Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

The Mutation and Low Expression of ARID1A are Predictive of a Poor Prognosis and High Immune Infiltration in Triple-negative Breast Cancer

Author(s): Yuejing Wang, Zhuo Chen, Jing Wu, Hong Yan, Yiran Wang and Jie He*

Volume 24, Issue 1, 2024

Published on: 08 June, 2023

Page: [59 - 68] Pages: 10

DOI: 10.2174/1568009623666230522115229

Price: $65

Abstract

Background: Triple-negative breast cancer (TNBC) has the poorest prognosis among all breast cancer subtypes. While several tumor types are excepted to have a curative response to immunotherapy through the AT-rich interaction domain 1A (ARID1A) gene, its role in TNBC remains unclear.

Methods: The expression of the ARID1A gene and immune infiltration in TNBC were analyzed by way and function enrichment analysis. Additionally, 27 gene mutations, including ARID1A mutation, were detected in paraffin-embedded TNBC specimens and normal breast specimens using Next Generation Sequencing (NGS). Immunohistochemical staining was employed to detect the expression of AIRD1A, TP53, Ki67, CD4, CD8, and PD-L1 proteins in TNBC and the adjacent normal tissue samples.

Results: The bioinformatics analysis revealed that ARID1A was mutated in TNBC and significantly associated with tumor immune infiltration. NGS analysis showed a high mutation rate of ARID1A (35%) in TNBC, but the mutation status of ARID1A was not associated with age at onset, lymph node metastasis, pathological grade, or Ki67 index. Low expression or loss of AIRD1A was more commonly observed in TNBC tissues (36/108) as compared to normal tissues (3/25). Positive expression of CD8 and PD-L1 was observed in TNBC tissues with low ARID1A expression. ARID1A mutation was associated with low protein expression, and patients with ARID1A mutation or low protein expression had shorter progression-free survival.

Conclusion: The ARID1A mutation and low expression are associated with poor prognosis and high immune infiltration in TNBC, and might be biomarkers for TNBC prognosis and immunotherapy efficacy.

Graphical Abstract

[1]
Borri, F.; Granaglia, A. Pathology of triple negative breast cancer. Semin. Cancer Biol., 2021, 72, 136-145.
[http://dx.doi.org/10.1016/j.semcancer.2020.06.005] [PMID: 32544511]
[2]
DiNome, M.L.; Orozco, J.I.J.; Matsuba, C.; Manughian-Peter, A.O.; Ensenyat-Mendez, M.; Chang, S.C.; Jalas, J.R.; Salomon, M.P.; Marzese, D.M. Clinicopathological features of triple-negative breast cancer epigenetic subtypes. Ann. Surg. Oncol., 2019, 26(10), 3344-3353.
[http://dx.doi.org/10.1245/s10434-019-07565-8] [PMID: 31342401]
[3]
Blows, F.M.; Driver, K.E.; Schmidt, M.K.; Broeks, A.; van Leeuwen, F.E.; Wesseling, J.; Cheang, M.C.; Gelmon, K.; Nielsen, T.O.; Blomqvist, C.; Heikkilä, P.; Heikkinen, T.; Nevanlinna, H.; Akslen, L.A.; Bégin, L.R.; Foulkes, W.D.; Couch, F.J.; Wang, X.; Cafourek, V.; Olson, J.E.; Baglietto, L.; Giles, G.G.; Severi, G.; McLean, C.A.; Southey, M.C.; Rakha, E.; Green, A.R.; Ellis, I.O.; Sherman, M.E.; Lissowska, J.; Anderson, W.F.; Cox, A.; Cross, S.S.; Reed, M.W.R.; Provenzano, E.; Dawson, S.J.; Dunning, A.M.; Humphreys, M.; Easton, D.F.; García-Closas, M.; Caldas, C.; Pharoah, P.D.; Huntsman, D. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: A collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med., 2010, 7(5), e1000279.
[http://dx.doi.org/10.1371/journal.pmed.1000279] [PMID: 20520800]
[4]
Buys, S.S.; Sandbach, J.F.; Gammon, A.; Patel, G.; Kidd, J.; Brown, K.L.; Sharma, L.; Saam, J.; Lancaster, J.; Daly, M.B. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer, 2017, 123(10), 1721-1730.
[http://dx.doi.org/10.1002/cncr.30498] [PMID: 28085182]
[5]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[6]
Sharma, P.; Barlow, W.E.; Godwin, A.K.; Pathak, H.; Isakova, K.; Williams, D.; Timms, K.M.; Hartman, A.R.; Wenstrup, R.J.; Linden, H.M. Impact of homologous recombination deficiency biomarkers on outcomes in patients with triple-negative breast cancer treated with doxorubicin-based adjuvant chemotherapy (SWOG S9313). Ann. Oncol., 2017, 29(3), 654-660.
[http://dx.doi.org/10.1093/annonc/mdx821] [PMID: 29293876]
[7]
Geenen, J.J.J.; Linn, S.C.; Beijnen, J.H.; Schellens, J.H.M. PARP inhibitors in the treatment of triple-negative breast cancer. Clin. Pharmacokinet., 2018, 57(4), 427-437.
[http://dx.doi.org/10.1007/s40262-017-0587-4] [PMID: 29063517]
[8]
Gong, Y.; Ji, P.; Yang, Y.S.; Xie, S.; Yu, T.J.; Xiao, Y.; Jin, M.L.; Ma, D.; Guo, L.W.; Pei, Y.C.; Chai, W.J.; Li, D.Q.; Bai, F.; Bertucci, F.; Hu, X.; Jiang, Y.Z.; Shao, Z.M. Metabolic-pathway-based subtyping of triple-negative breast cancer reveals potential therapeutic targets. Cell Metab., 2021, 33(1), 51-64.e9.
[http://dx.doi.org/10.1016/j.cmet.2020.10.012] [PMID: 33181091]
[9]
Mittal, P.; Roberts, C.W.M. The SWI/SNF complex in cancer — biology, biomarkers and therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 435-448.
[http://dx.doi.org/10.1038/s41571-020-0357-3] [PMID: 32303701]
[10]
Paul, S.; Bartholomew, B. Regulation of ATP-dependent chromatin remodelers: Accelerators/brakes, anchors and sensors. Biochem. Soc. Trans., 2018, 46(6), 1423-1430.
[http://dx.doi.org/10.1042/BST20180043] [PMID: 30467122]
[11]
Kadoch, C.; Hargreaves, D.C.; Hodges, C.; Elias, L.; Ho, L.; Ranish, J.; Crabtree, G.R. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet., 2013, 45(6), 592-601.
[http://dx.doi.org/10.1038/ng.2628] [PMID: 23644491]
[12]
Wu, R.C.; Wang, T.L.; Shih, I.M. The emerging roles of ARID1A in tumor suppression. Cancer Biol. Ther., 2014, 15(6), 655-664.
[http://dx.doi.org/10.4161/cbt.28411] [PMID: 24618703]
[13]
Dykhuizen, E.C.; Hargreaves, D.C.; Miller, E.L.; Cui, K.; Korshunov, A.; Kool, M.; Pfister, S.; Cho, Y.J.; Zhao, K.; Crabtree, G.R. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature, 2013, 497(7451), 624-627.
[http://dx.doi.org/10.1038/nature12146] [PMID: 23698369]
[14]
Shen, J.; Ju, Z.; Zhao, W.; Wang, L.; Peng, Y.; Ge, Z.; Nagel, Z.D.; Zou, J.; Wang, C.; Kapoor, P.; Ma, X.; Ma, D.; Liang, J.; Song, S.; Liu, J.; Samson, L.D.; Ajani, J.A.; Li, G.M.; Liang, H.; Shen, X.; Mills, G.B.; Peng, G. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat. Med., 2018, 24(5), 556-562.
[http://dx.doi.org/10.1038/s41591-018-0012-z] [PMID: 29736026]
[15]
Okamura, R.; Kato, S.; Lee, S.; Jimenez, R.E.; Sicklick, J.K.; Kurzrock, R. ARID1A alterations function as a biomarker for longer progression-free survival after anti-PD-1/PD-L1 immunotherapy. J. Immunother. Cancer, 2020, 8(1), e000438.
[http://dx.doi.org/10.1136/jitc-2019-000438] [PMID: 32111729]
[16]
Nagarajan, S.; Rao, S.V.; Sutton, J.; Cheeseman, D.; Dunn, S.; Papachristou, E.K.; Prada, J.E.G.; Couturier, D.L.; Kumar, S.; Kishore, K.; Chilamakuri, C.S.R.; Glont, S.E.; Archer Goode, E.; Brodie, C.; Guppy, N.; Natrajan, R.; Bruna, A.; Caldas, C.; Russell, A.; Siersbæk, R.; Yusa, K.; Chernukhin, I.; Carroll, J.S. ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. Nat. Genet., 2020, 52(2), 187-197.
[http://dx.doi.org/10.1038/s41588-019-0541-5] [PMID: 31913353]
[17]
Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res., 2019, 47(W1), W556-W560.
[http://dx.doi.org/10.1093/nar/gkz430] [PMID: 31114875]
[18]
Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; Creighton, C.J.; Varambally, S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 2022, 25, 18-27.
[http://dx.doi.org/10.1016/j.neo.2022.01.001] [PMID: 35078134]
[19]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[20]
Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res., 2020, 48(W1), W509-W514.
[http://dx.doi.org/10.1093/nar/gkaa407] [PMID: 32442275]
[21]
Sturm, G.; Finotello, F.; Petitprez, F.; Zhang, J.D.; Baumbach, J.; Fridman, W.H.; List, M.; Aneichyk, T. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics, 2019, 35(14), i436-i445.
[http://dx.doi.org/10.1093/bioinformatics/btz363] [PMID: 31510660]
[22]
Thompson, E.D.; Zahurak, M.; Murphy, A.; Cornish, T.; Cuka, N.; Abdelfatah, E.; Yang, S.; Duncan, M.; Ahuja, N.; Taube, J.M.; Anders, R.A.; Kelly, R.J. Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut, 2017, 66(5), 794-801.
[http://dx.doi.org/10.1136/gutjnl-2015-310839] [PMID: 26801886]
[23]
Xu, G.; Chhangawala, S.; Cocco, E.; Razavi, P.; Cai, Y.; Otto, J.E.; Ferrando, L.; Selenica, P.; Ladewig, E.; Chan, C.; Da Cruz Paula, A.; Witkin, M.; Cheng, Y.; Park, J.; Serna-Tamayo, C.; Zhao, H.; Wu, F.; Sallaku, M.; Qu, X.; Zhao, A.; Collings, C.K.; D’Avino, A.R.; Jhaveri, K.; Koche, R.; Levine, R.L.; Reis-Filho, J.S.; Kadoch, C.; Scaltriti, M.; Leslie, C.S.; Baselga, J.; Toska, E. ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nat. Genet., 2020, 52(2), 198-207.
[http://dx.doi.org/10.1038/s41588-019-0554-0] [PMID: 31932695]
[24]
Inoue, H.; Furukawa, T.; Giannakopoulos, S.; Zhou, S.; King, D.S.; Tanese, N. Largest subunits of the human SWI/SNF chromatin-remodeling complex promote transcriptional activation by steroid hormone receptors. J. Biol. Chem., 2002, 277(44), 41674-41685.
[http://dx.doi.org/10.1074/jbc.M205961200] [PMID: 12200431]
[25]
Inada, R.; Sekine, S.; Taniguchi, H.; Tsuda, H.; Katai, H.; Fujiwara, T.; Kushima, R. ARID1A expression in gastric adenocarcinoma: Clinicopathological significance and correlation with DNA mismatch repair status. World J. Gastroenterol., 2015, 21(7), 2159-2168.
[http://dx.doi.org/10.3748/wjg.v21.i7.2159] [PMID: 25717252]
[26]
Sun, X.; Wang, S.C.; Wei, Y.; Luo, X.; Jia, Y.; Li, L.; Gopal, P.; Zhu, M.; Nassour, I.; Chuang, J.C.; Maples, T.; Celen, C.; Nguyen, L.H.; Wu, L.; Fu, S.; Li, W.; Hui, L.; Tian, F.; Ji, Y.; Zhang, S.; Sorouri, M.; Hwang, T.H.; Letzig, L.; James, L.; Wang, Z.; Yopp, A.C.; Singal, A.G.; Zhu, H. Arid1a has context-dependent oncogenic and tumor suppressor functions in liver cancer. Cancer Cell, 2017, 32(5), 574-589.e6.
[http://dx.doi.org/10.1016/j.ccell.2017.10.007] [PMID: 29136504]
[27]
Sun, D.; Zhu, Y.; Zhao, H.; Bian, T.; Li, T.; Liu, K.; Feng, L.; Li, H.; Hou, H. Loss of ARID1A expression promotes lung adenocarcinoma metastasis and predicts a poor prognosis. Cell. Oncol., 2021, 44(5), 1019-1034.
[http://dx.doi.org/10.1007/s13402-021-00616-x] [PMID: 34109546]
[28]
Takao, C.; Morikawa, A.; Ohkubo, H.; Kito, Y.; Saigo, C.; Sakuratani, T.; Futamura, M.; Takeuchi, T.; Yoshida, K. Downregulation of ARID1A, a component of the SWI/SNF chromatin remodeling complex, in breast cancer. J. Cancer, 2017, 8(1), 1-8.
[http://dx.doi.org/10.7150/jca.16602] [PMID: 28123592]
[29]
Shahbandi, A.; Nguyen, H.D.; Jackson, J.G. TP53 mutations and outcomes in breast cancer: Reading beyond the headlines. Trends Cancer, 2020, 6(2), 98-110.
[http://dx.doi.org/10.1016/j.trecan.2020.01.007] [PMID: 32061310]
[30]
Soussi, T.; Wiman, K.G. TP53: An oncogene in disguise. Cell Death Differ., 2015, 22(8), 1239-1249.
[http://dx.doi.org/10.1038/cdd.2015.53] [PMID: 26024390]
[31]
Hu, H.M.; Zhao, X.; Kaushik, S.; Robillard, L.; Barthelet, A.; Lin, K.K.; Shah, K.N.; Simmons, A.D.; Raponi, M.; Harding, T.C.; Bandyopadhyay, S. A quantitative chemotherapy genetic interaction map reveals factors associated with PARP inhibitor resistance. Cell Rep., 2018, 23(3), 918-929.
[http://dx.doi.org/10.1016/j.celrep.2018.03.093] [PMID: 29669295]
[32]
Jiang, T.; Chen, X.; Su, C.; Ren, S.; Zhou, C. Pan-cancer analysis of ARID1A Alterations as Biomarkers for Immunotherapy Outcomes. J. Cancer, 2020, 11(4), 776-780.
[http://dx.doi.org/10.7150/jca.41296] [PMID: 31949479]
[33]
Farhood, B.; Najafi, M.; Mortezaee, K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Physiol., 2019, 234(6), 8509-8521.
[http://dx.doi.org/10.1002/jcp.27782] [PMID: 30520029]
[34]
Gao, G.; Wang, Z.; Qu, X.; Zhang, Z. Prognostic value of tumor-infiltrating lymphocytes in patients with triple-negative breast cancer: A systematic review and meta-analysis. BMC Cancer, 2020, 20(1), 179.
[http://dx.doi.org/10.1186/s12885-020-6668-z] [PMID: 32131780]
[35]
Oshi, M.; Asaoka, M.; Tokumaru, Y.; Yan, L.; Matsuyama, R.; Ishikawa, T.; Endo, I.; Takabe, K. CD8 T cell score as a prognostic biomarker for triple negative breast cancer. Int. J. Mol. Sci., 2020, 21(18), 6968.
[http://dx.doi.org/10.3390/ijms21186968] [PMID: 32971948]
[36]
Wilson, M.R.; Reske, J.J.; Holladay, J.; Wilber, G.E.; Rhodes, M.; Koeman, J.; Adams, M.; Johnson, B.; Su, R.W.; Joshi, N.R.; Patterson, A.L.; Shen, H.; Leach, R.E.; Teixeira, J.M.; Fazleabas, A.T.; Chandler, R.L. ARID1A and PI3-kinase pathway mutations in the endometrium drive epithelial transdifferentiation and collective invasion. Nat. Commun., 2019, 10(1), 3554.
[http://dx.doi.org/10.1038/s41467-019-11403-6] [PMID: 31391455]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy