Abstract
Nanotechnology has changed the world, with a great impact on industry and medicine. In this commentary, we discuss the importance of radiolabeled nanomaterials for the construction of theranostic, imaging and therapeutic agents in order to pave the future of medicine.
[1]
Pijeira, M.S.O. Viltres, H.; Kozempel, J.; Sakmár, M.; Vlk, M.; İlem-Özdemir, D.; Ekinci, M.; Srinivasan, S.; Rajabzadeh, A.R.; Ricci-Junior, E.; Alencar, L.M.R.; Al Qahtani, M.; Santos-Oliveira, R. Radiolabeled nanomaterials for biomedical applications: Radiopharmacy in the era of nanotechnology. EJNMMI Radiopharm. Chem., 2022, 7(1), 8.
[http://dx.doi.org/10.1186/s41181-022-00161-4] [PMID: 35467307]
[http://dx.doi.org/10.1186/s41181-022-00161-4] [PMID: 35467307]
[2]
Nanotechnology patents in USPTO (Patent). Nanomaterials ReportSTATNANO,. Available from: https://statnano.com/report/s103/3
Accessed on: September 7, 2022)
[3]
Yang, Y.; Alencar, L.M.R.; Pijeira, M.S.O.; Batista, B.S.; França, A.R.S.; Rates, E.R.D.; Lima, R.C.; Gemini-Piperni, S.; Santos-Oliveira, R. [223Ra]RaCl2 nanomicelles showed potent effect against osteosarcoma: targeted alpha therapy in the nanotechnology era. Drug Deliv., 2022, 29(1), 186-191.
[http://dx.doi.org/10.1080/10717544.2021.2005719] [PMID: 35191342]
[http://dx.doi.org/10.1080/10717544.2021.2005719] [PMID: 35191342]
[4]
Souza, B.N.R.F.; Ribeiro, E.R.F.R.; da Silva de Barros, A.O.; Pijeira, M.S.O.; Kenup-Hernandes, H.O.; Ricci-Junior, E.; Diniz Filho, J.F.S.; dos Santos, C.C.; Alencar, L.M.R.; Attia, M.F.; Gemini-Piperni, S.; Santos-Oliveira, R. Nanomicelles of radium dichloride [223Ra]RaCl2 co-loaded with radioactive gold [198Au]Au nanoparticles for targeted alpha–beta radionuclide therapy of osteosarcoma. Polymers, 2022, 14(7), 1405.
[http://dx.doi.org/10.3390/polym14071405] [PMID: 35406278]
[http://dx.doi.org/10.3390/polym14071405] [PMID: 35406278]
[5]
Lemaître, T.A.; Burgoyne, A.R.; Ooms, M.; Parac-Vogt, T.N.; Cardinaels, T. Inorganic radiolabeled nanomaterials in cancer therapy: A review. ACS Appl. Nano Mater., 2022, 5(7), 8680-8709.
[http://dx.doi.org/10.1021/acsanm.2c01204]
[http://dx.doi.org/10.1021/acsanm.2c01204]
[6]
Hyun, H.; Park, J.; Willis, K.; Park, J.E.; Lyle, L.T.; Lee, W.; Yeo, Y. Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors. Biomaterials, 2018, 180, 206-224.
[http://dx.doi.org/10.1016/j.biomaterials.2018.07.024] [PMID: 30048910]
[http://dx.doi.org/10.1016/j.biomaterials.2018.07.024] [PMID: 30048910]
[7]
Hortelao, A.C.; Simó, C.; Guix, M.; Guallar-Garrido, S.; Julián, E.; Vilela, D.; Rejc, L.; Ramos-Cabrer, P.; Cossío, U.; Gómez-Vallejo, V.; Patiño, T.; Llop, J.; Sánchez, S. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci. Robot., 2021, 6(52), eabd2823.
[http://dx.doi.org/10.1126/scirobotics.abd2823] [PMID: 34043548]
[http://dx.doi.org/10.1126/scirobotics.abd2823] [PMID: 34043548]
[8]
Allan, J.; Belz, S.; Hoeveler, A.; Hugas, M.; Okuda, H.; Patri, A.; Rauscher, H.; Silva, P.; Slikker, W.; Sokull-Kluettgen, B.; Tong, W.; Anklam, E. Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regul. Toxicol. Pharmacol., 2021, 122, 104885.
[http://dx.doi.org/10.1016/j.yrtph.2021.104885] [PMID: 33617940]
[http://dx.doi.org/10.1016/j.yrtph.2021.104885] [PMID: 33617940]
[9]
Kim, T.H.; Lee, S.; Chen, X. Nanotheranostics for personalized medicine. Expert Rev. Mol. Diagn., 2013, 13(3), 257-269.
[http://dx.doi.org/10.1586/erm.13.15] [PMID: 23570404]
[http://dx.doi.org/10.1586/erm.13.15] [PMID: 23570404]
[10]
Datta, P.; Ray, S. Nanoparticulate formulations of radiopharmaceuticals: Strategy to improve targeting and biodistribution properties. J. Labelled Comp. Radiopharm., 2020, 63(7), 333-355.
[http://dx.doi.org/10.1002/jlcr.3839] [PMID: 32220029]
[http://dx.doi.org/10.1002/jlcr.3839] [PMID: 32220029]
[11]
Petriev, V.M.; Tischenko, V.K.; Mikhailovskaya, A.A.; Popov, A.A.; Tselikov, G.; Zelepukin, I.; Deyev, S.M.; Kaprin, A.D.; Ivanov, S.; Timoshenko, V.Y.; Prasad, P.N.; Zavestovskaya, I.N.; Kabashin, A.V. Nuclear nanomedicine using Si nanoparticles as safe and effective carriers of 188Re radionuclide for cancer therapy. Sci. Rep., 2019, 9(1), 2017.
[http://dx.doi.org/10.1038/s41598-018-38474-7] [PMID: 30765778]
[http://dx.doi.org/10.1038/s41598-018-38474-7] [PMID: 30765778]
[12]
Farjadian, F.; Ghasemi, A.; Gohari, O.; Roointan, A.; Karimi, M.; Hamblin, M.R. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine, 2019, 14(1), 93-126.
[http://dx.doi.org/10.2217/nnm-2018-0120] [PMID: 30451076]
[http://dx.doi.org/10.2217/nnm-2018-0120] [PMID: 30451076]
[13]
Kashyap, B.K.; Singh, V.V.; Solanki, M.K.; Kumar, A.; Ruokolainen, J.; Kesari, K.K. Smart nanomaterials in cancer theranostics: Challenges and opportunities. ACS Omega, 2023, 8(16), 14290-14320.
[http://dx.doi.org/10.1021/acsomega.2c07840] [PMID: 37125102]
[http://dx.doi.org/10.1021/acsomega.2c07840] [PMID: 37125102]
[14]
Peltonen, L. Practical guidelines for the characterization and quality control of pure drug nanoparticles and nano-cocrystals in the pharmaceutical industry. Adv. Drug Deliv. Rev., 2018, 131, 101-115.
[http://dx.doi.org/10.1016/j.addr.2018.06.009] [PMID: 29920294]
[http://dx.doi.org/10.1016/j.addr.2018.06.009] [PMID: 29920294]