Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Current Drugs and their Therapeutic Targets for Hypoxia-inducible Factors in Cancer

Author(s): Esha Joshi, Medha Pandya* and Urja Desai*

Volume 24, Issue 6, 2023

Published on: 19 June, 2023

Page: [447 - 464] Pages: 18

DOI: 10.2174/1389203724666230601092245

Price: $65

Abstract

Hypoxia, a prevalent characteristic of both solid and liquid malignancies, is found to regulate how genes are expressed in a way that promotes cellular adaptability and survival. Metastasis is controlled by hypoxia-inducible factors (HIFs). HIFs are dimeric protein molecules made up of an oxygen (O2) responsive HIF-1α, HIF-2α, or HIF-3α domain and a periodically produced HIF-1β portion (also known as ARNT). Nevertheless, it is important to note that HIFs degrade under normoxic conditions. A large multitude of different biological operations, including vessels generation, oxygen delivery, stemness, pluripotency, multiplication, epithelial to mesenchymal shift, metastatic prevalence and intrusion, redox equilibrium, and programmed cell death, are strictly controlled by over 70 immediate HIF target genes that have been reported. Metabolic reprogramming, which modulates cellular energy generation aside from oxidative phosphorylation and concerning glycolysis, is among the core tasks of HIF target genes. As a result, choosing HIFs as a primary target in the treatment of various tumors is essential.

We have a very limited understanding of this extremely complex topic, which is characterised by hypoxia- induced resistance. In order to combat this, scientists are investigating numerous cutting-edge approaches. Traditional chemotherapeutic drugs used to treat cancer are frequently linked to unfavourable side effects and the development of chemoresistance. The use of natural compounds in conjunction with chemotherapy drugs is rising as a result of their capacity to alter a number of molecular practices with a lower detrimental impact. Experimental and clinical research is accumulating evidence that phytochemicals can influence the genesis and progression of cancer by favourably modulating a number of signalling pathways. Combinations of phytochemicals are potent cancer treatment options because they incentivise apoptosis, limit cell prevalence, make cancerous cells more susceptible, and escalate immunity. Despite being characterised, HIF-1-independent mechanisms for medication resistance in hypoxia are still infrequently reported. The prime aim of the article is to summarise the most recent research on the molecular basis of hypoxia-induced chemoresistance and how chemotherapy and phytochemicals can be used to treat cancer patients who are resistant to drugs.

Next »
Graphical Abstract

[1]
Liu, Z.; Wu, Z.; Fan, Y.; Fang, Y. An overview of biological research on hypoxia-inducible factors (HIFs). Endokrynol. Pol., 2020, 71(5), 432-440.
[http://dx.doi.org/10.5603/EP.a2020.0064] [PMID: 33202030]
[2]
Choudhury, R. Hypoxia and hyperbaric oxygen therapy: A review. Int. J. Gen. Med., 2018, 11, 431-442.
[http://dx.doi.org/10.2147/IJGM.S172460] [PMID: 30538529]
[3]
Hadanny, A.; Efrati, S. The hyperoxic-hypoxic paradox. Biomolecules, 2020, 10(6), 958.
[http://dx.doi.org/10.3390/biom10060958] [PMID: 32630465]
[4]
Catrina, S.B.; Zheng, X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia, 2021, 64(4), 709-716.
[http://dx.doi.org/10.1007/s00125-021-05380-z] [PMID: 33496820]
[5]
Semenza, G.L. A compendium of proteins that interact with HIF-1α. Exp. Cell Res., 2017, 356(2), 128-135.
[http://dx.doi.org/10.1016/j.yexcr.2017.03.041] [PMID: 28336293]
[6]
Akanji, M.A.; Rotimi, D.; Adeyemi, O.S. Hypoxia-inducible factors as an alternative source of treatment strategy for cancer. Oxid. Med. Cell. Longev., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/8547846] [PMID: 31485300]
[7]
Poon, E.; Harris, A.L.; Ashcroft, M. Targeting the hypoxia inducible factor (HIF) pathway in cancer. Expert Rev. Mol. Med., 2009, 11, e26
[http://dx.doi.org/10.1017/S1462399409001173] [PMID: 19709449]
[8]
Ghosh, R.; Samanta, P.; Sarkar, R.; Biswas, S.; Saha, P.; Hajra, S.; Bhowmik, A. Targeting HIF-1α by natural and synthetic compounds: A promising approach for anti-cancer therapeutics development. Molecules, 2022, 27(16), 5192.
[http://dx.doi.org/10.3390/molecules27165192] [PMID: 36014432]
[9]
Li, H.; Ko, H.P.; Whitlock, J.P., Jr Induction of phosphoglycerate kinase 1 gene expression by hypoxia. Roles of Arnt and HIF1α. J. Biol. Chem., 1996, 271(35), 21262-21267.
[http://dx.doi.org/10.1074/jbc.271.35.21262] [PMID: 8702901]
[10]
Wang, G.L.; Jiang, B.H.; Semenza, G.L. Effect of protein kinase and phosphatase inhibitors on expression of hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun., 1995, 216(2), 669-675.
[http://dx.doi.org/10.1006/bbrc.1995.2674] [PMID: 7488163]
[11]
Lee, J.W.; Bae, S.H.; Jeong, J.W.; Kim, S.H.; Kim, K.W. Hypoxia-inducible factor (HIF-1)α: Its protein stability and biological functions. Exp. Mol. Med., 2004, 36(1), 1-12.
[http://dx.doi.org/10.1038/emm.2004.1] [PMID: 15031665]
[12]
Wenger, R.H.; Stiehl, D.P.; Camenisch, G. Integration of oxygen signaling at the consensus HRE. Sci. STKE, 2005, 2005(306), re12.
[http://dx.doi.org/10.1126/stke.3062005re12] [PMID: 16234508]
[13]
Tian, H.; McKnight, S.L.; Russell, D.W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev., 1997, 11(1), 72-82.
[http://dx.doi.org/10.1101/gad.11.1.72] [PMID: 9000051]
[14]
Kietzmann, T.; Mennerich, D.; Dimova, E.Y. Hypoxia-inducible factors (HIFs) and phosphorylation: Impact on stability, localization, and transactivity. Front. Cell Dev. Biol., 2016, 4, 11.
[http://dx.doi.org/10.3389/fcell.2016.00011] [PMID: 26942179]
[15]
Makino, Y.; Cao, R.; Svensson, K.; Bertilsson, G.; Asman, M.; Tanaka, H.; Cao, Y.; Berkenstam, A.; Poellinger, L. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature, 2001, 414(6863), 550-554.
[http://dx.doi.org/10.1038/35107085] [PMID: 11734856]
[16]
Semenza, G.L.; Agani, F.; Booth, G.; Forsythe, J.; Iyer, N.; Jiang, B.H.; Leung, S.; Roe, R.; Wiener, C.; Yu, A. Structural and functional analysis of hypoxia-inducible factor 1. Kidney Int., 1997, 51(2), 553-555.
[http://dx.doi.org/10.1038/ki.1997.77] [PMID: 9027737]
[17]
Jiang, B.H.; Rue, E.; Wang, G.L.; Roe, R.; Semenza, G.L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem., 1996, 271(30), 17771-17778.
[http://dx.doi.org/10.1074/jbc.271.30.17771] [PMID: 8663540]
[18]
Ruas, J.L.; Poellinger, L.; Pereira, T. Functional analysis of hypoxia-inducible factor-1 α-mediated transactivation. Identification of amino acid residues critical for transcriptional activation and/or interaction with CREB-binding protein. J. Biol. Chem., 2002, 277(41), 38723-38730.
[http://dx.doi.org/10.1074/jbc.M205051200] [PMID: 12133832]
[19]
Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA, 1995, 92(12), 5510-5514.
[http://dx.doi.org/10.1073/pnas.92.12.5510] [PMID: 7539918]
[20]
Reisz-Porszasz, S.; Probst, M.R.; Fukunaga, B.N.; Hankinson, O. Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Mol. Cell. Biol., 1994, 14(9), 6075-6086.
[PMID: 8065341]
[21]
Hoffman, E.C.; Reyes, H.; Chu, F.F.; Sander, F.; Conley, L.H.; Brooks, B.A.; Hankinson, O. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science, 1991, 252(5008), 954-958.
[http://dx.doi.org/10.1126/science.1852076] [PMID: 1852076]
[22]
Kallio, P.J.; Okamoto, K.; O’Brien, S.; Carrero, P.; Makino, Y.; Tanaka, H.; Poellinger, L. Signal transduction in hypoxic cells: Inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1α. EMBO J., 1998, 17(22), 6573-6586.
[http://dx.doi.org/10.1093/emboj/17.22.6573] [PMID: 9822602]
[23]
Duan, C. Hypoxia-inducible factor 3 biology: Complexities and emerging themes. Am. J. Physiol. Cell Physiol., 2016, 310(4), C260-C269.
[http://dx.doi.org/10.1152/ajpcell.00315.2015] [PMID: 26561641]
[24]
Höpfl, G.; Ogunshola, O.; Gassmann, M. HIFs and tumors—causes and consequences. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 286(4), R608-R623.
[http://dx.doi.org/10.1152/ajpregu.00538.2003] [PMID: 15003941]
[25]
Hara, S.; Hamada, J.; Kobayashi, C.; Kondo, Y.; Imura, N. Expression and characterization of hypoxia-inducible factor (HIF)-3α in human kidney: Suppression of HIF-mediated gene expression by HIF-3α. Biochem. Biophys. Res. Commun., 2001, 287(4), 808-813.
[http://dx.doi.org/10.1006/bbrc.2001.5659] [PMID: 11573933]
[26]
Wicks, E.E.; Semenza, G.L. Hypoxia-inducible factors: Cancer progression and clinical translation. J. Clin. Invest., 2022, 132(11), e159839
[http://dx.doi.org/10.1172/JCI159839] [PMID: 35642641]
[27]
Semenza, G.L. The genomics and genetics of oxygen homeostasis. Annu. Rev. Genomics Hum. Genet., 2020, 21(1), 183-204.
[http://dx.doi.org/10.1146/annurev-genom-111119-073356] [PMID: 32255719]
[28]
Lando, D.; Peet, D.J.; Gorman, J.J.; Whelan, D.A.; Whitelaw, M.L.; Bruick, R.K. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev., 2002, 16(12), 1466-1471.
[http://dx.doi.org/10.1101/gad.991402] [PMID: 12080085]
[29]
Mahon, P.C.; Hirota, K.; Semenza, G.L. FIH-1: A novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev., 2001, 15(20), 2675-2686.
[http://dx.doi.org/10.1101/gad.924501] [PMID: 11641274]
[30]
Keith, B.; Simon, M.C. Hypoxia-inducible factors, stem cells, and cancer. Cell, 2007, 129(3), 465-472.
[http://dx.doi.org/10.1016/j.cell.2007.04.019] [PMID: 17482542]
[31]
Su, P.; Yu, L.; Mao, X.; Sun, P. Role of HIF-1α/ERRα in enhancing cancer cell metabolism and promoting resistance of endometrial cancer cells to pyroptosis. Front. Oncol., 2022, 12, 881252
[http://dx.doi.org/10.3389/fonc.2022.881252]
[32]
Miranda-Galvis, M.; Teng, Y. Targeting hypoxia-driven metabolic reprogramming to constrain tumor progression and metastasis. Int. J. Mol. Sci., 2020, 21(15), 5487.
[http://dx.doi.org/10.3390/ijms21155487] [PMID: 32751958]
[33]
Schito, L.; Semenza, G.L. Hypoxia-inducible factors: Master regulators of cancer progression. Trends Cancer, 2016, 2(12), 758-770.
[http://dx.doi.org/10.1016/j.trecan.2016.10.016] [PMID: 28741521]
[34]
Ziello, J.E.; Jovin, I.S.; Huang, Y. Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J. Biol. Med., 2007, 80(2), 51-60.
[PMID: 18160990]
[35]
Denko, N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer, 2008, 8(9), 705-713.
[http://dx.doi.org/10.1038/nrc2468] [PMID: 19143055]
[36]
Maxwell, P.H.; Dachs, G.U.; Gleadle, J.M.; Nicholls, L.G.; Harris, A.L.; Stratford, I.J.; Hankinson, O.; Pugh, C.W.; Ratcliffe, P.J. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl. Acad. Sci. USA, 1997, 94(15), 8104-8109.
[http://dx.doi.org/10.1073/pnas.94.15.8104] [PMID: 9223322]
[37]
Sakagami, H.; Makino, Y.; Mizumoto, K.; Isoe, T.; Takeda, Y.; Watanabe, J.; Fujita, Y.; Takiyama, Y.; Abiko, A.; Haneda, M. Loss of HIF-1α impairs GLUT4 translocation and glucose uptake by the skeletal muscle cells. Am. J. Physiol. Endocrinol. Metab., 2014, 306(9), E1065-E1076.
[http://dx.doi.org/10.1152/ajpendo.00597.2012] [PMID: 24619881]
[38]
Chen, C.; Pore, N.; Behrooz, A.; Ismail-Beigi, F.; Maity, A. Regulation of glut1 mRNA by Hypoxia-inducible Factor-1. J. Biol. Chem., 2001, 276(12), 9519-9525.
[http://dx.doi.org/10.1074/jbc.M010144200] [PMID: 11120745]
[39]
Bos, R.; Zhong, H.; Hanrahan, C.F.; Mommers, E.C.M.; Semenza, G.L.; Pinedo, H.M.; Abeloff, M.D.; Simons, J.W.; van Diest, P.J.; van der Wall, E. Levels of hypoxia-inducible factor-1 α during breast carcinogenesis. J. Natl. Cancer Inst., 2001, 93(4), 309-314.
[http://dx.doi.org/10.1093/jnci/93.4.309] [PMID: 11181778]
[40]
de Heer, E.C.; Jalving, M.; Harris, A.L. HIFs, angiogenesis, and metabolism: Elusive enemies in breast cancer. J. Clin. Invest., 2020, 130(10), 5074-5087.
[http://dx.doi.org/10.1172/JCI137552] [PMID: 32870818]
[41]
Bröer, A.; Gauthier-Coles, G.; Rahimi, F.; van Geldermalsen, M.; Dorsch, D.; Wegener, A.; Holst, J.; Bröer, S. Ablation of the ASCT2 (SLC1A5) gene encoding a neutral amino acid transporter reveals transporter plasticity and redundancy in cancer cells. J. Biol. Chem., 2019, 294(11), 4012-4026.
[http://dx.doi.org/10.1074/jbc.RA118.006378] [PMID: 30635397]
[42]
Jeon, Y.J.; Khelifa, S.; Ratnikov, B.; Scott, D.A.; Feng, Y.; Parisi, F.; Ruller, C.; Lau, E.; Kim, H.; Brill, L.M.; Jiang, T.; Rimm, D.L.; Cardiff, R.D.; Mills, G.B.; Smith, J.W.; Osterman, A.L.; Kluger, Y.; Ronai, Z.A. Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell, 2015, 27(3), 354-369.
[http://dx.doi.org/10.1016/j.ccell.2015.02.006] [PMID: 25759021]
[43]
van Geldermalsen, M.; Wang, Q.; Nagarajah, R.; Marshall, A.D.; Thoeng, A.; Gao, D.; Ritchie, W.; Feng, Y.; Bailey, C.G.; Deng, N.; Harvey, K.; Beith, J.M.; Selinger, C.I.; O’Toole, S.A.; Rasko, J.E.J.; Holst, J. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene, 2016, 35(24), 3201-3208.
[http://dx.doi.org/10.1038/onc.2015.381] [PMID: 26455325]
[44]
Yoo, H.C.; Park, S.J.; Nam, M.; Kang, J.; Kim, K.; Yeo, J.H.; Kim, J.K.; Heo, Y.; Lee, H.S.; Lee, M.Y.; Lee, C.W.; Kang, J.S.; Kim, Y.H.; Lee, J.; Choi, J.; Hwang, G.S.; Bang, S.; Han, J.M. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab., 2020, 31(2), 267-283.e12.
[http://dx.doi.org/10.1016/j.cmet.2019.11.020] [PMID: 31866442]
[45]
Pillai, M.S.; Sapna, S.; Shivakumar, K. p38 MAPK regulates G1-S transition in hypoxic cardiac fibroblasts. Int. J. Biochem. Cell Biol., 2011, 43(6), 919-927.
[http://dx.doi.org/10.1016/j.biocel.2011.03.007] [PMID: 21420505]
[46]
Goda, N.; Ryan, H.E.; Khadivi, B.; McNulty, W.; Rickert, R.C.; Johnson, R.S. Hypoxia-inducible factor 1α is essential for cell cycle arrest during hypoxia. Mol. Cell. Biol., 2003, 23(1), 359-369.
[http://dx.doi.org/10.1128/MCB.23.1.359-369.2003] [PMID: 12482987]
[47]
Bedessem, B.; Stéphanou, A. A mathematical model of HiF-1-mediated response to hypoxia on the G1/S transition. Math. Biosci., 2014, 248, 31-39.
[http://dx.doi.org/10.1016/j.mbs.2013.11.007] [PMID: 24345497]
[48]
Morishita, Y.; Ookawara, S.; Hirahara, I.; Muto, S.; Nagata, D. HIF-1α mediates Hypoxia-induced epithelial-mesenchymal transition in peritoneal mesothelial cells. Ren. Fail., 2016, 38(2), 282-289.
[http://dx.doi.org/10.3109/0886022X.2015.1127741] [PMID: 26707495]
[49]
Pennacchietti, S.; Michieli, P.; Galluzzo, M.; Mazzone, M.; Giordano, S.; Comoglio, P.M. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 2003, 3(4), 347-361.
[http://dx.doi.org/10.1016/S1535-6108(03)00085-0] [PMID: 12726861]
[50]
Funasaka, T.; Raz, A. The role of autocrine motility factor in tumor and tumor microenvironment. Cancer Metastasis Rev., 2007, 26(3-4), 725-735.
[http://dx.doi.org/10.1007/s10555-007-9086-7] [PMID: 17828376]
[51]
Gupta, G.P.; Nguyen, D.X.; Chiang, A.C.; Bos, P.D.; Kim, J.Y.; Nadal, C.; Gomis, R.R.; Manova-Todorova, K.; Massagué, J. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature, 2007, 446(7137), 765-770.
[http://dx.doi.org/10.1038/nature05760] [PMID: 17429393]
[52]
Shyu, K.G.; Hsu, F.L.; Wang, M.J.; Wang, B.W.; Lin, S. Hypoxia-inducible factor 1α regulates lung adenocarcinoma cell invasion. Exp. Cell Res., 2007, 313(6), 1181-1191.
[http://dx.doi.org/10.1016/j.yexcr.2007.01.013] [PMID: 17335808]
[53]
Loayza-Puch, F.; Yoshida, Y.; Matsuzaki, T.; Takahashi, C.; Kitayama, H.; Noda, M. Hypoxia and RAS-signaling pathways converge on, and cooperatively downregulate, the RECK tumor-suppressor protein through microRNAs. Oncogene, 2010, 29(18), 2638-2648.
[http://dx.doi.org/10.1038/onc.2010.23] [PMID: 20154725]
[54]
Douma, S.; van Laar, T.; Zevenhoven, J.; Meuwissen, R.; van Garderen, E.; Peeper, D.S. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature, 2004, 430(7003), 1034-1039.
[http://dx.doi.org/10.1038/nature02765] [PMID: 15329723]
[55]
Balamurugan, K.; Mendoza-Villanueva, D.; Sharan, S.; Summers, G.H.; Dobrolecki, L.E.; Lewis, M.T.; Sterneck, E. C/EBPδ links IL-6 and HIF-1 signaling to promote breast cancer stem cell-associated phenotypes. Oncogene, 2019, 38(20), 3765-3780.
[http://dx.doi.org/10.1038/s41388-018-0516-5] [PMID: 30262865]
[56]
Bray, S.J. Notch signalling: A simple pathway becomes complex. Nat. Rev. Mol. Cell Biol., 2006, 7(9), 678-689.
[http://dx.doi.org/10.1038/nrm2009] [PMID: 16921404]
[57]
Clarke, L.; van der Kooy, D. Low oxygen enhances primitive and definitive neural stem cell colony formation by inhibiting distinct cell death pathways. Stem Cells, 2009, 27(8), 1879-1886.
[http://dx.doi.org/10.1002/stem.96] [PMID: 19544448]
[58]
Rashid, M.; Zadeh, L.R.; Baradaran, B.; Molavi, O.; Ghesmati, Z.; Sabzichi, M.; Ramezani, F. Up-down regulation of HIF-1α in cancer progression. Gene, 2021, 798, 145796
[http://dx.doi.org/10.1016/j.gene.2021.145796] [PMID: 34175393]
[59]
Multhoff, G.; Radons, J.; Vaupel, P. Critical role of aberrant angiogenesis in the development of tumor hypoxia and associated radioresistance. Cancers, 2014, 6(2), 813-828.
[http://dx.doi.org/10.3390/cancers6020813] [PMID: 24717239]
[60]
Ji, J.; Werbowetski-Ogilvie, T.E.; Zhong, B.; Hong, S.H.; Bhatia, M. Pluripotent transcription factors possess distinct roles in normal versus transformed human stem cells. PLoS One, 2009, 4(11), e8065
[http://dx.doi.org/10.1371/journal.pone.0008065] [PMID: 19956629]
[61]
Ben-Porath, I.; Thomson, M.W.; Carey, V.J.; Ge, R.; Bell, G.W.; Regev, A.; Weinberg, R.A. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet., 2008, 40(5), 499-507.
[http://dx.doi.org/10.1038/ng.127] [PMID: 18443585]
[62]
Wigerup, C.; Påhlman, S.; Bexell, D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol. Ther., 2016, 164, 152-169.
[http://dx.doi.org/10.1016/j.pharmthera.2016.04.009] [PMID: 27139518]
[63]
Fallah, J.; Rini, B.I. HIF inhibitors: Status of current clinical development. Curr. Oncol. Rep., 2019, 21(1), 6.
[http://dx.doi.org/10.1007/s11912-019-0752-z] [PMID: 30671662]
[64]
Puppo, M.; Battaglia, F.; Ottaviano, C.; Delfino, S.; Ribatti, D.; Varesio, L.; Bosco, M.C. Topotecan inhibits vascular endothelial growth factor production and angiogenic activity induced by hypoxia in human neuroblastoma by targeting hypoxia-inducible factor-1α and -2α. Mol. Cancer Ther., 2008, 7(7), 1974-1984.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2059] [PMID: 18645007]
[65]
Lee, K.; Zhang, H.; Qian, D.Z.; Rey, S.; Liu, J.O.; Semenza, G.L. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc. Natl. Acad. Sci. USA, 2009, 106(42), 17910-17915.
[http://dx.doi.org/10.1073/pnas.0909353106] [PMID: 19805192]
[66]
Thirusangu, P.; Vigneshwaran, V.; Ranganatha, V.L.; Vijay Avin, B.R.; Khanum, S.A.; Mahmood, R.; Jayashree, K.; Prabhakar, B.T. A tumoural angiogenic gateway blocker, Benzophenone-1B represses the HIF-1α nuclear translocation and its target gene activation against neoplastic progression. Biochem. Pharmacol., 2017, 125, 26-40.
[http://dx.doi.org/10.1016/j.bcp.2016.11.009] [PMID: 27838496]
[67]
Ajith, T.A. Current insights and future perspectives of hypoxia-inducible factor-targeted therapy in cancer. J. Basic Clin. Physiol. Pharmacol., 2018, 30(1), 11-18.
[http://dx.doi.org/10.1515/jbcpp-2017-0167] [PMID: 30260792]
[68]
Zhang, H.; Qian, D.Z.; Tan, Y.S.; Lee, K.; Gao, P.; Ren, Y.R.; Rey, S.; Hammers, H.; Chang, D.; Pili, R.; Dang, C.V.; Liu, J.O.; Semenza, G.L. Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. Proc. Natl. Acad. Sci. USA, 2008, 105(50), 19579-19586.
[http://dx.doi.org/10.1073/pnas.0809763105] [PMID: 19020076]
[69]
Greenberger, L.M.; Horak, I.D.; Filpula, D.; Sapra, P.; Westergaard, M.; Frydenlund, H.F.; Albæk, C.; Schrøder, H.; Ørum, H. A RNA antagonist of hypoxia-inducible factor-1α, EZN-2968, inhibits tumor cell growth. Mol. Cancer Ther., 2008, 7(11), 3598-3608.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0510] [PMID: 18974394]
[70]
Garrett, C.R.; Bekaii-Saab, T.S.; Ryan, T.; Fisher, G.A.; Clive, S.; Kavan, P.; Shacham-Shmueli, E.; Buchbinder, A.; Goldberg, R.M. Randomized phase 2 study of pegylated SN-38 (EZN-2208) or irinotecan plus cetuximab in patients with advanced colorectal cancer. Cancer, 2013, 119(24), 4223-4230.
[http://dx.doi.org/10.1002/cncr.28358] [PMID: 24105075]
[71]
Wang, W.M.; Zhao, Z.L.; Ma, S.R.; Yu, G.T.; Liu, B.; Zhang, L.; Zhang, W.F.; Kulkarni, A.B.; Sun, Z.J.; Zhao, Y.F. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma. PLoS One, 2015, 10(2), e0119723
[http://dx.doi.org/10.1371/journal.pone.0119723] [PMID: 25723392]
[72]
Bruce, J.Y.; Eickhoff, J.; Pili, R.; Logan, T.; Carducci, M.; Arnott, J.; Treston, A.; Wilding, G.; Liu, G. A phase II study of 2-methoxyestradiol nanocrystal colloidal dispersion alone and in combination with sunitinib malate in patients with metastatic renal cell carcinoma progressing on sunitinib malate. Invest. New Drugs, 2012, 30(2), 794-802.
[http://dx.doi.org/10.1007/s10637-010-9618-9] [PMID: 21174224]
[73]
Matei, D.; Schilder, J.; Sutton, G.; Perkins, S.; Breen, T.; Quon, C.; Sidor, C. Activity of 2 methoxyestradiol (Panzem ® NCD) in advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis: A Hoosier Oncology Group trial. Gynecol. Oncol., 2009, 115(1), 90-96.
[http://dx.doi.org/10.1016/j.ygyno.2009.05.042] [PMID: 19577796]
[74]
Keefe, S.M.; Hoffman-Censits, J.; Cohen, R.B.; Mamtani, R.; Heitjan, D.; Eliasof, S.; Nixon, A.; Turnbull, B.; Garmey, E.G.; Gunnarsson, O.; Waliki, M.; Ciconte, J.; Jayaraman, L.; Senderowicz, A.; Tellez, A.B.; Hennessy, M.; Piscitelli, A.; Vaughn, D.; Smith, A.; Haas, N.B. Efficacy of the nanoparticle-drug conjugate CRLX101 in combination with bevacizumab in metastatic renal cell carcinoma: Results of an investigator-initiated phase I-IIa clinical trial. Ann. Oncol., 2016, 27(8), 1579-1585.
[http://dx.doi.org/10.1093/annonc/mdw188] [PMID: 27457310]
[75]
Courtney, K.D.; Infante, J.R.; Lam, E.T.; Figlin, R.A.; Rini, B.I.; Brugarolas, J.; Zojwalla, N.J.; Lowe, A.M.; Wang, K.; Wallace, E.M.; Josey, J.A.; Choueiri, T.K. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol., 2018, 36(9), 867-874.
[http://dx.doi.org/10.1200/JCO.2017.74.2627] [PMID: 29257710]
[76]
Befani, C.D.; Vlachostergios, P.J.; Hatzidaki, E.; Patrikidou, A.; Bonanou, S.; Simos, G.; Papandreou, C.N.; Liakos, P. Bortezomib represses HIF-1α protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells. J. Mol. Med., 2012, 90(1), 45-54.
[http://dx.doi.org/10.1007/s00109-011-0805-8] [PMID: 21909688]
[77]
Tang, W.; Zhao, G. Small molecules targeting HIF-1α pathway for cancer therapy in recent years. Bioorg. Med. Chem., 2020, 28(2), 115235
[http://dx.doi.org/10.1016/j.bmc.2019.115235] [PMID: 31843464]
[78]
Shin, D.H.; Chun, Y.S.; Lee, D.S.; Huang, L.E.; Park, J.W. Bortezomib inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated repression of hypoxia-inducible factor-1. Blood, 2008, 111(6), 3131-3136.
[http://dx.doi.org/10.1182/blood-2007-11-120576] [PMID: 18174379]
[79]
Abd-Aziz, N.; Stanbridge, E.J.; Shafee, N. Bortezomib attenuates HIF-1- but not HIF-2-mediated transcriptional activation. Oncol. Lett., 2015, 10(4), 2192-2196.
[http://dx.doi.org/10.3892/ol.2015.3545] [PMID: 26622817]
[80]
Shirai, Y.; Chow, C.C.T.; Kambe, G.; Suwa, T.; Kobayashi, M.; Takahashi, I.; Harada, H.; Nam, J.M. An overview of the recent development of anticancer agents targeting the HIF-1 transcription factor. Cancers, 2021, 13(11), 2813.
[http://dx.doi.org/10.3390/cancers13112813] [PMID: 34200019]
[81]
Carroll, C.; Liang, Y.; Benakanakere, I.; Besch-Williford, C.; Hyder, S.M. The anticancer agent YC-1 suppresses progestin-stimulated VEGF in breast cancer cells and arrests breast tumor development. Int. J. Oncol., 2013, 42(1), 179-187.
[http://dx.doi.org/10.3892/ijo.2012.1675] [PMID: 23123638]
[82]
Li, S.H.; Shin, D.H.; Chun, Y.S.; Lee, M.K.; Kim, M.S.; Park, J.W. A novel mode of action of YC-1 in HIF inhibition: Stimulation of FIH-dependent p300 dissociation from HIF-1α. Mol. Cancer Ther., 2008, 7(12), 3729-3738.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0074] [PMID: 19074848]
[83]
DiGiacomo, J.W.; Gilkes, D.M. Therapeutic strategies to block the hypoxic response. 2019, 1136, 141-157.
[http://dx.doi.org/10.1007/978-3-030-12734-3_10]
[84]
Mann, B.S.; Johnson, J.R.; Cohen, M.H.; Justice, R.; Pazdur, R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist, 2007, 12(10), 1247-1252.
[http://dx.doi.org/10.1634/theoncologist.12-10-1247] [PMID: 17962618]
[85]
Hutt, D.M.; Roth, D.M.; Vignaud, H.; Cullin, C.; Bouchecareilh, M. The histone deacetylase inhibitor, Vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition. PLoS One, 2014, 9(8), e106224
[http://dx.doi.org/10.1371/journal.pone.0106224] [PMID: 25166596]
[86]
Iacovelli, R.; Arduini, D.; Ciccarese, C.; Pierconti, F.; Strusi, A.; Piro, G.; Carbone, C.; Foschi, N.; Daniele, G.; Tortora, G. Targeting hypoxia-inducible factor pathways in sporadic and Von Hippel-Lindau syndrome-related kidney cancers. Crit. Rev. Oncol. Hematol., 2022, 176, 103750
[http://dx.doi.org/10.1016/j.critrevonc.2022.103750] [PMID: 35728738]
[87]
Mayrhofer, K.; Niedersüß-Beke, D. New targeted therapies in kidney cancer. Mag. Eur. Med. Oncol., 2022, 15(2), 133-136.
[http://dx.doi.org/10.1007/s12254-021-00782-6]
[88]
Gupta, S.C.; Kannappan, R.; Reuter, S.; Kim, J.H.; Aggarwal, B.B. Chemosensitization of tumors by resveratrol. Ann. N. Y. Acad. Sci., 2011, 1215(1), 150-160.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05852.x] [PMID: 21261654]
[89]
Nair, HH.; Alex, VV.; Anto, RJ. Significance of nutraceuticals in cancer therapy. Evolutionary Diversity as a Source for Anticancer Molecules; Academic Press: Cambridge, Massachusetts, 2021, pp. 309-321.
[90]
Pan, Y.; Shao, D.; Zhao, Y.; Zhang, F.; Zheng, X.; Tan, Y.; He, K.; Li, J.; Chen, L. Berberine reverses hypoxia-induced chemoresistance in breast cancer through the inhibition of AMPK-HIF-1α. Int. J. Biol. Sci., 2017, 13(6), 794-803.
[http://dx.doi.org/10.7150/ijbs.18969] [PMID: 28656004]
[91]
Yang, X.; Yang, B.; Cai, J.; Zhang, C.; Zhang, Q.; Xu, L.; Qin, Q.; Zhu, H.; Ma, J.; Tao, G.; Cheng, H.; Sun, X. Berberine enhances radiosensitivity of esophageal squamous cancer by targeting HIF-1α in vitro and in vivo. Cancer Biol. Ther., 2013, 14(11), 1068-1073.
[http://dx.doi.org/10.4161/cbt.26426] [PMID: 24025355]
[92]
Chen, Z.; Tian, D.; Liao, X.; Zhang, Y.; Xiao, J.; Chen, W.; Liu, Q.; Chen, Y.; Li, D.; Zhu, L.; Cai, S. Apigenin combined with gefitinib blocks autophagy flux and induces apoptotic cell death through inhibition of HIF-1α, c-Myc, p-EGFR, and glucose metabolism in EGFR L858R+ T790M-mutated H1975 cells. Front. Pharmacol., 2019, 10, 260.
[http://dx.doi.org/10.3389/fphar.2019.00260] [PMID: 30967777]
[93]
Zhao, W.; Xia, S.Q.; Zhuang, J.P.; Zhang, Z.P.; You, C.C.; Yan, J.L.; Xu, G.P. Hypoxia-induced resistance to cisplatin-mediated apoptosis in osteosarcoma cells is reversed by gambogic acid independently of HIF-1α. Mol. Cell. Biochem., 2016, 420(1-2), 1-8.
[http://dx.doi.org/10.1007/s11010-016-2759-1] [PMID: 27473145]
[94]
Shan, J.; Xuan, Y.; Zhang, Q.; Huang, J. Ursolic acid sensitized colon cancer cells to chemotherapy under hypoxia by inhibiting MDR1 through HIF-1α. J. Zhejiang Univ. Sci. B, 2016, 17(9), 672-682.
[http://dx.doi.org/10.1631/jzus.B1600266] [PMID: 27604859]
[95]
Ye, M.X.; Zhao, Y.L.; Li, Y.; Miao, Q.; Li, Z.K.; Ren, X.L.; Song, L.Q.; Yin, H.; Zhang, J. Curcumin reverses cis-platin resistance and promotes human lung adenocarcinoma A549/DDP cell apoptosis through HIF-1α and caspase-3 mechanisms. Phytomedicine, 2012, 19(8-9), 779-787.
[http://dx.doi.org/10.1016/j.phymed.2012.03.005] [PMID: 22483553]
[96]
Khatoon, E; Banik, K; Harsha, C; Sailo, BL; Thakur, KK; Khwairakpam, AD; Vikkurthi, R; Devi, TB; Gupta, SC; Kunnumakkara, AB Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin. Cancer Biol., 2022, 80, 306-339.
[97]
Zuo, H.X.; Jin, Y.; Wang, Z.; Li, M.Y.; Zhang, Z.H.; Wang, J.Y.; Xing, Y.; Ri, M.H.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Ma, J.; Jin, X. Curcumol inhibits the expression of programmed cell death-ligand 1 through crosstalk between hypoxia-inducible factor-1α and STAT3 (T705) signaling pathways in hepatic cancer. J. Ethnopharmacol., 2020, 257, 112835
[http://dx.doi.org/10.1016/j.jep.2020.112835] [PMID: 32278762]
[98]
Wang, D.; Lin, J.; Yang, X.; Long, J.; Bai, Y.; Yang, X.; Mao, Y.; Sang, X.; Seery, S.; Zhao, H. Combination regimens with PD-1/PD-L1 immune checkpoint inhibitors for gastrointestinal malignancies. J. Hematol. Oncol., 2019, 12(1), 42.
[http://dx.doi.org/10.1186/s13045-019-0730-9] [PMID: 31014381]
[99]
Yun, B.D.; Son, S.W.; Choi, S.Y.; Kuh, H.J.; Oh, T.J.; Park, J.K. Anti-cancer activity of phytochemicals targeting hypoxia-inducible factor-1 alpha. Int. J. Mol. Sci., 2021, 22(18), 9819.
[http://dx.doi.org/10.3390/ijms22189819] [PMID: 34575983]
[100]
Choi, H.; Chun, Y.S.; Kim, S.W.; Kim, M.S.; Park, J.W. Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: A mechanism of tumor growth inhibition. Mol. Pharmacol., 2006, 70(5), 1664-1671.
[http://dx.doi.org/10.1124/mol.106.025817] [PMID: 16880289]
[101]
Nalini, D.; Selvaraj, J.; Kumar, G.S. Herbal nutraceuticals: Safe and potent therapeutics to battle tumor hypoxia. J. Cancer Res. Clin. Oncol., 2020, 146(1), 1-18.
[http://dx.doi.org/10.1007/s00432-019-03068-x] [PMID: 31724069]
[102]
Liang, G.; Tang, A.; Lin, X.; Li, L.; Zhang, S.; Huang, Z.; Tang, H.; Li, Q.Q. Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int. J. Oncol., 2010, 37(1), 111-123.
[PMID: 20514403]
[103]
Du, G.; Lin, H.; Wang, M.; Zhang, S.; Wu, X.; Lu, L.; Ji, L.; Yu, L. Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells. Cancer Chemother. Pharmacol., 2010, 65(2), 277-287.
[http://dx.doi.org/10.1007/s00280-009-1032-7] [PMID: 19466611]
[104]
Huang, X.; Wang, J.; Huang, C.; Chen, Y.; Shi, G.; Hu, Q.; Yi, J. Emodin enhances cytotoxicity of chemotherapeutic drugs in prostate cancer cells: The mechanisms involve ROS-mediated suppression of multidrug resistance and hypoxia inducible factor-1. Cancer Biol. Ther., 2008, 7(3), 468-475.
[http://dx.doi.org/10.4161/cbt.7.3.5457] [PMID: 18285700]
[105]
Vinod, B.S.; Maliekal, T.T.; Anto, R.J. Phytochemicals as chemosensitizers: From molecular mechanism to clinical significance. Antioxid. Redox Signal., 2013, 18(11), 1307-1348.
[http://dx.doi.org/10.1089/ars.2012.4573] [PMID: 22871022]
[106]
Wang, W.; Sun, Y.; Huang, X.; He, M.; Chen, Y.; Shi, G.; Li, H.; Yi, J.; Wang, J. Emodin enhances sensitivity of gallbladder cancer cells to platinum drugs via glutathion depletion and MRP1 downregulation. Biochem. Pharmacol., 2010, 79(8), 1134-1140.
[http://dx.doi.org/10.1016/j.bcp.2009.12.006] [PMID: 20005210]
[107]
Gupta, P.; Wright, S.E.; Kim, S.H.; Srivastava, S.K. Phenethyl isothiocyanate: A comprehensive review of anti-cancer mechanisms. Biochim. Biophys. Acta, 2014, 1846(2), 405-424.
[PMID: 25152445]
[108]
Ge, X.; Zhen, F.; Yang, B.; Yang, X.; Cai, J.; Zhang, C.; Zhang, S.; Cao, Y.; Ma, J.; Cheng, H.; Sun, X. Ginsenoside Rg3 enhances radiosensitization of hypoxic oesophageal cancer cell lines through vascular endothelial growth factor and hypoxia inducible factor 1α. J. Int. Med. Res., 2014, 42(3), 628-640.
[http://dx.doi.org/10.1177/0300060513505491] [PMID: 24691458]
[109]
Pastorek, M.; Simko, V.; Takacova, M.; Barathova, M.; Bartosova, M.; Hunakova, L.; Sedlakova, O.; Hudecova, S.; Krizanova, O.; Dequiedt, F.; Pastorekova, S.; Sedlak, J. Sulforaphane reduces molecular response to hypoxia in ovarian tumor cells independently of their resistance to chemotherapy. Int. J. Oncol., 2015, 47(1), 51-60.
[http://dx.doi.org/10.3892/ijo.2015.2987] [PMID: 25955133]
[110]
Rizeq, B.; Gupta, I.; Ilesanmi, J.; AlSafran, M.; Rahman, M.D.M.; Ouhtit, A. The power of phytochemicals combination in cancer chemoprevention. J. Cancer, 2020, 11(15), 4521-4533.
[http://dx.doi.org/10.7150/jca.34374] [PMID: 32489469]
[111]
Li, G.; Shan, C.; Liu, L.; Zhou, T.; Zhou, J.; Hu, X.; Chen, Y.; Cui, H.; Gao, N. Tanshinone IIA inhibits HIF-1α and VEGF expression in breast cancer cells via mTOR/p70S6K/RPS6/4E-BP1 signaling pathway. PLoS One, 2015, 10(2), e0117440
[http://dx.doi.org/10.1371/journal.pone.0117440] [PMID: 25659153]
[112]
Xu, T.; Xiao, D. Oleuropein enhances radiation sensitivity of nasopharyngeal carcinoma by downregulating PDRG1 through HIF1α-repressed microRNA-519d. J. Exp. Clin. Cancer Res., 2017, 36(1), 3.
[http://dx.doi.org/10.1186/s13046-016-0480-2]
[113]
Chen, F.; Liu, Y.; Wang, S.; Guo, X.; Shi, P.; Wang, W.; Xu, B. Triptolide, a Chinese herbal extract, enhances drug sensitivity of resistant myeloid leukemia cell lines through downregulation of HIF-1α and Nrf2. Pharmacogenomics, 2013, 14(11), 1305-1317.
[http://dx.doi.org/10.2217/pgs.13.122] [PMID: 23930677]
[114]
Lu, C.; Cai, D.; Ma, J. Pachymic acid sensitizes gastric cancer cells to radiation therapy by upregulating bax through hypoxia. Am. J. Chin. Med., 2018, 46(4), 875-890.
[http://dx.doi.org/10.1142/S0192415X18500465] [PMID: 29737213]
[115]
Li, J.; Shang, W.; Li, Y.; Fu, S.; Tian, J.; Lu, L. Advanced nanomaterials targeting hypoxia to enhance radiotherapy. Int. J. Nanomedicine, 2018, 13, 5925-5936.
[http://dx.doi.org/10.2147/IJN.S173914] [PMID: 30319257]
[116]
Dupuis, N.P.; Kusumoto, T.; Robinson, M.F.; Liu, F.; Menon, K.; Teicher, B.A. Restoration of tumor oxygenation after cytotoxic therapy by a perflubron emulsion/carbogen breathing. Artif. Cells Blood Substit. Immobil. Biotechnol., 1995, 23(3), 423-429.
[http://dx.doi.org/10.3109/10731199509117958] [PMID: 7493063]
[117]
Arienti, C.; Pignatta, S.; Zanoni, M.; Zamagni, A.; Cortesi, M.; Sarnelli, A.; Romeo, A.; Arpa, D.; Longobardi, P.; Bartolini, D.; Tosatto, L.; Naldini, A.; Tesei, A. High-pressure oxygen rewires glucose metabolism of patient-derived glioblastoma cells and fuels inflammasome response. Cancer Lett., 2021, 506, 152-166.
[http://dx.doi.org/10.1016/j.canlet.2021.02.019] [PMID: 33652086]
[118]
Hartzler, G.O.; Rutherford, B.D.; McConahay, D.R.; Johnson, W.L.; Giorgi, L.V. “High-risk” percutaneous transluminal coronary angioplasty. Am. J. Cardiol., 1988, 61(14), 33G-37G.
[http://dx.doi.org/10.1016/S0002-9149(88)80030-4] [PMID: 2966564]
[119]
Cheng, Y.; Cheng, H.; Jiang, C.; Qiu, X.; Wang, K.; Huan, W.; Yuan, A.; Wu, J.; Hu, Y. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun., 2015, 6(1), 8785.
[http://dx.doi.org/10.1038/ncomms9785] [PMID: 26525216]
[120]
Song, G.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu, Z. Perfluorocarbon‐loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near‐infrared light to enhance the radiotherapy of cancer. Adv. Mater., 2016, 28(14), 2716-2723.
[http://dx.doi.org/10.1002/adma.201504617] [PMID: 26848553]
[121]
Sun, Y.; Zhou, Z.; Yang, S.; Yang, H. Modulating hypoxia inducible factor‐1 by nanomaterials for effective cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(1), e1766
[http://dx.doi.org/10.1002/wnan.1766] [PMID: 34713633]
[122]
Luo, Z.; Tian, H.; Liu, L.; Chen, Z.; Liang, R.; Chen, Z.; Wu, Z.; Ma, A.; Zheng, M.; Cai, L. Tumor-targeted hybrid protein oxygen carrier to simultaneously enhance hypoxia-dampened chemotherapy and photodynamic therapy at a single dose. Theranostics, 2018, 8(13), 3584-3596.
[http://dx.doi.org/10.7150/thno.25409] [PMID: 30026868]
[123]
Prasad, P.; Gordijo, C.R.; Abbasi, A.Z.; Maeda, A.; Ip, A.; Rauth, A.M.; DaCosta, R.S.; Wu, X.Y. Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano, 2014, 8(4), 3202-3212.
[http://dx.doi.org/10.1021/nn405773r] [PMID: 24702320]
[124]
Fu, C.; Duan, X.; Cao, M.; Jiang, S.; Ban, X.; Guo, N.; Zhang, F.; Mao, J.; Huyan, T.; Shen, J.; Zhang, L.M. Targeted magnetic resonance imaging and modulation of hypoxia with multifunctional hyaluronic acid‐MnO2 nanoparticles in glioma. Adv. Healthc. Mater., 2019, 8(10), 1900047
[http://dx.doi.org/10.1002/adhm.201900047] [PMID: 30920772]
[125]
Liu, J.; Wang, L.; Shen, X.; Gao, X.; Chen, Y.; Liu, H.; Liu, Y.; Yin, D.; Liu, Y.; Xu, W.; Cai, R.; You, M.; Guo, M.; Wang, Y.; Li, J.; Li, Y.; Chen, C. Graphdiyne-templated palladium-nanoparticle assembly as a robust oxygen generator to attenuate tumor hypoxia. Nano Today, 2020, 34, 100907
[http://dx.doi.org/10.1016/j.nantod.2020.100907]
[126]
Wang, D.; Wu, H.; Phua, S.Z.F.; Yang, G.; Qi Lim, W.; Gu, L.; Qian, C.; Wang, H.; Guo, Z.; Chen, H.; Zhao, Y. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun., 2020, 11(1), 357.
[http://dx.doi.org/10.1038/s41467-019-14199-7] [PMID: 31953423]
[127]
Liu, Y.; Jiang, Y.; Zhang, M.; Tang, Z.; He, M.; Bu, W. Modulating hypoxia via nanomaterials chemistry for efficient treatment of solid tumors. Acc. Chem. Res., 2018, 51(10), 2502-2511.
[http://dx.doi.org/10.1021/acs.accounts.8b00214] [PMID: 30234960]
[128]
Brown, J.M. Exploiting the hypoxic cancer cell: Mechanisms and therapeutic strategies. Mol. Med. Today, 2000, 6(4), 157-162.
[http://dx.doi.org/10.1016/S1357-4310(00)01677-4] [PMID: 10740254]
[129]
Liu, Y.; Liu, Y.; Bu, W.; Xiao, Q.; Sun, Y.; Zhao, K.; Fan, W.; Liu, J.; Shi, J. Radiation-/hypoxia-induced solid tumor metastasis and regrowth inhibited by hypoxia-specific upconversion nanoradiosensitizer. Biomaterials, 2015, 49, 1-8.
[http://dx.doi.org/10.1016/j.biomaterials.2015.01.028] [PMID: 25725549]
[130]
Lin, C.; Hu, Z.; Yuan, G.; Su, H.; Zeng, Y.; Guo, Z.; Zhong, F.; Jiang, K.; He, S. HIF1α-siRNA and gemcitabine combination-based GE-11 peptide antibody-targeted nanomedicine for enhanced therapeutic efficacy in pancreatic cancers. J. Drug Target., 2019, 27(7), 797-805.
[http://dx.doi.org/10.1080/1061186X.2018.1552276] [PMID: 30481072]
[131]
Chung, S.L.; Yee, M.S.L.; Hii, L.W.; Lim, W.M.; Ho, M.Y.; Khiew, P.S.; Leong, C.O. Advances in nanomaterials used in co-delivery of siRNA and small molecule drugs for cancer treatment. Nanomaterials, 2021, 11(10), 2467.
[http://dx.doi.org/10.3390/nano11102467] [PMID: 34684908]
[132]
Liu, X.Q.; Xiong, M.H.; Shu, X.T.; Tang, R.Z.; Wang, J. Therapeutic delivery of siRNA silencing HIF-1 alpha with micellar nanoparticles inhibits hypoxic tumor growth. Mol. Pharm., 2012, 9(10), 2863-2874.
[http://dx.doi.org/10.1021/mp300193f] [PMID: 22924580]
[133]
Pi, Y.; Zhang, X.; Shao, Z.; Zhao, F.; Hu, X.; Ao, Y. Intra-articular delivery of anti-Hif-2α siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice. Gene Ther., 2015, 22(6), 439-448.
[http://dx.doi.org/10.1038/gt.2015.16] [PMID: 25876463]
[134]
Bedingfield, S.K.; Yu, F.; Liu, D.D.; Jackson, M.A.; Himmel, L.E.; Cho, H.; Colazo, J.M.; Crofford, L.J.; Hasty, K.A.; Duvall, C.L. Matrix-targeted nanoparticles for MMP13 RNA interference blocks post-traumatic osteoarthritis. biorxiv, 2020.
[http://dx.doi.org/10.1101/2020.01.30.925321]
[135]
Liang, Y.; Xu, X.; Xu, L.; Prasadam, I.; Duan, L.; Xiao, Y.; Xia, J. Non-surgical osteoarthritis therapy, intra-articular drug delivery towards clinical applications. J. Drug Target., 2021, 29(6), 609-616.
[http://dx.doi.org/10.1080/1061186X.2020.1870231] [PMID: 33356642]
[136]
Fathi, M.; Pustokhina, I.; Kuznetsov, S.V.; Khayrullin, M.; Hojjat-Farsangi, M.; Karpisheh, V.; Jalili, A.; Jadidi-Niaragh, F. T‐cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer. IUBMB Life, 2021, 73(5), 726-738.
[http://dx.doi.org/10.1002/iub.2461] [PMID: 33686787]
[137]
Hajizadeh, F.; Moghadaszadeh Ardebili, S.; Baghi Moornani, M.; Masjedi, A.; Atyabi, F.; Kiani, M.; Namdar, A.; Karpisheh, V.; Izadi, S.; Baradaran, B.; Azizi, G.; Ghalamfarsa, G.; Sabz, G.; Yousefi, M.; Jadidi-Niaragh, F. Silencing of HIF-1α/CD73 axis by siRNA-loaded TAT-chitosan-spion nanoparticles robustly blocks cancer cell progression. Eur. J. Pharmacol., 2020, 882, 173235
[http://dx.doi.org/10.1016/j.ejphar.2020.173235] [PMID: 32574672]
[138]
Yan, Y; Li, H; Yao, H; Xiaoliang, C Nano-delivery systems delivering hypoxia inducible factor-1 alpha siRNA and antisense oligonucleotide for cancer treatment. Frontiers in Nanotechnology, 2022, 46
[139]
Şalva, E.; Turan, S.Ö.; Eren, F.; Akbuğa, J. The enhancement of gene silencing efficiency with chitosan-coated liposome formulations of siRNAs targeting HIF-1α and VEGF. Int. J. Pharm., 2015, 478(1), 147-154.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.065] [PMID: 25445537]
[140]
Tang, W.L.; Tang, W.H.; Szeitz, A.; Kulkarni, J.; Cullis, P.; Li, S.D. Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery. Biomaterials, 2018, 166, 13-26.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.004] [PMID: 29529479]
[141]
Lagoa, R.; Silva, J.; Rodrigues, J.R.; Bishayee, A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol. Adv., 2020, 38, 107382
[http://dx.doi.org/10.1016/j.biotechadv.2019.04.004] [PMID: 30978386]
[142]
Pandya, M.; Jani, S.; Dave, V.; Rawal, R. Nanoinformatics: An emerging trend in cancer therapeutics. NanoBiotechnology, 2020, 135-162.
[143]
Dave, V.; Pandya, M.; Rawal, R.; Bhatnagar, S.P.; Mehta, R. Smart and intelligent vehicles for drug delivery: Theranostic nanorobots.Advanced Nanomaterials for Point of Care Diagnosis and Therapy; , 2022, pp. 541-564.
[144]
Shah, K.; Mirza, S.; Desai, U.; Jain, N.; Rawal, R. Synergism of curcumin and cytarabine in the down regulation of multi-drug resistance genes in acute myeloid leukemia. Anti-Cancer Agents in Medicinal Chemistry, 2016, 16(1), 128-135.
[145]
Rawal, R.M.; Desai, U.N.; Shah, K.P.; Mirza, S.H.; Panchal, D.K.; Parikh, S.K. Enhancement of the cytotoxic effects of Cytarabine in synergism with Hesperidine and Silibinin in Acute Myeloid Leukemia: An in-vitro approach. J. Cancer Res. Ther., 2015, 11(2), 352-357.
[http://dx.doi.org/10.4103/0973-1482.157330] [PMID: 26148599]
[146]
Thakkar, S.; Sharma, D.; Kalia, K.; Tekade, R.K. Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta Biomater., 2020, 101, 43-68.
[http://dx.doi.org/10.1016/j.actbio.2019.09.009] [PMID: 31518706]
[147]
Zhu, H.; Zhang, S.; Ling, Y.; Meng, G.; Yang, Y.; Zhang, W. pHresponsive hybrid quantum dots for targeting hypoxic tumor siRNA delivery. J. Control. Release, 2015, 220(Pt A), 529-544.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.017] [PMID: 26590349]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy