Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Phytochemicals and Biological Activities of Pulicaria genus: Emphasis on the Flavonoids and Sesquiterpenoids and Cytotoxicity Effects

Author(s): Marzieh Pourhossein Alamdary and Robabeh Baharfar*

Volume 27, Issue 6, 2023

Published on: 17 July, 2023

Page: [526 - 539] Pages: 14

DOI: 10.2174/1385272827666230522152708

Price: $65

Abstract

The use of herbal remedies is more current in illnesses with chronic diseases. One of these important applications is the usage of many plant-derived compounds as cytotoxic agents for the treatment of cancers. Various research has been done on several species of Pulicaria genus for the evaluation of antihistaminic, antimicrobial, antitumor, antiinflammatory, antioxidant, antibacterial, antifungal, insecticide, and leishmanicidal activities. Some studies have shown that these plants have a rich pool of biometabolites like diterpenes, sesquiterpenes, caryophyllenes, flavonoids, and sesquiterpenoids. The main components in several species of this genus are flavonoids and sesquiterpenoids, which have been identified in chemotaxonomic studies and have shown cytotoxic properties. The Scopus and Science Direct sites were studied to find articles on flavonoid and sesquiterpenoid compounds that have been isolated from the Pulicaria genus.

Several biological compounds were isolated from different species of the Pulicaria genus. The main compounds are flavonoids and sesquiterpenoids, which have different biological effects. Its main effect is cytotoxic effect against several cancer cell lines. This study indicates that the Pulicaria genus has cytotoxic activity but posterity studies are needed to probe the active compounds and their possible expansion as novel anticancer drugs.

Graphical Abstract

[1]
Islami, F.; Goding, S.A.; Miller, K.D.; Siegel, R.L.; Fedewa, S.A.; Jacobs, E.J.; Jemal, A. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J. Clin., 2018, 68(1), 31-54.
[2]
Boffetta, P.; Hecht, S.; Gray, N.; Gupta, P.; Straif, K. Smokeless tobacco and cancer. Lancet Oncol., 2008, 9(7), 667-675.
[http://dx.doi.org/10.1016/S1470-2045(08)70173-6] [PMID: 18598931]
[3]
Henley, S.J.; Connell, C.J.; Richter, P.; Husten, C.; Pechacek, T.; Calle, E.E.; Thun, M.J. Tobacco-related disease mortality among men who switched from cigarettes to spit tobacco. Tob. Control, 2007, 16(1), 22-28.
[http://dx.doi.org/10.1136/tc.2006.018069] [PMID: 17297069]
[4]
Lortet-Tieulent, J.; Goding Sauer, A.; Siegel, R.L.; Miller, K.D.; Islami, F.; Fedewa, S.A.; Jacobs, E.J.; Jemal, A. State-level cancer mortality attributable to cigarette smok-ing in the United States. JAMA Intern. Med., 2016, 176(12), 1792-1798.
[http://dx.doi.org/10.1001/jamainternmed.2016.6530] [PMID: 27775761]
[5]
Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer, 2010, 127(12), 2893-2917.
[http://dx.doi.org/10.1002/ijc.25516] [PMID: 21351269]
[6]
Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global cancer transitions according to the Human Development Index (2008–2030): A population-based study. Lancet Oncol., 2012, 13(8), 790-801.
[http://dx.doi.org/10.1016/S1470-2045(12)70211-5] [PMID: 22658655]
[7]
Shah, S.C.; Kayamba, V.; Peek, R.M., Jr; Heimburger, D. Cancer control in low- and middle-income countries: Is it time to consider screening? J. Glob. Oncol., 2019, 5(5), 1-8.
[http://dx.doi.org/10.1200/JGO.18.00200] [PMID: 30908147]
[8]
Ma, X.; Yu, H. Global burden of cancer. Yale J. Biol. Med., 2006, 79(3-4), 85-94.
[PMID: 17940618]
[9]
Calixto, J.B. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz. J. Med. Biol. Res., 2000, 33(2), 179-189.
[http://dx.doi.org/10.1590/S0100-879X2000000200004] [PMID: 10657057]
[10]
Angell, M.; Kassirer, J.P. Alternative medicine-the risks of untested and unregulated remedies. N. Engl. J. Med., 1998, 339(12), 839-841.
[http://dx.doi.org/10.1056/NEJM199809173391210] [PMID: 9738094]
[11]
Zari, A.T.; Zari, T.A.; Hakeem, K.R. Anticancer properties of Eugenol: A review. Molecules, 2021, 26(23), 7407.
[http://dx.doi.org/10.3390/molecules26237407] [PMID: 34885992]
[12]
das Chagas Pereira de Andrade. F.; Mendes, A.N. Computational analysis of eugenol inhibitory activity in lipoxygenase and cyclooxygenase pathways. Sci. Rep., 2020, 10(1), 16204-16217.
[http://dx.doi.org/10.1038/s41598-020-73203-z] [PMID: 33004893]
[13]
Permatasari, H.K.; Kusuma, I.D.; Mayangsari, E. Clove (Syzygium aromaticum) induces apoptosis in HeLa cervical cancer cells by increasing p53 protein levels. Brawi-jaya Medical Journal, 2019, 30(3), 185-190.
[http://dx.doi.org/10.21776/ub.jkb.2019.030.03.4]
[14]
Mishra, H.; Mishra, P.K.; Iqbal, Z.; Jaggi, M.; Madaan, A.; Bhuyan, K.; Gupta, N.; Gupta, N.; Vats, K.; Verma, R.; Talegaonkar, S. Co-Delivery of Eugenol and Dacarbazine by hyaluronic acid-coated liposomes for targeted inhibition of survivin in treatment of resistant metastatic melanoma. Pharmaceutics, 2019, 11(4), 163.
[http://dx.doi.org/10.3390/pharmaceutics11040163] [PMID: 30987266]
[15]
Ezoubeiri, A.; Gadhi, C.A.; Fdil, N.; Benharref, A.; Jana, M.; Vanhaelen, M. Isolation and antimicrobial activity of two phenolic compounds from Pulicaria odora L. J. Fthnopharmacology, 2005, 99, 287-292.
[16]
Ali, N.; Sharpov, F.; Alhaj, M.; Hill, G.; Porzel, A.; Arnold, N.; Setzer, W.; Schmidt, J.; Wessjohann, L. Chemical composition and biological activity of essential oil from Pulicaria undulated from yemen. Nat. Prod. Commun., 2011, 6, 1-4.
[17]
Saleh, N.A.M. Global phytochemistry: The Egyptian experience. Phytochemistry, 2003, 63(3), 239-241.
[http://dx.doi.org/10.1016/S0031-9422(03)00163-8] [PMID: 12737973]
[18]
Nguyen, D.T.C.; Tran, T.V.; Kumar, P.S.; Din, A.T.M.; Jalil, A.A.; Vo, D.V.N. Invasive plants as biosorbents for environmental remediation: A review. Environ. Chem. Lett., 2022, 20(2), 1421-1451.
[http://dx.doi.org/10.1007/s10311-021-01377-7] [PMID: 35018167]
[19]
Azhagu, M.S.; Vijayakumar, S.; Sripriya, R.; Rajalakshmi, S. Phytochemical Screening and GC–MS analysis of bioactive compounds present in ethanolic leaf extract Murraya koenigii. Bulletin of Environment. Pharmacology and Life Sciences, 2021, 10(4), 158-164.
[20]
Lgara, C.E.; Omoboyowa, D.A.; Ahuchaogu, A.A.; Orji, N.U.; Ndukwe, M.K. Phytochemical and nutritional profile of Murraya Koenigii (Linn) Spreng leaf. J. Pharmacogn. Phytochem., 2016, 5(5), 7-9.
[21]
Priyanka, G.; Rohit, C.; Lavanya, V. Ethnobotany, phytochemical, pharmacological potentials of Murraya koenigii, and Its health benefits–a review. Current Journal of Applied Science and Technology, 2020, 39(26), 29-38.
[22]
Tan, N.H.; Akindahunsi, A.A.; Zeng, G.Z.; Zhang, Y.M.; Adebayo, A.H. Anticancer and antiradical scavenging activity of Ageratum conyzoides L. (Asteraceae). Pharmacogn. Mag., 2010, 6(21), 62-66.
[http://dx.doi.org/10.4103/0973-1296.59968] [PMID: 20548938]
[23]
Zhang, S.; Won, Y.K.; Ong, C.N.; Shen, H.M. Anti-cancer potential of sesquiterpene lactones: Bioactivity and molecular mechanisms. Curr. Med. Chem. Anticancer Agents, 2005, 5(3), 239-249.
[http://dx.doi.org/10.2174/1568011053765976] [PMID: 15992352]
[24]
Réthy, B.; Csupor-Löffler, B.; Zupkó, I.; Hajdú, Z.; Máthé, I.; Hohmann, J.; Rédei, T.; Falkay, G. Antiproliferative activity of Hungarian Asteraceae species against human cancer cell lines. Part I. Phytother. Res., 2007, 21(12), 1200-1208.
[http://dx.doi.org/10.1002/ptr.2240] [PMID: 17661336]
[25]
Martinez, M.J.A.; Bessa, A.L.; Benito, P.B. Biologically active substances from the genus Baccharis L. (Compositae). Studies in Natural Products Chemistry, 2005, 30, 703-759.
[http://dx.doi.org/10.1016/S1572-5995(05)80045-6]
[26]
Burlou-Nagy, C.; Bănică, F.; Jurca, T.; Vicaș, L.G.; Marian, E.; Muresan, M.E.; Bácskay, I.; Kiss, R.; Fehér, P.; Pallag, A. Echinacea purpurea (L.) Moench: Biological and pharmacological properties. A review. Plants, 2022, 11(9), 1244.
[http://dx.doi.org/10.3390/plants11091244] [PMID: 35567246]
[27]
Konovalov, D.A. Polyacetylene compounds of plants of the Asteraceae Family. Pharm. Chem. J., 2014, 48(9), 613-631.
[http://dx.doi.org/10.1007/s11094-014-1159-7]
[28]
Olanj, N.; Garnatje, T.; Sonboli, A.; Vallès, J.; Garcia, S. The striking and unexpected cytogenetic diversity of genus Tanacetum L. (Asteraceae): A cytometric and fluo-rescent in situ hybridisation study of Iranian taxa. BMC Plant Biol., 2015, 15(1), 174-190.
[http://dx.doi.org/10.1186/s12870-015-0564-8] [PMID: 26152193]
[29]
Wang, Y.H.; Al-Rehaily, A.J.; Yousaf, M.; Ahmad, M.S.; Khan, I.A. Characterization and discriminationof different Pulicaria species using UHPLC-UV-MS QTOF. J. Chem. Soc. Pak., 2015, 37, 1-9.
[30]
Mahfouz, M.; Ghazal, A.; El-Dakhakhny, M.; Ghoneim, M. Pharmacological studies on the active principle isolated from Pulicaria dysenterica. J. Drug Res., 1973, 5, 151-172.
[31]
Al-Hazimi, H.M.G. AL-Khathlan, H.Z. Chemistry of various Pulicaria species (Asteraceae). J. Chem. Soc. Pak., 1992, 14, 233-240.
[32]
Haider, N. A brief review on plant taxonomy and its components. J. Plant Sci. Res., 2018, 34(2), 277-292.
[http://dx.doi.org/10.32381/JPSR.2018.34.02.17]
[33]
An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc., 2016, 181(1), 1-20.
[http://dx.doi.org/10.1111/boj.12385]
[34]
Saini, I.; Chauhan, J.; Kaushik, P. Medicinal value of domiciliary ornamental plants of the Asteraceae family. J. Young Pharm., 2020, 12(1), 03-10.
[http://dx.doi.org/10.5530/jyp.2020.12.2]
[35]
Jardine, P.E.; Palazzesi, L.; Tellería, M.C.; Barreda, V.D. Why does pollen morphology vary? Evolutionary dynamics and morphospace occupation in the largest angio-sperm order (Asterales). New Phytol., 2022, 234(3), 1075-1087.
[http://dx.doi.org/10.1111/nph.18024] [PMID: 35147224]
[36]
Fu, Z-X.; Jiao, B-H.; Nie, B.; Zhang, G.J.; Gao, T.G. A comprehensive generic-level phylogeny of the sunflower family: Implications for the systematics of Chinese Aster-aceae. J. Syst. Evol., 2016, 54(4), 416-437.
[http://dx.doi.org/10.1111/jse.12216]
[37]
Katinas, L.; Hernández, M.P.; Arambarri, A.M.; Funk, V.A. The origin of the bifurcating style in Asteraceae (Compositae). Ann. Bot., 2016, 117(6), 1009-1021.
[http://dx.doi.org/10.1093/aob/mcw033] [PMID: 27098086]
[38]
Katinas, L.; Funk, V.A. An updated classification of the basal grade of Asteraceae (= Compositae): from Cabrera’s 1977 tribe Mutisieae to the present. N. Z. J. Bot., 2020, 58(2), 67-93.
[http://dx.doi.org/10.1080/0028825X.2020.1718168]
[39]
Rechinger, K.H. Aster. Flora Iranica, 1982, 154, 4-6.
[40]
Gürdal, B.; Nath, E.Ö. Comparative anatomical study on Pulicaria gaertn. genus (Compositae) from Turkey and its taxonomic implication. Pak. J. Bot., 2022, 54(5), 1849-1858.
[http://dx.doi.org/10.30848/PJB2022-5(26)]
[41]
Dhanamani, M.; Devi, S.L.; Kannan, S. Ethnomedicinal plants for cancer therapy-a review. J Dtugs Med., 2011, 3(1), 1-10.
[42]
Rolnik, A.; Olas, B. The plants of the Asteraceae family as agents in the protection of human health. Int. J. Mol. Sci., 2021, 22(6), 3009.
[http://dx.doi.org/10.3390/ijms22063009] [PMID: 33809449]
[43]
Cheriti, A.; Belboukhari, M.; Belboukhari, N.; Djeradi, H. Phytochemical and biological studies on Launaea cass. genus (Asteraceae) from Algerian Sahara. Current Topics in Phytochemistry, 2012, 11, 67-80.
[44]
Amirghofran, Z.; Bahmani, M.; Azadmehr, A.; Javidnia, K. Anticancer effects of various Iranian native medicinal plants on human tumor cell lines. Neoplasma, 2006, 53(5), 428-433.
[PMID: 17013538]
[45]
Grenié, M.; Berti, F.; Carvajal-Quintero, J.; Dädlow, G.M.L.; Sagouis, A.; Winter, M. Harmonizing taxon names in biodiversity data: A review of tools, databases and best practices. Methods Ecol. Evol., 2021, 14(1), 1-301.
[46]
Liu, L.L.; Yang, J.L.; Shi, Y.P. Phytochemicals and biological activities of Pulicaria species. Chem. Biodivers., 2010, 7(2), 327-349.
[http://dx.doi.org/10.1002/cbdv.200900014] [PMID: 20151381]
[47]
Ali, A.; Makboul, M.; Assaf, M.; Anton, R. Essential oil of Pulicaria undulata L. growing in Egypt and its effect on animal behavior. Bull. Pharm. Sci., 1987, 10(1), 37-49.
[http://dx.doi.org/10.21608/bfsa.1987.74025]
[48]
Mohamed, E.A.A.; Muddathir, A.M.; Osman, M.A. Antimicrobial activity, phytochemical screening of crude extracts, and essential oils constituents of two Pulicaria spp. growing in Sudan. Sci. Rep., 2020, 10(1), 17148.
[http://dx.doi.org/10.1038/s41598-020-74262-y] [PMID: 33051571]
[49]
Boumaraf, M.; Carbone, M.; Ciavatta, M.L.; Benyahia, S.; Ameddah, S.; Menad, A.; Benayache, S.; Benayache, F.; Gavagnin, M. Exploring the bioactive terpenoid content of an algerian plant of the Genus Pulicaria: The ent-Series of Asteriscunolides. J. Nat. Prod., 2017, 80(1), 82-89.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00717] [PMID: 28032767]
[50]
Mahomoodally, M.F.; Gurib-Fakim, A.; Subratty, A.H. Antimicrobial activities and phytochemical profiles of endemic medicinal plants of Mauritius. Pharm. Biol., 2005, 43(3), 237-242.
[http://dx.doi.org/10.1080/13880200590928825]
[51]
Quarenghi, M.; Tereschuk, M.L.; Baigori, M.D.; Abdala, L.R. Antimicrobial activity of flowers from Anthemis cotula. Fitoterapia, 2000, 71(6), 710-712.
[http://dx.doi.org/10.1016/S0367-326X(00)00229-X] [PMID: 11077183]
[52]
Pandey, A.K. Anti-staphylococcal activity of a pan-tropical aggressive and obnoxious weed Parihenium histerophorus: An in vitro study. Natl. Acad. Sci. Lett., 2007, 30, 383-386.
[53]
Iwashina, T. The structure and distribution of the flavonoids in plants. J. Plant Res., 2000, 113(3), 287-299.
[http://dx.doi.org/10.1007/PL00013940]
[54]
Silva, A.; Silva, V.; Igrejas, G.; Aires, A.; Falco, V.; Valentão, P.; Poeta, P. Phenolic compounds classification and their distribution in winemaking by-products. Eur. Food Res. Technol., 2023, 249(2), 207-239.
[http://dx.doi.org/10.1007/s00217-022-04163-z]
[55]
Kumar, S.; Pandey, A.K. Phenolic content, reducing power and membrane protective activities of Solanum xanthocarpum root extracts. Vegetos, 2013, 26(1), 301-307.
[http://dx.doi.org/10.5958/j.2229-4473.26.1.043]
[56]
Middleton, E., Jr Effect of plant flavonoids on immune and inflammatory cell function. Adv. Exp. Med. Biol., 1998, 439, 175-182.
[http://dx.doi.org/10.1007/978-1-4615-5335-9_13] [PMID: 9781303]
[57]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J., 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[58]
Fraga, B.M. Natural sesquiterpenoids. Nat. Prod. Rep., 2012, 29(11), 1334-1366.
[http://dx.doi.org/10.1039/c2np20074k] [PMID: 22918397]
[59]
Bonikowski, R.; Świtakowska, P.; Sienkiewicz, M.; Zakłos-Szyda, M. Selected compounds structurally related to acyclic sesquiterpenoids and their antibacterial and cytotoxic activity. Molecules, 2015, 20(6), 11272-11296.
[http://dx.doi.org/10.3390/molecules200611272] [PMID: 26096434]
[60]
Formica, J.V.; Regelson, W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol., 1995, 33(12), 1061-1080.
[http://dx.doi.org/10.1016/0278-6915(95)00077-1] [PMID: 8847003]
[61]
El-Negoumy, S.I.; Mansour, R.M.A.; Saleh, N.A.M. Flavonols of Pulicaria arabica. Phytochemistry, 1982, 21(4), 953-954.
[http://dx.doi.org/10.1016/0031-9422(82)80105-2]
[62]
Ramadan, M. Flavonoids from Pulicaria arabica (L) CASS. Bull. Pharm. Sci., 1998, 21(2), 103-108.
[http://dx.doi.org/10.21608/bfsa.1998.67958]
[63]
Yusufoglu, H.S. Analgesic, antipyretic, anti-inflammatory, hepatoprotective and nephritic effects of the aerial parts of Pulicaria arabica (Family: Compositae) on rats. Asian Pac. J. Trop. Med., 2014, 7, S583-S590.
[http://dx.doi.org/10.1016/S1995-7645(14)60293-5] [PMID: 25312187]
[64]
Triana, J.; López, M.; Pérez, F.J.; León, F.; Quintana, J.; Estévez, F.; Hernández, J.C.; González-Platas, J.; Brouard, I.; Bermejo, J. Secondary metabolites from two species of Pulicaria and their cytotoxic activity. Chem. Biodivers., 2011, 8(11), 2080-2089.
[http://dx.doi.org/10.1002/cbdv.201000324] [PMID: 22083919]
[65]
Triana, J.; López, M.; Pérez, F.J.; González-Platas, J.; Quintana, J.; Estévez, F.; León, F.; Bermejo, J. Sesquiterpenoids from Pulicaria canariensis and their cytotoxic activities. J. Nat. Prod., 2005, 68(4), 523-531.
[http://dx.doi.org/10.1021/np0496183] [PMID: 15844941]
[66]
AI-Said, M.S. Traditional medicinal plants of Saudi Arabia. Am. J. Chin. Med., 1993, 21(03n04), 291-298.
[http://dx.doi.org/10.1142/S0192415X93000340] [PMID: 8135174]
[67]
Al-Yahya, M.A.; Khafagy, S.; Shihata, A.; Kozlowski, J.F.; Antoun, M.D.; Cassady, J.M. Phytochemical and biological screening of Saudi medicinal plants, Part 6. Isola-tion of 2 α-hydroxyalantolactone the antileukemic principle of Francoeuria crispa. J. Nat. Prod., 1984, 47(6), 1013-1017.
[http://dx.doi.org/10.1021/np50036a019] [PMID: 6533259]
[68]
alo Yahya, M.A.; el-Sayed, A.M.; Mossa, J.S.; Kozlowski, J.F.; Antoun, M.D.; Ferin, M.; Baird, W.M.; Cassady, J.M. Potential cancer chemopreventive and cytotoxic agents from Pulicaria crispa. J. Nat. Prod., 1988, 51(3), 621-624.
[http://dx.doi.org/10.1021/np50057a038] [PMID: 3404160]
[69]
Dendougui, H.; Benayache, S.; Benayache, F.; Connoly, J.D. Sesquiterpene lactones from Pulicaria crispa. Fitoterapia, 2000, 71(4), 373-378.
[http://dx.doi.org/10.1016/S0367-326X(00)00133-7] [PMID: 10925006]
[70]
Stavri, M.; Mathew, K.T.; Gibbons, S. A novel sesquiterpene from Pulicaria crispa (Forssk.) Oliv. Nat. Prod. Commun., 2008, 3(1), 1934578X0800300.
[http://dx.doi.org/10.1177/1934578X0800300101]
[71]
Bohlmann, F.; Zdero, C. Caryophyllene derivatives and a hydroxyisocomene from Pulicaria dysenterica. Phytochemistry, 1981, 20(11), 2529-2534.
[http://dx.doi.org/10.1016/0031-9422(81)83087-7]
[72]
Marco, J.A.; Sanz, J.F.; Albiach, R. Caryophyllene derivatives from Pulicaria dysenterica. Phytochemistry, 1992, 31(7), 2409-2413.
[http://dx.doi.org/10.1016/0031-9422(92)83288-A]
[73]
Nickavar, B.; Mojab, F. Antibacterial activity of Pulicaria dysenterica extracts. Fitoterapia, 2003, 74(4), 390-393.
[http://dx.doi.org/10.1016/S0367-326X(03)00060-1] [PMID: 12781813]
[74]
Luz Cádiz-Gurrea, M.; Zengin, G.; Kayacık, O.; Lobine, D.; Mahomoodally, M.F.; Leyva-Jiménez, F.J.; Segura-Carretero, A. Innovative perspectives on Pulicaria dysen-terica extracts: Phyto‐pharmaceutical properties, chemical characterization and multivariate analysis. J. Sci. Food Agric., 2019, 99(13), 6001-6010.
[http://dx.doi.org/10.1002/jsfa.9875] [PMID: 31225640]
[75]
Nikpay, A.; Soltani, M. In vitro anti-parasitic activities of Pulicaria dysenterica and Lycopus europaeus methanolic extracts against Trichomonas gallinae. J. Herbmed Pharmacol., 2018, 7(2), 112-118.
[http://dx.doi.org/10.15171/jhp.2018.19]
[76]
Mossa, J.S.; Muhammad, I.; El-Feraly, F.S.; Huffor, C.D.; McPhail, D.R.; McPhail, A.T. Bisabolene and guaiane sesquiterpenes from Pulicaria glutinosa. Phytochemistry, 1992, 31(2), 575-578.
[http://dx.doi.org/10.1016/0031-9422(92)90041-N]
[77]
Abutaha, N.; Farooq, M.; Al-Mekhlafi, F.A.; Almohannad, B.; Shehata, S.; Wadaan, M. Evaluating developmental toxicity of solvent fractions obtained from Pulicaria glutinosa on zebrafish embryo and their antimicrobial potential. J. Pure Appl. Microbiol., 2014, 8(4), 2679-2685.
[78]
Wang, Q.; Mei, W.L.; Dai, H.F.; Tan, D.G.; Zhang, J.M.; Huang, S.Z. Sesquiterpene glycoside diversities with anti-nematodal activities from Pulicaria insignis. Phytochem. Lett., 2020, 38, 161-165.
[http://dx.doi.org/10.1016/j.phytol.2020.06.003]
[79]
Gao, F.; Wang, H.; Mabry, T.J. Sesquiterpene lactone aglycones and glycosides from Hymenoxys lemmonii. Phytochemistry, 1990, 29(5), 1601-1607.
[http://dx.doi.org/10.1016/0031-9422(90)80130-9]
[80]
Huang, S.; Jiang, S.; Zhu, H. Sesquiterpenoids from Tibetan folk drug Pulicaria insignis. Natural Product Research and Development, 2010, 22, 736-739.
[81]
Wang, X.; Hou, P.; Qu, Y.; Huang, R.; Feng, Y.; Zhao, S.; Ding, Y.; Liao, Z. Chemical constituents of Tibetan herbal medicine Pulicaria insignis and their in vitro cyto-toxic activities. Rec. Nat. Prod., 2020, 23, 1-12.
[82]
Galala, A.A.; Sallam, A.; Abdel-Halim, O.B.; Gedara, S.R. New ent-kaurane diterpenoid dimer from Pulicaria inuloides. Nat. Prod. Res., 2016, 30(21), 2468-2475.
[http://dx.doi.org/10.1080/14786419.2016.1201671] [PMID: 27348493]
[83]
Ragab, E.A.; Raafat, M. A new monoterpene glucoside and complete assignments of dihydroflavonols of Pulicaria jaubertii: Potential cytotoxic and blood pressure lowering activity. Nat. Prod. Res., 2016, 30(11), 1280-1288.
[http://dx.doi.org/10.1080/14786419.2015.1055492] [PMID: 26247309]
[84]
Elshamy, A.I.; Mohamed, T.A.; Marzouk, M.M.; Hussien, T.A.; Umeyama, A.; Hegazy, M.E.F.; Efferth, T. Phytochemical constituents and chemosystematic significance of Pulicaria jaubertii E.Gamal-Eldin (Asteraceae). Phytochem. Lett., 2018, 24, 105-109.
[http://dx.doi.org/10.1016/j.phytol.2018.01.021]
[85]
Ahmed, N.; El-Agamy, D.S.; Mohammed, G.A.; Abo-Haded, H.; Elkablawy, M.; Ibrahim, S.R.M. Suppression of LPS-induced Hepato- and cardiotoxic effects by Pulicar-ia petiolaris via NF-κB dependent mechanism. Cardiovasc. Toxicol., 2020, 20(2), 121-129.
[http://dx.doi.org/10.1007/s12012-019-09539-4] [PMID: 31273688]
[86]
Ahmed, N.; Aljuhani, N.; Salamah, S.; Surrati, H.; El-Agamy, D.; Elkablawy, M.; Ibrahim, S.; Mohamed, G. Pulicaria petiolaris effectively attenuates lipopolysaccha-ride (LPS)-induced acute lung injury in mice. Arch. Biol. Sci., 2018, 70(4), 699-706.
[http://dx.doi.org/10.2298/ABS180510033A]
[87]
Hussein, S.R.; Marzouk, M.M.; Soltan, M.M.; Ahmed, E.K.; Said, M.M.; Hamed, A.R. Phenolic constituents of Pulicaria undulata (L.) C.A. Mey. sub sp. undulata (Asteraceae): Antioxidant protective effects and chemosystematic significances. Yao Wu Shi Pin Fen Xi, 2017, 25(2), 333-339.
[PMID: 28911675]
[88]
Wollenweber, E.; Rustaiyan, A. Exudate flavonoids in three Persian Asteraceae species. Biochem. Syst. Ecol., 1991, 19(8), 673-675.
[http://dx.doi.org/10.1016/0305-1978(91)90084-D]
[89]
Takaharu, H.; Hajime, A.; Hiroto, C.; Shigeharu, F.; Masashi, K. Isolation and identification of anti-Helicobacter pylori compounds from Polygonum tinctorium Lour. Nat. Med., 1999, 53, 27-31.
[90]
Williams, C.A.; Harborne, J.B.; Greenham, J.R.; Grayer, R.J.; Kite, G.C.; Eagles, J. Variations in lipophilic and vacuolar flavonoids among European Pulicaria species. Phytochemistry, 2003, 64(1), 275-283.
[http://dx.doi.org/10.1016/S0031-9422(03)00207-3] [PMID: 12946426]
[91]
Hussien, T.A.; El-toumy, S.A.; Hassan, H.M.; Hetta, M.H. Cytotoxic and antioxidant activities of secondary metabolites from Pulicaria undulata. Int. J. Pharm. Pharm. Sci., 2016, 8(9), 150-155.
[http://dx.doi.org/10.22159/ijpps.2016v8i9.12814]
[92]
Emam, M.A.; Khattab, H.I.; Hegazy, M.G.A. Assessment of anticancer activity of Pulicaria undulata on hepatocellular carcinoma HepG2 cell line. Tumour Biol., 2019, 41(10)
[http://dx.doi.org/10.1177/1010428319880080] [PMID: 31603389]
[93]
Hegazy, M.E.F.; Nakamura, S.; Tawfik, W.A.; Abdel-Azim, N.S.; Abdel-Lateff, A.; Matsuda, H.; Paré, P.W. Rare hydroperoxyl guaianolide sesquiterpenes from Pulicaria undulata. Phytochem. Lett., 2015, 12, 177-181.
[http://dx.doi.org/10.1016/j.phytol.2015.03.019]
[94]
Abdel Bar, F.M.; Elsbaey, M.; Taha, N.; Elgaml, A.; Abdel-Fattah, G.M. Phytochemical, antimicrobial and antiquorum-sensing studies of Pulicaria undulata L.: a revi-sion on the structure of 1β,2α,3β,19α,23-pentahydroxy-urs-12-en-28-oic acid. Nat. Prod. Res., 2020, 34(6), 804-809.
[http://dx.doi.org/10.1080/14786419.2018.1503658] [PMID: 30422011]
[95]
Abdallah, H.M.; Mohamed, G.A.M.; Ibrahim, S.R.; Asfour, H.Z.; Khayat, M.T.; Undulaterpene, A. A new triterpene fatty acid ester from Pulicaria undulata. Pharmacogn. Mag., 2019, 15, 671-674.
[http://dx.doi.org/10.4103/pm.pm_668_18]
[96]
Hegazy, M.E.F.; Matsuda, H.; Nakamura, S.; Yabe, M.; Matsumoto, T.; Yoshikawa, M. Sesquiterpenes from an Egyptian herbal medicine, Pulicaria undulate, with inhibi-tory effects on nitric oxide production in RAW264.7 macrophage cells. Chem. Pharm. Bull., 2012, 60(3), 363-370.
[http://dx.doi.org/10.1248/cpb.60.363] [PMID: 22382417]
[97]
Zardi-Bergaoui, A.; Znati, M.; Harzallah-Skhiri, F.; Jannet, H.B. Caryophyllene sesquiterpenes from Pulicaria vulgaris GAERTN.: Isolation, structure determination, bioactivity and structure activity relationship. Chem. Biodivers., 2019, 16(2)e1800483
[http://dx.doi.org/10.1002/cbdv.201800483] [PMID: 30673162]
[98]
Das, B.; Ravinder Reddy, M.; Ramu, R.; Ravindranath, N.; Harish, H.; Ramakrishna, K.V.S.; Koteswar Rao, Y.; Harakishore, K.; Murthy, U.S.N. Clerodane diterpenoids from Pulicaria wightiana. Phytochemistry, 2005, 66(6), 633-638.
[http://dx.doi.org/10.1016/j.phytochem.2005.02.004] [PMID: 15771881]
[99]
Venkateswarlu, K.; Satyalakshmi, G.; Suneel, K.; Reddy, T.S.; Raju, T.V.; Das, B. A Benzofuranoid and two clerodane diterpenoids from Pulicaria wightiana. Helv. Chim. Acta, 2008, 91(11), 2081-2088.
[http://dx.doi.org/10.1002/hlca.200890222]
[100]
Kumar, S.N.; Das, R.C.; Rajaram, C.; Reddy, K.R. Phytochemical investigation and anti-inflammatory activity of ethanolic extract of Pulicaria wightiana. Am. J. Adv. Drug Deliv., 2013, 1-7.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy