Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Nano Architect-Based Targeted Delivery Systems for Diabetic Nephropathy: A Review

Author(s): Aruna Rawat, Vikas Jhawat* and Rohit Dutt

Volume 24, Issue 8, 2023

Published on: 02 June, 2023

Page: [662 - 672] Pages: 11

DOI: 10.2174/1389450124666230601163338

Price: $65

Abstract

Diabetes mellitus is a long-lasting disease that is very common in the age group above 20 years and is characterized by hyperglycemia with other complications like Diabetic Nephropathy (DN). The management of DN focuses on mainly four regions: reduction of cardiovascular risks, control of blood glycemic levels, control of the blood pressure (BP) profile, and the use of therenin-angiotensin system (RAS). Although BP management and RAS-acting agents can postpone the onset of DN, they cannot prevent it. In the modern era, nanotechnological interventions have spread rapidly in the field of medicine. Patient defiance is considered important in diabetes management when long-term or continuous management is required. Nano pharmaceuticals have been shown to increase compliance of diabetic patients by providing multiple ways of drug delivery, controlling release profile, increasing biological steadiness, targeting efficacy, and decreasing toxic profile. Nanoscale formulations of botanical antidiabetic molecules improve clinical efficacy and treatment compliance by overcoming associated biopharmaceutical and pharmacokinetic barriers. Therefore, the development of nanopharmaceuticals can be considered to be a possible answer to attain the finest scientific effect of the plant-based anti-diabetic molecule. Nevertheless, further studies are needed to create clinical research-based and therapeutically effective nanoforms of antidiabetic plant-based molecules to combat the most dreaded disease of diabetes and its known present complications.

Graphical Abstract

[1]
Divers J, Mayer-Davis EJ, Lawrence JM, et al. Trends in incidence of type 1 and type 2 diabetes among youths-selected counties and Indian reservations, United States, 2002–2015. MMWR Morb Mortal Wkly Rep 2020; 69(6): 161-5.
[http://dx.doi.org/10.15585/mmwr.mm6906a3] [PMID: 32053581]
[2]
Rawshani A, Rawshani A, Franzén S, et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med 2017; 376(15): 1407-18.
[http://dx.doi.org/10.1056/NEJMoa1608664] [PMID: 28402770]
[3]
Li H, Lu W, Wang A, Jiang H, Lyu J. Changing epidemiology of chronic kidney disease as a result of type 2 diabetes mellitus from 1990 to 2017: Estimates from Global Burden of Disease 2017. J Diabetes Investig 2021; 12(3): 346-56.
[http://dx.doi.org/10.1111/jdi.13355] [PMID: 32654341]
[4]
Tapp RJ, Shaw JE, Zimmet PZ, et al. Albuminuria is evident in the early stages of diabetes onset: Results from the Australian diabetes, obesity, and lifestyle study (AusDiab). Am J Kidney Dis 2004; 44(5): 792-8.
[http://dx.doi.org/10.1016/S0272-6386(04)01079-0] [PMID: 15492944]
[5]
Arora MK, Singh UK. Molecular mechanisms in the pathogenesis of diabetic nephropathy: An update. Vascul Pharmacol 2013; 58(4): 259-71.
[http://dx.doi.org/10.1016/j.vph.2013.01.001] [PMID: 23313806]
[6]
Wang Y, Shan SK, Guo B, et al. The multi-therapeutic role of MSCs in diabetic nephropathy. Front Endocrinol (Lausanne) 2021; 12: 671566.
[http://dx.doi.org/10.3389/fendo.2021.671566] [PMID: 34163437]
[7]
Selby NM, Taal MW. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab 2020; 22(S1) (Suppl. 1): 3-15.
[http://dx.doi.org/10.1111/dom.14007] [PMID: 32267079]
[8]
Magee C, Grieve DJ, Watson CJ, Brazil DP. Diabetic nephropathy: A tangled web to unweave. Cardiovasc Drugs Ther 2017; 31(5-6): 579-92.
[http://dx.doi.org/10.1007/s10557-017-6755-9] [PMID: 28956186]
[9]
Parsamanesh N, Moossavi M, Bahrami A, Butler AE, Sahebkar A. Therapeutic potential of curcumin in diabetic complications. Pharmacol Res 2018; 136: 181-93.
[http://dx.doi.org/10.1016/j.phrs.2018.09.012] [PMID: 30219581]
[10]
Jiang S, Fang J, Yu T, Liu L, Zou G, Gao H. Novel model predicts diabetic nephropathy in type 2 diabetes. Am J Nephrol 2020; 51(2): 130-8.
[http://dx.doi.org/10.1159/000505145] [PMID: 31865340]
[11]
Toth-Manikowski S, Atta MG. Diabetic kidney disease: Pathophysiology and therapeutic targets. J Diabetes Res 2015; 2015: 697010.
[http://dx.doi.org/10.1155/2015/697010] [PMID: 26064987]
[12]
Lim AK. Diabetic nephropathy-Complications, and treatment. Int J Nephrol Renovasc Dis 2021; 7: 361-81.
[http://dx.doi.org/10.2147/IJNRD.S40172] [PMID: 25342915]
[13]
Tesch GH. Diabetic nephropathy-Is this an immune disorder? Clin Sci (Lond) 2017; 131(16): 2183-99.
[http://dx.doi.org/10.1042/CS20160636]
[14]
Haneda M, Utsunomiya K, Koya D, et al. A new classification of diabetic nephropathy 2014: A report from joint committee on diabetic nephropathy. J Diabetes Investig 2015; 6(2): 242-6.
[http://dx.doi.org/10.1111/jdi.12319] [PMID: 25802733]
[15]
Cabrera VJ, Hansson J, Kliger AS, Finkelstein FO. Symptom management of the patient with CKD: The role of dialysis. Clin J Am Soc Nephrol 2017; 12(4): 687-93.
[http://dx.doi.org/10.2215/CJN.01650216] [PMID: 28148557]
[16]
Banu S, Jabir NR, Manjunath NC, et al. Reduction of post-prandial hyperglycemia by mulberry tea in type-2 diabetes patients. Saudi J Biol Sci 2015; 22(1): 32-6.
[http://dx.doi.org/10.1016/j.sjbs.2014.04.005] [PMID: 25561880]
[17]
Rapa SF, Di Iorio BR, Campiglia P, Heidland A, Marzocco S. Inflammation and oxidative stress in chronic kidney disease—potential therapeutic role of minerals, vitamins, and plant-derived metabolites. Int J Mol Sci 2019; 21(1): 263.
[http://dx.doi.org/10.3390/ijms21010263] [PMID: 31906008]
[18]
Wang J, Liu H, Li N, Zhang Q, Zhang H. The protective effect of fucoidan in rats with streptozotocin-induced diabetic nephropathy. Mar Drugs 2014; 12(6): 3292-306.
[http://dx.doi.org/10.3390/md12063292] [PMID: 24886867]
[19]
Liu C, Wu K, Gao H, Li J, Xu X. Current strategies and potential prospects for nanoparticle-mediated treatment of diabetic nephropathy. Diabetes Metab Syndr Obes 2022; 15: 2653-73.
[http://dx.doi.org/10.2147/DMSO.S380550] [PMID: 36068795]
[20]
Lin B, Ma YY, Wang JW. Nano-technological approaches for targeting kidney diseases with a focus on diabetic nephropathy: Recent progress and future perspectives. Front Bioeng Biotechnol 2022; 10: 870049.
[http://dx.doi.org/10.3389/fbioe.2022.870049] [PMID: 35646840]
[21]
Wu K, Yu B, Li D, Tian Y, Liu Y, Jiang J. Recent advances in nanoplatforms for the treatment of osteosarcoma. Front Oncol 2022; 12(12): 805978.
[http://dx.doi.org/10.3389/fonc.2022.805978] [PMID: 35242707]
[22]
Martin V, Bennetzen KM. Novel applications of nanoparticles for future enhanced oil recovery. Paper presented at the International Petroleum Technology Conference. Kuala Lumpur, Malaysia. 2014.
[http://dx.doi.org/10.2523/IPTC-17857-MS]
[23]
Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioeng Transl Med 2019; 4(3): e10143.
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]
[24]
Bo Cui FG, Zeng Z, Wang C, et al. Construction and characterization of avermectin B2 solid nanodispersion. Sci Rep 2020; 10(1): 9096.
[http://dx.doi.org/10.1038/s41598-020-66098-3] [PMID: 32499551]
[25]
Leitner J, Sedmidubský D, Jankovský O. Size and shape-dependent solubility of CuO nanostructures. Materials (Basel) 2019; 12(20): 3355.
[http://dx.doi.org/10.3390/ma12203355] [PMID: 31618830]
[26]
Li S, Sun K, Zhao Y, Nie G, Song S. Purification and rapid dissolution of potassium sulfate in aqueous solutions. RSC Advances 2019; 9(4): 2156-61.
[http://dx.doi.org/10.1039/C8RA08284G] [PMID: 35516158]
[27]
Guan W, Tang L, Wang Y, Cui H. Fabrication of an effective avermectin nanoemulsion using a cleavable succinic ester emulsifier. J Agric Food Chem 2018; 66(29): 7568-76.
[http://dx.doi.org/10.1021/acs.jafc.8b01388] [PMID: 29976065]
[28]
Vinod PB. Pathophysiology of diabetic nephropathy. Clin Queries Nephrol 2012; 1(2): 121-6.
[http://dx.doi.org/10.1016/S2211-9477(12)70005-5]
[29]
Gallagher H, Suckling RJ. Diabetic nephropathy: Where are we on the journey from pathophysiology to treatment? Diabetes Obes Metab 2016; 18(7): 641-7.
[http://dx.doi.org/10.1111/dom.12630] [PMID: 26743887]
[30]
Giuseppe Remuzzi, Manuel M, Ruggenenti P. Prevention and treatment of diabetic renal disease in type 2 diabetes: The BENEDICT study. J Am Soc Nephrol 2006; 17(4(Supp2)): S90-7.
[http://dx.doi.org/10.1681/ASN.2005121324] [PMID: 16565256]
[31]
Frimodt-Møller M, Rossing P. Clinical features and natural course of diabetic nephropathy diabetic nephropathy. In: Roelofs J, Vogt L, Eds. Diabetic Nephropathy. Cham: Springer 2019; pp. 21-32.
[http://dx.doi.org/10.1007/978-3-319-93521-8_2]
[32]
Schiffer TA, Friederich-Persson M. Mitochondrial reactive oxygen species and kidney hypoxia in the development of diabetic nephropathy. Front Physiol 2017; 8(8): 211.
[http://dx.doi.org/10.3389/fphys.2017.00211] [PMID: 28443030]
[33]
Fathy SA, Mohamed MR, Ali MAM. Influence of IL-6, IL-10, IFN-γ, and TNF-α genetic variants on susceptibility to diabetic kidney disease in type 2 diabetes mellitus patients. Biomarkers 2019; 24(1): 43-55.
[http://dx.doi.org/10.1080/1354750X.2018.1501761] [PMID: 30015512]
[34]
Ryabova TS, Rakityanskaya IA. The effects of IL6 cytokine expression in renal tissue on the clinical and morphological picture of iganephropathy in patients over 60 years old. Adv Gerontol 2012; 2(2): 244-8.
[PMID: 23130514]
[35]
Mount PF, Power DA. Nitric oxide in the kidney: Functions and regulation of synthesis. Acta Physiol (Oxf) 2006; 187(4): 433-46.
[http://dx.doi.org/10.1111/j.1748-1716.2006.01582.x] [PMID: 16866775]
[36]
Warren AM, Knudsen ST, Cooper ME. Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies. Expert Opin Ther Targets 2019; 23(7): 579-91.
[http://dx.doi.org/10.1080/14728222.2019.1624721] [PMID: 31154867]
[37]
Harvey M. Restriction of combined use of medicines affecting the renin-angiotensin system (RAS). European Medicines Agency 2014. Available from: https://www.ema.europa.eu/en/documents/referral/restriction-combined-use-medicines-affecting-renin-angiotensin-system-ras_en.pdf
[38]
Umanath K, Lewis JB. Update on diabetic nephropathy: Core curriculum 2018. Am J Kidney Dis 2018; 71(6): 884-95.
[http://dx.doi.org/10.1053/j.ajkd.2017.10.026] [PMID: 29398179]
[39]
Heerspink HJL, Perkins BA, Fitchett DH, Husain M, Cherney DZI. Sodium-glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 2016; 134(10): 752-72.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.021887] [PMID: 27470878]
[40]
Linda F, Fried NE, Jane H, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med 2013; 369(20): 1892-903.
[http://dx.doi.org/10.1056/NEJMoa1303154] [PMID: 24206457]
[41]
Abdel-Magid AD, Mohamed Abou-Salem ES, Nancy Salaam MHA, El-Garhy HAS. The potential effect of garlic extract and curcumin nanoparticles against complications accompanied with experimentally induced diabetes in rats. Phytomedicine 2017; 43: 126-34.
[http://dx.doi.org/10.1016/j.phymed.2018.04.039] [PMID: 29747745]
[42]
D’Souza AA, Devarajan PV. Bioenhanced oral curcumin nanoparticles: Role of carbohydrates. Carbohydr Polym 2016; 136: 1251-8.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.021] [PMID: 26572468]
[43]
Dodda D, Ciddi V. Plants used in the management of diabetic complications. Indian J Pharm Sci 2014; 76(2): 97-106.
[PMID: 24843182]
[44]
Tiwari RK, Sharma A, Pandey RK, Shukla SS. A review on mechanism and plants used for diabetic nephropathy: A curse of diabetes. Mintage J Pharmaceut Med Sci 2019; 8(4): 2320-3315.
[45]
Tsabang N, Yedjou CG, Tsambang L, et al. Treatment of diabetes and/or hypertension using medicinal plants in Cameroon. Med Aromat Plants 2015; Suppl 2: 003.
[http://dx.doi.org/10.4172/2167-0412.S2-003] [PMID: 26550547]
[46]
Han J, Tong M, Yu X, et al. Surfactant-free amorphous solid dispersion with high dissolution for bioavailability enhancement of hydrophobic drugs: A case of quercetin. Drug Dev Ind Pharm 2020; 47(1): 153-62.
[http://dx.doi.org/10.1080/03639045.2020.1862173] [PMID: 33295808]
[47]
Effect of intensive diabetes treatment on albuminuria in type 1 diabetes: long-term follow-up of the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications study. Lancet Diabetes Endocrinol 2014; 2(10): 793-800.
[http://dx.doi.org/10.1016/S2213-8587(14)70155-X] [PMID: 25043685]
[48]
Genuth S, Eastman R, Kahn R, et al. Implications of the United kingdom prospective diabetes study. Diabetes Care 2003; 26 (Suppl. 1): s28-32.
[http://dx.doi.org/10.2337/diacare.26.2007.S28] [PMID: 12502617]
[49]
Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345(12): 861-9.
[http://dx.doi.org/10.1056/NEJMoa011161] [PMID: 11565518]
[50]
Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345(12): 851-60.
[http://dx.doi.org/10.1056/NEJMoa011303] [PMID: 11565517]
[51]
Armstrong C. JNC8 guidelines for the management of hypertension in adults. Am Fam Physician 2014; 90(7): 503-4.
[PMID: 25369633]
[52]
Menne J, Ritz E, Ruilope LM, Chatzikyrkou C, Viberti G, Haller H. The Randomized Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) observational follow-up study: Benefits of RAS blockade with olmesartan treatment are sustained after study discontinuation. J Am Heart Assoc 2014; 3(2): e000810.
[http://dx.doi.org/10.1161/JAHA.114.000810] [PMID: 24772521]
[53]
Lin B, Ma YY, Wang JW. Nanotechnological Approaches for targetting kidney diseases with a focus on diabetic nephropathy: Recent progress, and future perspectives. Front Bioeng Biotechnol 2022; 10: 870049.
[http://dx.doi.org/10.3389/fbioe.2022.870049]
[54]
Hauser PV, Chang HM, Yanagawa N, Hamon M. Nanotechnology, Nanomedicine, and the Kidney. Appl Sci (Basel) 2021; 11(16): 7187. [Review].
[http://dx.doi.org/10.3390/app11167187]
[55]
Khater SI, Mohamed AAR, Arisha AH, et al. Stabilized-chitosan selenium nanoparticles efficiently reduce renal tissue injury and regulate the expression pattern of aldose reductase in the diabetic-nephropathy rat model. Life Sci 2021; 279: 119674.
[http://dx.doi.org/10.1016/j.lfs.2021.119674] [PMID: 34081992]
[56]
Bakris GL, Agarwal R, Chan JC, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: A randomized clinical trial. JAMA 2015; 314(9): 884-94.
[http://dx.doi.org/10.1001/jama.2015.10081] [PMID: 26325557]
[57]
Rastogi A, Bhansali A. SGLT2 inhibitors through the windows of EMPA-REG and CANVAS trials: A review. Diabetes Ther 2017; 8(6): 1245-51.
[http://dx.doi.org/10.1007/s13300-017-0320-1] [PMID: 29076040]
[58]
Ganugula R, Arora M, Jaisamut P, et al. Nano-curcumin safely prevents streptozotocin-induced inflammation and apoptosis in pancreatic beta cells for effective management of Type 1 diabetes mellitus. Br J Pharmacol 2017; 174(13): 2074-84.
[http://dx.doi.org/10.1111/bph.13816] [PMID: 28409821]
[59]
Adewale OO, Samuel ES, Manubolu M, Pathakoti K. Curcumin protects sodium nitrite-induced hepatotoxicity in Wistar rats. Toxicol Rep 2019; 6: 1006-11.
[http://dx.doi.org/10.1016/j.toxrep.2019.09.003] [PMID: 31673502]
[60]
Kaya I, Yiğit N, Benli M. Antimicrobial activity of various extracts of Ocimum basilicum and observation of the inhibition effect on bacterial cells by use of scanning electron microscopy. Afr J Tradit Complement Altern Med 2008; 5(4): 363-9.
[http://dx.doi.org/10.4314/ajtcam.v5i4.31291] [PMID: 20161958]
[61]
Khair-ul-Bariyah S. An extensive survey of the phytochemistry and therapeutic potency of Ocimum sanctum (Queen of Herbs). Pak J Chem 2013; 3(1): 8-18.
[http://dx.doi.org/10.15228/2013.v03.i01.p02]
[62]
Bayda S, Adeel M, Tuccinardi T, Cordan M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2020; 25(1): 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[63]
Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug delivery applications. Environ Chem Lett 2019; 17(2): 849-65.
[http://dx.doi.org/10.1007/s10311-018-00841-1]
[64]
Girdhar V, Patil S, Banerjee S, Singhvi G. Nanocarriers for drug delivery: Mini review. Curr Nanomed 2018; 8(2): 88-99.
[http://dx.doi.org/10.2174/2468187308666180501092519]
[65]
Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res 2019; 15: 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005]
[66]
Ahad A, Raish M, Ahmad A, Al-Jenoobi FI, Al-Mohizea AM. Eprosartan mesylate loaded bilosomes as potential nano-carriers against diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharm Sci 2018; 111: 409-17.
[http://dx.doi.org/10.1016/j.ejps.2017.10.012] [PMID: 29030177]
[67]
Zhang M, Zang X, Wang M, et al. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: recent advances and challenges. J Mater Chem B Mater Biol Med 2019; 7(15): 2421-33.
[http://dx.doi.org/10.1039/C9TB00170K] [PMID: 32255119]
[68]
Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat Rev Drug Discov 2015; 14(1): 45-57.
[http://dx.doi.org/10.1038/nrd4477] [PMID: 25430866]
[69]
des Rieux A, Fievez V, Guerinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J Control Release 2006; 116(1): 1-27.
[http://dx.doi.org/10.1016/j.jconrel.2006.08.013] [PMID: 17050027]
[70]
Chakraborty S, Dlie ZY, Chakraborty S, et al. Aptamer-functionalized drug nanocarrier improves hepatocellular carcinoma toward normal by targeting neoplastic hepatocytes. Mol Ther Nucleic Acids 2020; 20: 34-49.
[http://dx.doi.org/10.1016/j.omtn.2020.01.034] [PMID: 32146417]
[71]
Wang G, Li Q, Chen D, et al. Kidney-targeted rhein-loaded liponanoparticles for diabetic nephropathy therapy via size control and enhancement of renal cellular uptake. Theranostics 2019; 9(21): 6191-208.
[http://dx.doi.org/10.7150/thno.37538] [PMID: 31534545]
[72]
Prabhakar SS. Effects of curcumin in experimental diabetic nephropathy. J Investig Med 2016; 65(1): 1-6.
[http://dx.doi.org/10.1136/jim-2016-000272] [PMID: 27683729]
[73]
Mitra R, Kaura K, Kaushik P. Renoprotective effect of nanoformulation of taurine in streptozotocin induced diabetic nephropathy in wistar rats. PAIDEUMA J 2019; 12(12): 444-61.
[74]
Huang C, Xue LF, Hu B, et al. Calycosin-loaded nanoliposomes as potential nanoplatforms for treatment of diabetic nephropathy through regulation of mitochondrial respiratory function. J Nanobiotechnology 2021; 19(1): 178.
[http://dx.doi.org/10.1186/s12951-021-00917-1] [PMID: 34120609]
[75]
Yang X. Design and optimization of crocetin loaded PLGA nanoparticles against diabetic nephropathy via suppression of inflammatory biomarkers: A formulation approach to preclinical study. Drug Deliv 2019; 26(1): 849-59.
[http://dx.doi.org/10.1080/10717544.2019.1642417] [PMID: 31524015]
[76]
Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M. Antioxidant, anti-apoptotic, and protective effects of myricitrin and its solid lipid nanoparticle on streptozotocin-nicotinamide-induced diabetic nephropathy in type 2 diabetic male mice. Iran J Basic Med Sci 2019; 22(12): 1424-31.
[PMID: 32133060]
[77]
Yu Y, Gao J, Jiang L, Wang J. Antidiabetic nephropathy effects of synthesized gold nanoparticles through mitigation of oxidative stress. Arab J Chem 2021; 14(3): 103007.
[http://dx.doi.org/10.1016/j.arabjc.2021.103007]
[78]
Hu JB, Li SJ, Kang XQ, et al. CD44-targeted hyaluronic acid-curcumin prodrug protects renal tubular epithelial cell survival from oxidative stress damage. Carbohydr Polym 2018; 193: 268-80.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.011] [PMID: 29773381]
[79]
Allam AN, Komeil IA, Fouda MA, Abdallah OY. Preparation, characterization and in vivo evaluation of curcumin self-nano phospholipid dispersion as an approach to enhance oral bioavailability. Int J Pharm 2015; 489(1-2): 117-23.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.067] [PMID: 25936626]
[80]
Gouda W, Hafiz NA, Mageed L, et al. Effects of nano-curcumin on gene expression of insulin and insulin receptor. Bull Natl Res Cent 2019; 43(1): 128.
[http://dx.doi.org/10.1186/s42269-019-0164-0]
[81]
Tong F, Chai R, Jiang H, Dong B. in vitro/vivo drug release and anti-diabetic cardiomyopathy properties of curcumin/PBLG-PEG-PBLG nanoparticles. Int J Nanomedicine 2018; 13: 1945-62.
[http://dx.doi.org/10.2147/IJN.S153763] [PMID: 29662310]
[82]
Xie X, Tao Q, Zou Y, et al. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agric Food Chem 2011; 59(17): 9280-9.
[http://dx.doi.org/10.1021/jf202135j] [PMID: 21797282]
[83]
Joshi RP, Negi G, Kumar A, et al. SNEDDS curcumin formulation leads to enhanced protection from pain and functional deficits associated with diabetic neuropathy: An insight into its mechanism for neuroprotection. Nanomedicine 2013; 9(6): 776-85.
[http://dx.doi.org/10.1016/j.nano.2013.01.001] [PMID: 23347896]
[84]
Sharma S, Kulkarni SK, Chopra K. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 2006; 33(10): 940-5.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04468.x] [PMID: 17002671]
[85]
Zhao X, Wang W, Zu Y, et al. Preparation and characterization of betulin nanoparticles for oral hypoglycemic drug by antisolvent precipitation. Drug Deliv 2014; 21(6): 467-79.
[http://dx.doi.org/10.3109/10717544.2014.881438] [PMID: 24479653]
[86]
Qiong Ma LB, Zhao X, Tian X, et al. Novel glucose-responsive nanoparticles based on p-hydroxyphenethyl anisate and 3-acrylamidophenylboronic acid reduce blood glucose and ameliorated diabetic nephropathy. Mater Today Bio 2021; 13: 100181.
[87]
Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 2009; 133(3): 238-44.
[http://dx.doi.org/10.1016/j.jconrel.2008.10.002] [PMID: 18951932]
[88]
Kausar MA, Anwar S, Eltayb WA, et al. MD simulation studies for selective phytochemicals as potential inhibitors against major biological targets of diabetic nephropathy. Molecules 2022; 27(15): 4980.
[http://dx.doi.org/10.3390/molecules27154980] [PMID: 35956932]
[89]
Martakov IS, Shevchenko OG, Torlopov MA, Gerasimov EY, Sitnikov PA. Formation of gallic acid layer on γ-AlOOH nanoparticles surface and their antioxidant and membrane-protective activity. J Inorg Biochem 2019; 199: 110782.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110782] [PMID: 31362175]
[90]
Khan T, Gurav P. PhytoNanotechnology: Enhancing delivery of plant based anti-cancer drugs. Front Pharmacol 2018; 8: 1002.
[http://dx.doi.org/10.3389/fphar.2017.01002] [PMID: 29479316]
[91]
Martínez-Ballesta M, Gil-Izquierdo Á, García-Viguera C, Domínguez-Perles R. 2018.
[92]
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[93]
Davatgaran Taghipour Y, Hajialyani M, Naseri R, et al. Nanoformulations of natural products for management of metabolic syndrome. Int J Nanomedicine 2019; 14: 5303-21.
[http://dx.doi.org/10.2147/IJN.S213831] [PMID: 31406461]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy