Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Synthesis of Novel Cationic Photosensitizers Derived from Chlorin for Application in Photodynamic Therapy of Cancer

Author(s): Faride Ranjbari, Mohammad R. Rashidi*, Salar Hemmati*, Ebrahim Safari and Habib Tajalli

Volume 16, Issue 4, 2023

Published on: 19 June, 2023

Page: [315 - 325] Pages: 11

DOI: 10.2174/1874471016666230526153806

Price: $65

Abstract

Background: Chlorins (dihydroporphyrins) are tetrapyrrole-based compounds that are more effective in photodynamic therapy than porphyrins. The instability of the compounds and their oxidation to porphyrin limits the use of these compounds. However, the design and synthesis of new stable chlorin-based cationic photosensitizers with the potential for use in cancer photodynamic therapy can be interesting.

Methods: In this research, new tetracationic meso substituted chlorins were designed, synthesized, and characterized. After determining the chemical structure and spectroscopic properties of five new photosensitizers, their phototoxicity on breast cancer cell lines (MCF-7) was investigated under optimized conditions in terms of factors such as photosensitizer concentrations and light intensity.

Results: The results of cytotoxicity assayed by the MTT method showed that the synthesized compounds, even up to the concentration of 50 μM had very low toxicity in the absence of light, which indicates their safety under dark conditions. Compounds A1 and A3 with the best physicochemical properties such as solubility, high absorption intensity in the effective range of photodynamic therapy, and the high quantum yield of singlet oxygen, had a good toxic effect (IC50 = 0.5 μM) on the cancer cells (MCF-7) in the presence of laser light.

Conclusion: According to the obtained results, compounds A1 and A3 have the potential to continue research on PDT for confirmation and use in treatment.

Graphical Abstract

[1]
Waks, A.G.; Winer, E.P. Breast cancer treatment: A review. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[2]
WHO International agency for research on cancer 2019.
[3]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[4]
Hegde, P.S.; Chen, D.S. Top 10 challenges in cancer immunotherapy. Immunity, 2020, 52(1), 17-35.
[http://dx.doi.org/10.1016/j.immuni.2019.12.011] [PMID: 31940268]
[5]
Maman, S.; Witz, I.P. A history of exploring cancer in context. Nat. Rev. Cancer, 2018, 18(6), 359-376.
[http://dx.doi.org/10.1038/s41568-018-0006-7] [PMID: 29700396]
[6]
dos Santos, AlF.; de Almeida, DRQ.; Terra, LF.; Baptista, McS.; Labriola, L. Photodynamic therapy in cancer treatment-an update review. J. Cancer Metastasis Treat., 2019, 5.
[7]
Palesh, O.; Scheiber, C.; Kesler, S.; Mustian, K.; Koopman, C.; Schapira, L. Management of side effects during and post-treatment in breast cancer survivors. Breast J., 2018, 24(2), 167-175.
[http://dx.doi.org/10.1111/tbj.12862] [PMID: 28845551]
[8]
Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J. Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy-mechanisms, photosensitizers and combinations. Biomed. Pharmacother., 2018, 106, 1098-1107.
[http://dx.doi.org/10.1016/j.biopha.2018.07.049] [PMID: 30119176]
[9]
Niculescu, A.G.; Grumezescu, A.M. Photodynamic therapy—an up-to-date review. Appl. Sci., 2021, 11(8), 3626.
[http://dx.doi.org/10.3390/app11083626]
[10]
Effron, J.S.; Aliazzi, H.; Garcia-Zuazaga, J. Current evidence and applications of photodynamic therapy in dermatology: Part 1: Cutaneous neoplasms. J. Dermatol. Nurses Assoc., 2015, 7(3), 145-151.
[http://dx.doi.org/10.1097/JDN.0000000000000128]
[11]
Navaeipour, F.; Afsharan, H.; Tajalli, H.; Mollabashi, M.; Ranjbari, F.; Montaseri, A.; Rashidi, M.R. Effects of continuous wave and fractionated diode laser on human fibroblast cancer and dermal normal cells by zinc phthalocyanine in photodynamic therapy: A comparative study. J. Photochem. Photobiol. B, 2016, 161, 456-462.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.06.017] [PMID: 27318602]
[12]
Lan, M.; Zhao, S.; Liu, W.; Lee, C.S.; Zhang, W.; Wang, P. Photosensitizers for photodynamic therapy. Adv. Healthc. Mater., 2019, 8(13), 1900132.
[http://dx.doi.org/10.1002/adhm.201900132] [PMID: 31067008]
[13]
Kessel, D. Photodynamic therapy: A brief history. J. Clin. Med., 2019, 8(10), 1581.
[http://dx.doi.org/10.3390/jcm8101581] [PMID: 31581613]
[14]
Plaetzer, K.; Krammer, B.; Berlanda, J.; Berr, F.; Kiesslich, T. Photophysics and photochemistry of photodynamic therapy: Fundamental aspects. Lasers Med. Sci., 2009, 24(2), 259-268.
[http://dx.doi.org/10.1007/s10103-008-0539-1] [PMID: 18247081]
[15]
Luby, B.M.; Walsh, C.D.; Zheng, G. Advanced photosensitizer activation strategies for smarter photodynamic therapy beacons. Angew. Chem. Int. Ed., 2019, 58(9), 2558-2569.
[http://dx.doi.org/10.1002/anie.201805246] [PMID: 29890024]
[16]
Dobson, J.; de Queiroz, G.F.; Golding, J.P. Photodynamic therapy and diagnosis: Principles and comparative aspects. Vet. J., 2018, 233, 8-18.
[http://dx.doi.org/10.1016/j.tvjl.2017.11.012] [PMID: 29486883]
[17]
Tedesco, A.C.; Primo, F.L. Antimicrobial photodynamic therapy (APDT) action based on nanostructured photosensitizers. In: Multifunctional systems for combined delivery, biosensing and diagnostics; Elsevier, 2017; pp. 9-29.
[18]
Zhang, J.; Jiang, C.; Figueiró Longo, J.P.; Azevedo, R.B.; Zhang, H.; Muehlmann, L.A. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm. Sin. B, 2018, 8(2), 137-146.
[http://dx.doi.org/10.1016/j.apsb.2017.09.003] [PMID: 29719775]
[19]
Chatterjee, D.K.; Fong, L.S.; Zhang, Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Deliv. Rev., 2008, 60(15), 1627-1637.
[http://dx.doi.org/10.1016/j.addr.2008.08.003] [PMID: 18930086]
[20]
Zhang, Q.; Li, L. Photodynamic combinational therapy in cancer treatment. J. BUON, 2018, 23(3), 561-567.
[PMID: 30003719]
[21]
Ranjbari, F.; Hemmati, S.; Rashidi, M.R. Synthesis of (E)-1,2-Bis[4-[di(1H-pyrrol-2-yl)methyl]phenyl]ethene as a New Bis(dipyrromethane). Building Block. Lett. Org. Chem., 2020, 17(10), 795-800.
[http://dx.doi.org/10.2174/1570178617666200207102604]
[22]
Ranjbari, F.; Hemmati, S.; Rashidi, M.R. Synthesis of 7,12-bis(4-(di(1H-pyrrol-2-yl)methyl)phenyl)benzo[k]fluoranthene from a new dialdehyde as a novel fluorometric bis-Dipyrromethane derivative. Turk. J. Chem., 2021, 45(1), 42-49.
[http://dx.doi.org/10.3906/kim-2004-72] [PMID: 33679151]
[23]
Tian, J.; Huang, B.; Nawaz, M.H.; Zhang, W. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coord. Chem. Rev., 2020, 420, 213410.
[http://dx.doi.org/10.1016/j.ccr.2020.213410]
[24]
Yu, W.; Zhen, W.; Zhang, Q.; Li, Y.; Luo, H.; He, J.; Liu, Y. Porphyrin-based metal-organic framework compounds as promising nanomedicines in photodynamic therapy. ChemMedChem, 2020, 15(19), 1766-1775.
[http://dx.doi.org/10.1002/cmdc.202000353] [PMID: 32715651]
[25]
Lin, Y.; Zhou, T.; Bai, R.; Xie, Y. Chemical approaches for the enhancement of porphyrin skeleton-based photodynamic therapy. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1080-1099.
[http://dx.doi.org/10.1080/14756366.2020.1755669] [PMID: 32329382]
[26]
Galehassadi, M.; Herizchi, R.; Ranjbar, F. Synthesis and characterization of some quaternized styrene monomers and polymers. Des. Monomers Polym., 2011, 14(4), 303-313.
[http://dx.doi.org/10.1163/138577211X577178]
[27]
Mahajan, P.G.; Dige, N.C.; Vanjare, B.D.; Kim, C.H.; Seo, S.Y.; Lee, K.H. Design and synthesis of new porphyrin analogues as potent photosensitizers for photodynamic therapy: Spectroscopic approach. J. Fluoresc., 2020, 30(2), 397-406.
[http://dx.doi.org/10.1007/s10895-020-02513-2] [PMID: 32088851]
[28]
Mahajan, P.G.; Dige, N.C.; Vanjare, B.D.; Phull, A.R.; Kim, S.J.; Hong, S.K.; Lee, K.H. Synthesis, photophysical properties and application of new porphyrin derivatives for use in photodynamic therapy and cell imaging. J. Fluoresc., 2018, 28(4), 871-882.
[http://dx.doi.org/10.1007/s10895-018-2264-x] [PMID: 30014275]
[29]
Gyulkhandanyan, A.G.; Parkhots, M.V.; Knyukshto, V.N.; Lepeshkevich, S.V.; Dzhagarov, B.M.; Zakoyana, A.A.; Gyulkhandanyan, A.G.; Sheyranyan, M.A.; Kevorkian, G.A.; Gyulkhandanyana, G.V. Binding of cationic porphyrins and metalloporphyrins to the human transferrin for photodynamic therapy of tumors In: Biophotonics: Photonic Solutions for Better Health Care VI: 2018; International Society for Optics and Photonics. , 2018; p. 1068504.
[http://dx.doi.org/10.1117/12.2306577]
[30]
Carneiro, J.; Gonçalves, A.; Zhou, Z.; Griffin, K.E.; Kaufman, N.E.M.; Vicente, M.G.H. Synthesis and in vitro PDT evaluation of new porphyrins containing meso -epoxymethylaryl cationic groups. Lasers Surg. Med., 2018, 50(5), 566-575.
[http://dx.doi.org/10.1002/lsm.22824] [PMID: 29691890]
[31]
Seeger, M.G.; Ries, A.S.; Gressler, L.T.; Botton, S.A.; Iglesias, B.A.; Cargnelutti, J.F. In vitro antimicrobial photodynamic therapy using tetra-cationic porphyrins against multidrug-resistant bacteria isolated from canine otitis. Photodiagn. Photodyn. Ther., 2020, 32, 101982.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101982] [PMID: 32890692]
[32]
Amos-Tautua, B.; Songca, S.; Oluwafemi, O. Application of porphyrins in antibacterial photodynamic therapy. Molecules, 2019, 24(13), 2456.
[http://dx.doi.org/10.3390/molecules24132456] [PMID: 31277423]
[33]
Ghorbani, J.; Rahban, D.; Aghamiri, S.; Teymouri, A.; Bahador, A. Photosensitizers in antibacterial photodynamic therapy: An overview. Laser Ther., 2018, 27(4), 293-302.
[http://dx.doi.org/10.5978/islsm.27_18-RA-01] [PMID: 31182904]
[34]
Oliveira, V.A.; Terenzi, H.; Menezes, L.B.; Chaves, O.A.; Iglesias, B.A. Evaluation of DNA-binding and DNA-photocleavage ability of tetra-cationic porphyrins containing peripheral [Ru(bpy)2Cl]+ complexes: Insights for photodynamic therapy agents. J. Photochem. Photobiol. B, 2020, 211, 111991.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111991] [PMID: 32798854]
[35]
Silva, J.N.; Haigle, J.; Tomé, J.P.C.; Neves, M.G.P.M.S.; Tomé, A.C.; Mazière, J.C.; Mazière, C.; Santus, R.; Cavaleiro, J.A.S.; Filipe, P.; Morlière, P. Enhancement of the photodynamic activity of tri-cationic porphyrins towards proliferating keratinocytes by conjugation to poly-S-lysine. Photochem. Photobiol. Sci., 2006, 5(1), 126-133.
[http://dx.doi.org/10.1039/b512841b] [PMID: 16395438]
[36]
McCormick, B.P.P.; Pansa, M.F.; Sanabria, L.N.M.; Carvalho, C.M.B.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Cavaleiro, J.A.S.; Vittar, N.B.R.; Rivarola, V.A. Cationic porphyrin derivatives for application in photodynamic therapy of cancer. Laser Phys., 2014, 24(4), 045603.
[http://dx.doi.org/10.1088/1054-660X/24/4/045603]
[37]
Dummin, H.; Cernay, T.; Zimmermann, H.W. Selective photosensitization of mitochondria in HeLa cells by cationic Zn(II)phthalocyanines with lipophilic side-chains. J. Photochem. Photobiol. B, 1997, 37(3), 219-229.
[http://dx.doi.org/10.1016/S1011-1344(96)07416-7] [PMID: 9085567]
[38]
Čunderlíková, B.; Gangeskar, L.; Moan, J. Acid–base properties of chlorin e6: Relation to cellular uptake. J. Photochem. Photobiol. B. 1999, 53(1), 81-90.
[http://dx.doi.org/10.1016/S1011-1344(99)00130-X] [PMID: 10672533]
[39]
Thomas, A.P.; Saneesh Babu, P.S.; Asha Nair, S.; Ramakrishnan, S.; Ramaiah, D.; Chandrashekar, T.K.; Srinivasan, A.; Radhakrishna Pillai, M. Meso-tetrakis(p-sulfonatophenyl)N-confused porphyrin tetrasodium salt: A potential sensitizer for photodynamic therapy. J. Med. Chem., 2012, 55(11), 5110-5120.
[http://dx.doi.org/10.1021/jm300009q] [PMID: 22582931]
[40]
Berezin, M.B.; Berezina, N.M.; Semeikin, A.S.; V’yugin, A.I. Thermochemistry of solution of some quaternized derivatives of tetra(4-pyridyl)porphine in water. Russ. J. Gen. Chem., 2007, 77(11), 1955-1958.
[http://dx.doi.org/10.1134/S1070363207110199]
[41]
Maree, M.D.; Kuznetsova, N.; Nyokong, T. Silicon octaphenoxyphthalocyanines: Photostability and singlet oxygen quantum yields. J. Photochem. Photobiol. Chem., 2001, 140(2), 117-125.
[http://dx.doi.org/10.1016/S1010-6030(01)00409-9]
[42]
Lopez, T.; Ortiz, E.; Alvarez, M.; Navarrete, J.; Odriozola, J.A.; Martinez-Ortega, F.; Páez-Mozo, E.A.; Escobar, P.; Espinoza, K.A.; Rivero, I.A. Study of the stabilization of zinc phthalocyanine in sol-gel TiO2 for photodynamic therapy applications. Nanomedicine , 2010, 6(6), 777-785.
[http://dx.doi.org/10.1016/j.nano.2010.04.007] [PMID: 20493967]
[43]
El-Daly, S.M.; Gamal-Eldeen, A.M.; Abo-Zeid, M.A.M.; Borai, I.H.; Wafay, H.A.; Abdel-Ghaffar, A.R.B. Photodynamic therapeutic activity of indocyanine green entrapped in polymeric nanoparticles. Photodiagn. Photodyn. Ther., 2013, 10(2), 173-185.
[http://dx.doi.org/10.1016/j.pdpdt.2012.08.003] [PMID: 23769284]
[44]
Tarnowski, B.I.; Spinale, F.G.; Nicholson, J.H. DAPI as a useful stain for nuclear quantitation. Biotech. Histochem., 1991, 66(6), 296-302.
[http://dx.doi.org/10.3109/10520299109109990] [PMID: 1725854]
[45]
Lin, H.; Chen, X.; Wu, Y.; Tong, S.; Hu, S.; Yu, J.; Yan, Y. Preparation of single substituted phenyl porphyrins form <i>Meso</i>-Tetraphenyl Porphyrin-synthetic example from symmetric porphyrin into asymmetric porphyrins. Open J. Inorg. Chem., 2018, 8(1), 21-27.
[http://dx.doi.org/10.4236/ojic.2018.81002]
[46]
Sugata, S.; Yamanouchi, S.; Matsushima, Y. meso-Tetrapyridylporphins and their metal complexes. Syntheses and physico-chemical properties. Chem. Pharm. Bull. , 1977, 25(5), 884-889.
[http://dx.doi.org/10.1248/cpb.25.884]
[47]
Zawadiak, J.; Mrzyczek, M. Influence of substituent on UV absorption and keto–enol tautomerism equilibrium of dibenzoylmethane derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 815-819.
[http://dx.doi.org/10.1016/j.saa.2012.07.109] [PMID: 22925908]
[48]
Slomp, A.M.; Barreira, S.M.W.; Carrenho, L.Z.B.; Vandresen, C.C.; Zattoni, I.F.; Ló, S.M.S.; Dallagnol, J.C.C.; Ducatti, D.R.B.; Orsato, A.; Duarte, M.E.R.; Noseda, M.D.; Otuki, M.F.; Gonçalves, A.G. Photodynamic effect of meso-(aryl)porphyrins and meso-(1-methyl-4-pyridinium)porphyrins on HaCaT keratinocytes. Bioorg. Med. Chem. Lett., 2017, 27(2), 156-161.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.094] [PMID: 27956348]
[49]
Jensen, T.J.; Vicente, M.G.H.; Luguya, R.; Norton, J.; Fronczek, F.R.; Smith, K.M. Effect of overall charge and charge distribution on cellular uptake, distribution and phototoxicity of cationic porphyrins in HEp2 cells. J. Photochem. Photobiol. B, 2010, 100(2), 100-111.
[http://dx.doi.org/10.1016/j.jphotobiol.2010.05.007] [PMID: 20558079]
[50]
Yao, J.; Zhang, W.; Sheng, C.; Miao, Z.; Yang, F.; Yu, J.; Zhang, L.; Song, Y.; Zhou, T.; Zhou, Y. Design, synthesis, and in vitro photodynamic activities of benzochloroporphyrin derivatives as tumor photosensitizers. Bioorg. Med. Chem. Lett., 2008, 18(1), 293-297.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.086] [PMID: 18006309]
[51]
Bourré, L.; Simonneaux, G.; Ferrand, Y.; Thibaut, S.; Lajat, Y.; Patrice, T. Synthesis, and in vitro and in vivo evaluation of a diphenylchlorin sensitizer for photodynamic therapy. J. Photochem. Photobiol. B, 2003, 69(3), 179-192.
[http://dx.doi.org/10.1016/S1011-1344(03)00020-4] [PMID: 12695032]
[52]
Yang, M.; Deng, J.; Guo, D.; Zhang, J.; Yang, L.; Wu, F. Correction: A folate-conjugated platinum porphyrin complex as a new cancer-targeting photosensitizer for photodynamic therapy. Org. Biomol. Chem., 2020, 18(3), 569-569.
[http://dx.doi.org/10.1039/C9OB90191D] [PMID: 31858091]
[53]
Araki, K.; Engelmann, F.M.; Mayer, I.; Toma, H.E.; Baptista, M.S.; Maeda, H.; Osuka, A.; Furuta, H. Doubly N-confused porphyrins as efficient sensitizers for singlet oxygen generation. Chem. Lett., 2003, 32(3), 244-245.
[http://dx.doi.org/10.1246/cl.2003.244]
[54]
Engelmann, F.M.; Losco, P.; Winnischofer, H.; Araki, K.; Toma, H.E. Synthesis, electrochemistry, spectroscopy and photophysical properties of a series of meso -phenylpyridylporphyrins with one to four pyridyl rings coordinated to [Ru (bipy)2 Cl]+ groups. J. Porphyr. Phthalocyanines, 2002, 6(1), 33-42.
[http://dx.doi.org/10.1142/S1088424602000063]
[55]
Engelmann, F.M.; Mayer, I.; Araki, K.; Toma, H.E.; Baptista, M.S.; Maeda, H.; Osuka, A.; Furuta, H. Photochemistry of doubly N-confused porphyrin bonded to non-conventional high oxidation state Ag(III) and Cu(III) ions. J. Photochem. Photobiol. Chem., 2004, 163(3), 403-411.
[http://dx.doi.org/10.1016/j.jphotochem.2004.01.010]
[56]
Reddi, E.; Ceccon, M.; Valduga, G.; Jori, G.; Bommer, J.C.; Elisei, F.; Latterini, L.; Mazzucato, U. Photophysical properties and antibacterial activity of meso-substituted cationic porphyrins. Photochem. Photobiol., 2002, 75(5), 462-470.
[http://dx.doi.org/10.1562/0031-8655(2002)075<0462:PPAAAO>2.0.CO;2] [PMID: 12017471]
[57]
Ricchelli, F.; Franchi, L.; Miotto, G.; Borsetto, L.; Gobbo, S.; Nikolov, P.; Bommer, J.C.; Reddi, E. Meso-substituted tetra-cationic porphyrins photosensitize the death of human fibrosarcoma cells via lysosomal targeting. Int. J. Biochem. Cell Biol., 2005, 37(2), 306-319.
[http://dx.doi.org/10.1016/j.biocel.2004.06.013] [PMID: 15474977]
[58]
Engelmann, F.M.; Mayer, I.; Gabrielli, D.S.; Toma, H.E.; Kowaltowski, A.J.; Araki, K.; Baptista, M.S. Interaction of cationic meso-porphyrins with liposomes, mitochondria and erythrocytes. J. Bioenerg. Biomembr., 2007, 39(2), 175-185.
[http://dx.doi.org/10.1007/s10863-007-9075-0] [PMID: 17436065]
[59]
Peng, C.L.; Lai, P.S.; Chang, C.C.; Lou, P.J.; Shieh, M.J. The synthesis and photodynamic properties of meso-substituted, cationic porphyrin derivatives in HeLa cells. Dyes Pigments, 2010, 84(1), 140-147.
[http://dx.doi.org/10.1016/j.dyepig.2009.07.008]
[60]
Farquhar, A.K.; Fitchett, C.M.; Dykstra, H.M.; Waterland, M.R.; Brooksby, P.A.; Downard, A.J. Diels-Alder reaction of anthranilic acids: A versatile route to dense monolayers on flat edge and basal plane graphitic carbon substrates. ACS Appl. Mater. Interfaces, 2016, 8(35), 23389-23395.
[http://dx.doi.org/10.1021/acsami.6b07727] [PMID: 27529723]
[61]
Silva, J.N.; Galmiche, A.; Tomé, J.P.C.; Boullier, A.; Neves, M.G.P.M.S.; Silva, E.M.P.; Capiod, J.C.; Cavaleiro, J.A.S.; Santus, R.; Mazière, J.C.; Filipe, P.; Morlière, P. Chain-dependent photocytotoxicity of tricationic porphyrin conjugates and related mechanisms of cell death in proliferating human skin keratinocytes. Biochem. Pharmacol., 2010, 80(9), 1373-1385.
[http://dx.doi.org/10.1016/j.bcp.2010.07.033] [PMID: 20691164]
[62]
Kessel, D. Correlation between subcellular localization and photodynamic efficacy. J. Porphyr. Phthalocyanines, 2004, 8(8), 1009-1014.
[http://dx.doi.org/10.1142/S1088424604000374]
[63]
Sibrian-Vazquez, M.; Jensen, T.J.; Fronczek, F.R.; Hammer, R.P.; Vicente, M.G.H. Synthesis and characterization of positively charged porphyrin-peptide conjugates. Bioconjug. Chem., 2005, 16(4), 852-863.
[http://dx.doi.org/10.1021/bc050057g] [PMID: 16029027]
[64]
Mita, H.; Ohyama, T.; Tanaka, Y.; Yamamoto, Y. Formation of a complex of 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23 H-porphyrin with G-quadruplex DNA. Biochemistry, 2006, 45(22), 6765-6772.
[http://dx.doi.org/10.1021/bi052442z] [PMID: 16734413]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy