr. Opin. Chem. Biol., 2002, 6(3), 306-313.
[http://dx.doi.org/10.1016/S1367-5931(02)00328-9]
[217]
Dissanayake, A.A.; Odom, A.L. Single-step synthesis of pyrazoles using titanium catalysis. Chem. Commun., 2012, 48(3), 440-442.
[http://dx.doi.org/10.1039/C1CC15809K] [PMID: 22083455]
[218]
Banerjee, S.; Odom, A.L. Synthesis and structure of a titanium hydrazido (2−) complex. Organometallics, 2006, 25(13), 3099-3101.
[219]
Vujkovic, N.; Fillol, J.L.; Ward, B.D.; Wadepohl, H.; Mountford, P.; Gade, L.H. Insertions into azatitanacyclobutenes: New insights into three-component coupling reactions involving imidotitanium intermediates. Organometallics, 2008, 27(11), 2518-2528.
[http://dx.doi.org/10.1021/om8001203]
[220]
Kumari, S.; Shekhar, A.; Pathak, D.D. Graphene oxide–TiO2 composite: An efficient heterogeneous catalyst for the green synthesis of pyrazoles and pyridines. New J. Chem., 2016, 40(6), 5053-5060.
[http://dx.doi.org/10.1039/C5NJ03380B]
[221]
Bhale, P.S.; Dongare, S.B.; Chanshetti, U.B. Simple grinding, catalyst-free, one-pot, three-component synthesis of polysubstituted amino pyrazole. Res. J. Chem. Sci., 2014, 4(9), 16-221.
[222]
Zhang, G.; Ni, H.; Chen, W.; Shao, J.; Liu, H.; Chen, B.; Yu, Y. One-pot three-component approach to the synthesis of polyfunctional pyrazoles. Org. Lett., 2013, 15(23), 5967-5969.
[http://dx.doi.org/10.1021/ol402810f] [PMID: 24255982]
[223]
Wu, L.; Shi, M. 1,3-Dipolar cycloaddition reactions of vinylidenecyclopropane-diesters with aromatic diazomethanes generated in situ. J. Org. Chem., 2010, 75(7), 2296-2301.
[224]
Mykhailiuk, P.K. Three-component synthesis of C2F5-substituted pyrazoles from C2F5CH2NH2·HCl, NaNO2 and electron-deficient alkynes. Beilstein J. Org. Chem., 2015, 11(1), 16-24.
[http://dx.doi.org/10.3762/bjoc.11.3] [PMID: 25670987]
[225]
Raghunadh, A.; Meruva, S.B.; Mekala, R.; Raghavendra, R.K.; Krishna, T.; Gangadhara, C.R.; Vaikunta, R.L.; Syam, K.U.K. An efficient regioselective copper catalyzed multi-component synthesis of 1,3-disubstituted pyrazoles. Tetrahedron Lett., 2014, 55(18), 2986-2990.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.125]
[226]
Hernandez, S.; Moreno, I.; SanMartin, R.; Gómez, G.; Herrero, M.T.; Domínguez, E. Toward safer processes for C− C biaryl bond construction: Catalytic direct C− H arylation and tin-free radical coupling in the synthesis of pyrazolophenanthridines. J. Org. Chem., 2010, 75(2), 434-441.
[227]
Maddila, S.; Rana, S.; Pagadala, R.; Kankala, S.; Maddila, S.; Jonnalagadda, S.B. Synthesis of pyrazole-4-carbonitrile derivatives in aqueous media with CuO/ZrO2 as recyclable catalyst. Catal. Commun., 2015, 61, 26-30.
[http://dx.doi.org/10.1016/j.catcom.2014.12.005]
[228]
de Aquino, T.F.B.; Seidel, J.P.; de Oliveira, D.H.; do Nascimento, J.E.R.; Alves, D.; Perin, G.; Lenardão, E.J.; Schumacher, R.F.; Jacob, R.G. Copper-catalyzed synthesis of 1,3,5-triaryl-4-(organylselanyl)-1H-pyrazoles by one-pot multicomponent reactions. Tetrahedron Lett., 2018, 59(46), 4090-4095.
[http://dx.doi.org/10.1016/j.tetlet.2018.10.008]
[229]
Akhter, H.; Groen, T.v.; Ballinger, C.; Postlethwait, E.; Michael, M.; Liu, R-M. Corrigendum to “Ozone exposure is a risk factor for Alzheimer's disease” [Free Radic. Biol. Med. 51 (2011) S68]. Free Radic. Biol. Med., 2012, 8(52), 1334.
[230]
Ananthnag, G.S.; Adhikari, A.; Balakrishna, M.S. Iron-catalyzed aerobic oxidative aromatization of 1, 3, 5-trisubstituted pyrazolines. Catal. Commun., 2014, 43, 240-243.
[231]
Nascimento, J.E.; de Oliveira, D.H.; Abib, J.B.; Alves, D.; Perin, G.; Jacob, R.G. Synthesis of 4-arylselanylpyrazoles through cyclocondensation reaction using glycerol as solvent. J. Braz. chem. Soc., 2015, 26(8), 1533-1541.
[232]
Oliveira, D.H.; Aquino, T.B.; Nascimento, J.; Perin, G.; Jacob, R.; Alves, D. Direct synthesis of 4‐organylselanylpyrazoles by copper‐catalyzed one‐pot cycloconden-sation and C-H bond selenylation reactions. Adv. Synth. Catal., 2015, 357(18), 4041-4049.
[233]
Srivastava, M.; Rai, P.; Singh, J.; Singh, J. Efficient iodine-catalyzed one pot synthesis of highly functionalised pyrazoles in water. New J. Chem., 2014, 38(1), 302-307.
[http://dx.doi.org/10.1039/C3NJ01149F]
[234]
Song, H.; Liu, Y.; Wang, Q. Cascade electrophilic iodocyclization: Efficient preparation of 4-iodomethyl substituted tetrahydro-β-carbolines and formal synthesis of oxopropaline G. Org. Lett., 2013, 15(13), 3274-3277.
[235]
Rai, P.; Srivastava, M.; Singh, J.; Singh, J. Molecular iodine: A green and inclusive catalyst for the synthesis of highly functionalized 1,3,5-trisubstituted pyrazoles in aqueous medium. RSC Adv., 2014, 4(2), 779-783.
[http://dx.doi.org/10.1039/C3RA44315A]
[236]
Kidwai, M.; Bansal, V.; Mothsra, P.; Saxena, S.; Somvanshi, R.K.; Dey, S.; Singh, T.P. Molecular iodine: A versatile catalyst for the synthesis of bis (4-hydroxycoumarin) methanes in water. J Mol Catal A Chem., 2007, 268(1-2), 76-81.
[237]
Kidwai, M.; Mothsra, P.; Bansal, V.; Somvanshi, R.K.; Ethayathulla, A.S.; Dey, S.; Singh, T.P. One-pot synthesis of highly substituted imidazoles using molecular io-dine: A versatile catalyst. J Mol Catal A Chem., 2007, 265(1-2), 177-182.
[http://dx.doi.org/10.1016/j.molcata.2006.10.009]
[238]
Lin, X-F.; Cui, S-L.; Wang, Y-G. Molecular iodine-catalyzed one-pot synthesis of substituted quinolines from imines and aldehydes. Tetrahedron Lett., 2006, 47(18), 3127-3130.
[239]
Sun, J.; Qiu, J.K.; Zhu, Y.L.; Guo, C.; Hao, W.J.; Jiang, B.; Tu, S.J. Metal-free iodine-catalyzed synthesis of fully substituted pyrazoles and its sulphenylation. J. Org. Chem., 2015, 80(16), 8217-8224.
[http://dx.doi.org/10.1021/acs.joc.5b01280] [PMID: 26181864]
[240]
Kang, X.; Yan, R.; Yu, G.; Pang, X.; Liu, X.; Li, X.; Xiang, L.; Huang, G. Iodine-mediated thiolation of substituted naphthols/naphthylamines and arylsulfonyl hydra-zides via C (sp2)–H bond functionalization. J. Org. Chem., 2014, 79(21), 10605-10610.
[241]
Yang, F.L.; Tian, S.K.J.A.C. Iodine‐Catalyzed Regioselective Sulfenylation of Indoles with Sulfonyl Hydrazides., 2013, 125(18), 5029-5032.
[242]
Zhao, X.; Zhang, L.; Li, T.; Liu, G.; Wang, H.; Lu, K. p-Toluenesulphonic acid-promoted, I 2-catalysed sulphenylation of pyrazolones with aryl sulphonyl hydrazides. Chem. Commun., 2014, 50(86), 13121-13123.
[243]
Zhao, X.; Zhang, L.; Lu, X.; Li, T.; Lu, K. Synthesis of 2-aryl and 3-aryl benzo [b] furan thioethers using aryl sulfonyl hydrazides as sulfenylation reagents. J. Org. Chem., 2015, 80(5), 2918-2924.
[244]
Pires, C.S.; de Oliveira, D.H.; Pontel, M.R.B.; Kazmierczak, J.C.; Cargnelutti, R.; Alves, D.; Jacob, R.G.; Schumacher, R.F. Molecular iodine-catalyzed one-pot multicom-ponent synthesis of 5-amino-4-(arylselanyl)-1 H -pyrazoles. Beilstein J. Org. Chem., 2018, 14(1), 2789-2798.
[http://dx.doi.org/10.3762/bjoc.14.256] [PMID: 30498528]
[245]
Zhao, W.; Xie, P.; Bian, Z.; Zhou, A.; Ge, H.; Zhang, M.; Ding, Y.; Zheng, L. Ammonium iodide induced nonradical regioselective sulfenylation of flavones via a C–H functionalization process. J. Org. Chem., 2015, 80(18), 9167-9175.
[http://dx.doi.org/10.1021/acs.joc.5b01602]
[246]
Shi, L.; Xue, L.; Lang, R.; Xia, C.; Li, F. Four-component synthesis of β-Enaminone and pyrazole through phosphine-free palladium-catalyzed cascade carbonylation. ChemCatChem, 2014, 6(9), 2560-2566.
[http://dx.doi.org/10.1002/cctc.201402277]
[247]
Iranpoor, N.; Firouzabadi, H.; Etemadi-Davan, E. Phosphine- and copper-free palladium catalyzed one-pot four-component carbonylation reaction for the synthesis of isoxazoles and pyrazoles. Tetrahedron Lett., 2016, 57(8), 837-840.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.053]
[248]
Chen, Q.; Yao, F.; Yin, L.; Cai, M. A highly efficient heterogeneous palladium-catalyzed cascade three-component reaction of acid chlorides, terminal alkynes and hydra-zines leading to pyrazoles. J. Organomet. Chem., 2016, 804, 108-113.
[http://dx.doi.org/10.1016/j.jorganchem.2015.12.037]
[249]
Tu, Y.; Zhang, Z.; Wang, T.; Ke, J.; Zhao, J. A regioselective approach to trisubstituted pyrazoles via palladium-catalyzed oxidative sonogashira-carbonylation of arylhy-drazines. Org. Lett., 2017, 19(13), 3466-3469.
[http://dx.doi.org/10.1021/acs.orglett.7b01447] [PMID: 28641015]
[250]
Tan, C.; Wang, P.; Liu, H.; Zhao, X-L.; Lu, Y.; Liu, Y. Bifunctional ligands in combination with phosphines and Lewis acidic phospheniums for the carbonylative Sonogashira reaction. Chem. Commun., 2015, 51(4), 108971-110874.
[http://dx.doi.org/10.1039/C5CC03697F]
[251]
Wu, X.F.; Neumann, H.; Beller, M. A general and convenient palladium‐catalyzed carbonylative sonogashira coupling of aryl bromides. Chemistry, 2010, 16(40), 12104-12107.
[http://dx.doi.org/10.1002/chem.201001864]
[252]
Ningaiah, S.; Doddaramappa, S.D. Chandra; Madegowda, M.; Keshavamurthy, S.; Bhadraiah, U.K. One-pot tandem synthesis of tetrasubstituted pyrazoles via 1, 3-dipolar cycloaddition between aryl hydrazones and ethyl but-2-ynoate. Synth. Commun., 2014, 44(15), 2222-2231.
[http://dx.doi.org/10.1080/00397911.2014.891744]
[253]
Lokanatha Rai, K.; Linganna, N. Mercuric acetate in organic synthesis: A simple procedure for the synthesis of pyrazolines1. Int. J. Rapid Commu. Synth. Org. Chem., 1997, 27(21), 3737-3744.
[http://dx.doi.org/10.1080/00397919708007296]
[254]
Saeed, A.; Channar, P.A. A green mechanochemical synthesis of new 3,5-dimethyl-4-(arylsulfanyl)pyrazoles. J. Heterocycl. Chem., 2017, 54(1), 780-783.
[http://dx.doi.org/10.1002/jhet.2528]
[255]
Velpula, R.; Deshineni, R.; Gali, R.; Bavantula, R. One-pot multicomponent synthesis of novel 1-thiazolyl-5-coumarin-3-yl-pyrazole derivatives and evaluation of their cytotoxic activity. Res. Chem. Intermed., 2016, 42(3), 1729-1740.
[http://dx.doi.org/10.1007/s11164-015-2114-2]
[256]
Vaarla, K.; Kesharwani, R.K.; Santosh, K.; Vedula, R.R.; Kotamraju, S.; Toopurani, M.K. Synthesis, biological activity evaluation and molecular docking studies of novel coumarin substituted thiazolyl-3-aryl-pyrazole-4-carbaldehydes. Bioorg. Med. Chem. Lett., 2015, 25(24), 5797-5803.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.042] [PMID: 26542964]
[257]
Kadam, K.R.; Kamble, N.R.; Kamble, V.T. NbCl5-AgClO4 as an effective, synergetic catalytic system for the synthesis of fully substituted pyrazoles. Rasayan J. Chem., 2020, 13(2), 854-859.
[http://dx.doi.org/10.31788/RJC.2020.1325728]
[258]
Li, X.T.; Liu, Y-H.; Liu, X.; Zhang, Z-H. Meglumine catalyzed one-pot, three-component combinatorial synthesis of pyrazoles bearing a coumarin unit. RSC Adv., 2015, 5(33), 25625-25633.
[http://dx.doi.org/10.1039/C5RA01677K]
[259]
Rakhtshah, J.; Salehzadeh, S.; Gowdini, E.; Maleki, F.; Baghery, S.; Zolfigol, M.A. Synthesis of pyrazole derivatives in the presence of a dioxomolybdenum complex supported on silica-coated magnetite nanoparticles as an efficient and easily recyclable catalyst. RSC Adv., 2016, 6(106), 104875-104885.
[http://dx.doi.org/10.1039/C6RA20988B]
[260]
Moosavi-Zare, A.R.; Zolfigol, M.A.; Rezanejad, Z. Trityl chloride promoted the synthesis of 3-(2, 6-diarylpyridin-4-yl)-1H-indoles and 2, 4, 6-triarylpyridines by in situ generation of trityl carbocation and anomeric based oxidation in neutral media. Canadian J. Chem., 2016, 94(7), 626-630.
[261]
Zolfigol, M. RCS Adv., 2016, 6, 50100-50111.
[262]
Zolfigol, M.A.; Safaiee, M.; Afsharnadery, F.; Bahrami-Nejad, N.; Baghery, S.; Salehzadeha, S.; Malekia, M. Silica vanadic acid [SiO2–VO(OH)2] as an efficient heteroge-neous catalyst for the synthesis of 1, 2-dihydro-1-aryl-3 H-naphth [1, 2-e][1, 3] oxazin-3-one and 2, 4, 6-triarylpyridine derivatives via anomeric based oxidation. RSC Adv., 2015, 122(5), 100546-100559.
[263]
Badhe, K.; Dabholkar, V.; Kurade, S. One-pot Synthesis of 5-Amino-1H-pyrazole-4-carbonitrile Using Calcined Mg-Fe Hydrotalcite Catalyst. Curr. Organocatal., 2018, 5(1), 3-12.
[http://dx.doi.org/10.2174/2213337205666180516094624]
[264]
Amirnejat, S.; Nosrati, A.; Javanshir, S. Superparamagnetic Fe3O4 @Alginate supported L‐arginine as a powerful hybrid inorganic–organic nanocatalyst for the one‐pot synthesis of pyrazole derivatives. Appl. Organomet. Chem., 2020, 34(10), e5888.
[http://dx.doi.org/10.1002/aoc.5888]
[265]
Arora, P.; Rajput, J.K. One-pot multicomponent click synthesis of pyrazole derivatives using cyclodextrin-supported capsaicin nanoparticles as catalyst. J. Mater. Sci., 2017, 52(19), 11413-11427.
[http://dx.doi.org/10.1007/s10853-017-1304-2]
[266]
Kiyani, H.; Bamdad, M. Sodium ascorbate as an expedient catalyst for green synthesis of polysubstituted 5-aminopyrazole-4-carbonitriles and 6-amino-1, 4-dihydropyrano [2, 3-c] pyrazole-5-carbonitriles. Res. Chem. Intermed., 2018, 44(4), 2761-2778.
[267]
Akhmadiev, N.S.; Akhmetova, V.R.; Boiko, T.F.; Ibragimov, A.G. Nickel-catalyzed multicomponent heterocyclization of 2,4-pentanedione to sulfanylmethyl-1H-pyrazoles. Chem. Heterocycl. Compd., 2018, 54(3), 344-350.
[http://dx.doi.org/10.1007/s10593-018-2271-5]
[268]
Nikpassand, M.; Fekri, L.Z.; Varma, R.S.; Hassanzadi, L.; Pashaki, F.S. Green synthesis of novel 5-amino-bispyrazole-4-carbonitriles using a recyclable Fe3O4@ SiO2@ vanillin@ thioglycolic acid nano-catalyst. RSC Adv., 2022, 12(2), 834-844.
[269]
Shao, Y.; Zheng, H.; Qian, J.; Wan, X. in situ generation of nitrilimines from aryldiazonium salts and diazo esters: Synthesis of fully substituted pyrazoles under room temperature. Org. Lett., 2018, 20(8), 2412-2415.
[http://dx.doi.org/10.1021/acs.orglett.8b00750] [PMID: 29624059]
[270]
Huisgen, R.; Koch, H. J Die Kupplung aromatischer mit aliphatischen Diazoverbindungen. Justus Liebig's Annals Chem., 1955, 591(2), 200-231.
[http://dx.doi.org/10.1002/jlac.19555910206]
[271]
Jia, X.; Li, P.; Liu, X.; Lin, J.; Chu, Y.; Yu, J.; Wang, J.; Liu, H.; Zhao, F. Green and facile assembly of diverse fused N-heterocycles using gold-catalyzed cascade reac-tions in water. Molecules, 2019, 24(5), 988.
[http://dx.doi.org/10.3390/molecules24050988] [PMID: 30862100]
[272]
Mehiaoui, N.; Kibou, Z.; Berrichi, A.; Bachir, R.; Choukchou-Braham, N. Novel synthesis of 3-cyano-2-pyridones derivatives catalyzed by Au–Co/TiO2. Res. Chem. Intermed., 2020, 46(12), 5263-5280.
[273]
Rudolph, M.; Hashmi, A.S.K. Heterocycles from gold catalysis. Chem. Commun., 2011, 47(23), 6536-6544.
[http://dx.doi.org/10.1039/c1cc10780a] [PMID: 21451867]
[274]
Verlee, A.; Heugebaert, T.; van der Meer, T.; Kerchev, P.; Van Breusegem, F.; Stevens, C.V. Domino reaction of a gold catalyzed 5- endo-dig cyclization and a [3,3]-sigmatropic rearrangement towards polysubstituted pyrazoles. Org. Biomol. Chem., 2018, 16(48), 9359-9363.
[http://dx.doi.org/10.1039/C8OB02807A] [PMID: 30515488]
[275]
Khalili, G. Multicomponent reaction for synthesis of N -arylsulfonyl pyrazoles. Synth. Commun., 2013, 43(23), 3170-3174.
[http://dx.doi.org/10.1080/00397911.2013.771188]
[276]
Poonam; Singh, R. Facile one-pot synthesis of 5-amino-1H-pyrazole-4-carbonitriles using alumina–silica-supported MnO2 as recyclable catalyst in water. Res. Chem. Intermed., 2019, 45(9), 4531-4542.
[http://dx.doi.org/10.1007/s11164-019-03847-8]
[277]
Souza, J.F.; de Aquino, T.F.B.; Nascimento, J.E.R.; Jacob, R.G.; Fajardo, A.R. Alginate–copper microspheres as efficient and reusable heterogeneous catalysts for the one-pot synthesis of 4-organylselanyl-1 H -pyrazoles. Catal. Sci. Technol., 2020, 10(12), 3918-3930.
[http://dx.doi.org/10.1039/D0CY00778A]
[278]
Rather, R.A.; Khan, M.U.; Siddiqui, Z.N. Sulphated alumina tungstic acid (SATA): A highly efficient and novel heterogeneous mesostructured catalyst for the synthesis of pyrazole carbonitrile derivatives and evaluation of green metrics. RSC Adv., 2020, 10(2), 818-827.
[http://dx.doi.org/10.1039/C9RA09013D] [PMID: 35494479]
[279]
Lellek, V.; Chen, C.; Yang, W.; Liu, J.; Ji, X.; Faessler, R. An efficient synthesis of substituted pyrazoles from one-pot reaction of ketones, aldehydes, and hydrazine monohydrochloride. Synlett, 2018, 29(8), 1071-1075.
[http://dx.doi.org/10.1055/s-0036-1591941]
[280]
Bamdad, M.; Kiyani, H. One-pot and efficient synthesis of 5-aminopyrazole-4-carbonitriles catalyzed by potassium phthalimide. Heterocycles, 2017, 94(2), 276-285.
[281]
Ali El-Remaily, M.A.E.A.A.; El-Dabea, T.; Alsawat, M.; Mahmoud, M.H.H.; Alfi, A.A.; El-Metwaly, N.; Abu-Dief, A.M. Development of new thiazole complexes as powerful catalysts for synthesis of pyrazole-4-carbonitrile derivatives under ultrasonic irradiation condition supported by DFT studies. ACS Omega, 2021, 6(32), 21071-21086.
[http://dx.doi.org/10.1021/acsomega.1c02811] [PMID: 34423215]
[282]
Abshirini, Z. A highly effectual and rapid protocol for the synthesis of 5-Amino-1, 3-diaryl-1 H-pyrazole-4-carbonitriles using 1, 3-disulfonic acid imidazolium tri-fluoroacetate as a dual-functional catalyst. Org. Prep. Proced. Int., 2020, 52(5), 428-433.
[283]
Irannejad-Gheshlaghchaei, N.; Zare, A.; Sajadikhah, S.S.; Banaei, A. A novel dicationic ionic liquid as a highly effectual and dual-functional catalyst for the synthesis of 3-methyl-4-arylmethylene-isoxazole-5 (4H)-ones. Res. Chem. Intermed., 2018, 44(10), 6253-6266.
[284]
Prasad, D.; Patil, K.N.; Chaitra, C.R.; Sandhya, N.; Bhanushali, J.T.; Gosavi, S.W.; Jadhav, A.H.; Nagaraja, B.M. Sulfonic acid functionalized PVA/PVDF composite hollow microcapsules: Highly phenomenal & recyclable catalysts for sustainable hydrogen production. App. Surface Sci., 2019, 488, 714-727.
[285]
Patki, A.S.; Patil, K.N.; Kusuma, S.; Muley, D.B.; Jadhav, A.H. One-pot synthesis of multicomponent pyrazole-4-carbonitrile derivatives under solvent-free condition by using engineered polyvinyl alcohol catalyst. Res. Chem. Intermed., 2021, 47, 2751-2773.
[http://dx.doi.org/10.1007/s11164-021-04450-6]
[286]
Magini, M.; Bitla, S.; Puchakayala, M.R.; Birudaraju, S.; Dhanavath, R.; Atcha, K.R. An efficient (TBA) 2S2O8 catalyzed regioselective solvent-free one-pot synthesis of fully substituted pyrazoles. Results Chem., 2021, 3, 100184.
[287]
Zhu, C.; Zeng, H.; Liu, C.; Cai, Y.; Fang, X.; Jiang, H. Regioselective synthesis of 3-trifluoromethylpyrazole by coupling of aldehydes, sulfonyl hydrazides, and 2-bromo-3, 3, 3-trifluoropropene. Org. Lett., 2020, 22(3), 809-813.
[288]
Li, F.; Nie, J.; Sun, L.; Zheng, Y.; Ma, J-A. Silver‐Mediated Cycloaddition of Alkynes with CF3CHN2: Highly regioselective synthesis of 3‐trifluoromethylpyrazoles. Angew. Chem. Int. Ed. Engl., 2013, 52(24), 6255-6258.
[289]
Pérez-Aguilar, M.C.; Valdés, C. Synthesis of Chiral Pyrazoles: A 1,3-Dipolar Cycloaddition/[1,5] Sigmatropic Rearrangement with Stereoretentive Migration of a Stereo-genic Group. Angew. Chem. Int. Ed., 2015, 54(46), 13729-13733.
[http://dx.doi.org/10.1002/anie.201506881] [PMID: 26390991]
[290]
Yu, Y.; Huang, W.; Chen, Y.; Gao, B.; Wu, W.; Jiang, H. Calcium carbide as the acetylide source: Transition-metal-free synthesis of substituted pyrazoles via [1, 5]-sigmatropic rearrangements. Green Chem., 2016, 18(24), 6445-6449.
[291]
Zhu, C.; Li, J.; Chen, P.; Wu, W.; Ren, Y.; Jiang, H. Transition-metal-free cyclopropanation of 2-aminoacrylates with N-tosylhydrazones: A general route to cyclopropane α-amino acid with contiguous quaternary carbon centers. Org. Lett., 2016, 18(6), 1470-1473.
[292]
Uppalapati, D.S.; Dachuru, R.S.R.; Sunkara, S.V. Silica sulfuric acid mediated synthesis of naphtho [2, 1‐b] furan derivatives and development of one‐pot multicom-ponent synthesis of substituted pyrazole derivatives. J. Heterocycl. Chem., 2021, 58(8), 4659-1699.
[293]
Kamble, S.S.; Shankarling, G.S.J.C. A unique blend of water, DES and ultrasound for one-pot knorr pyrazole synthesis and knoevenagel-michael addition reaction. 2018, 3(7), 2032-2036.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy