Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Review Article

Therapeutic Application of Pineapple: A Review

Author(s): Virender Kumar, Vandana Garg* and Harish Dureja*

Volume 14, Issue 2, 2023

Published on: 13 June, 2023

Page: [107 - 125] Pages: 19

DOI: 10.2174/2772574X14666230522114039

Price: $65

Abstract

Background: Ananas comosus L. (family Bromeliaceae) is a plant innate to South America and has been cultivated in various world regions. The plant parts have traditionally been used to treat various ailments, like cancer, diabetes mellitus, bacterial infection, Covid-19 infection, inflammation, arthritis, asthma, malaria, cardiovascular disease, and burn, as debridement agents. The pineapple contains nutrients, including vitamin C, iron, potassium, and protein. It also contains flavonoids, carotenoids, tannins, polyphenols, and alkaloids.

Methods: An extensive literature search was conducted on Ananas comosus using three scientific databases: PubMed, Scopus, and Web of Science. The keywords in this paper were combined to form a search strategy. Ananas comosus and pineapple were the main criteria for judging abstracts, titles, and keywords. In the full text of the paper, the secondary judgment criteria included mentioning "therapeutic potential" or "pharmacological activities”. Among the 250 references in the compiled bibliography, there were original articles, books, and web addresses dating back to 2001 to 2023. A review of articles was conducted after abstracts and titles were screened, and 61 duplicate articles were deleted. In this paper, information is provided on the therapeutic potential and pharmacological actions of Ananas comosus and its bioactive compounds.

Results: In this review, the therapeutic potential of A. comosus has been detailed. The current review intends to provide an updated comprehensive overview of the versatile plant's use and its clinical trials.

Conclusion: The plant has gained enormous attention and increasing consideration for treating various diseases. The therapeutic potential of pineapple, its compound, extracts, and their mode of action are discussed briefly. Also, clinical trials are emphasized, which are in great demand and need further in-depth investigation in the future.

Next »
Graphical Abstract

[1]
Oreagba, I.A.; Oshikoya, K.A.; Amachree, M. Herbal medicine use among urban residents in Lagos, Nigeria. BMC Complement. Altern. Med., 2011, 11(1), 117.
[http://dx.doi.org/10.1186/1472-6882-11-117] [PMID: 22117933]
[2]
James, P.B.; Wardle, J.; Steel, A.; Adams, J. Traditional, complementary and alternative medicine use in Sub-Saharan Africa: A systematic review. BMJ Glob. Health, 2018, 3(5), e000895.
[http://dx.doi.org/10.1136/bmjgh-2018-000895] [PMID: 30483405]
[3]
Chung, V.C.H.; Wong, C.H.L.; Zhong, C.C.W.; Tjioe, Y.Y.; Leung, T.H.; Griffiths, S.M. Traditional and complementary medicine for promoting healthy ageing in WHO Western Pacific Region: Policy implications from utilization patterns and current evidence. Integr. Med. Res., 2021, 10(1), 100469.
[http://dx.doi.org/10.1016/j.imr.2020.100469] [PMID: 32874912]
[4]
Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(5), 210-229.
[http://dx.doi.org/10.4314/ajtcam.v10i5.2] [PMID: 24311829]
[5]
Abdelghani, M.; Spitzer, E.; Ren, B.; Serruys, P.W.J.C.; Soliman, O.I.I. Real-world feasibility of the VARC-recommended multiparametric approach for the assessment of post-TAVI aortic regurgitation. Int. J. Cardiol., 2016, 223, 220-221.
[http://dx.doi.org/10.1016/j.ijcard.2016.08.210] [PMID: 27544593]
[6]
Pineapple-Name, Taxonomy, Botany-TFNet-International Tropical Fruits Network. Available from: https://www.itfnet.org/v1/2016/05/pineapple-name-taxonomy-botany/ (Accessed on: 2021 Dec 28).
[7]
Siricharoen, P.; Yomsatieankul, W.; Bunsri, T. Recognizing the sweet and sour taste of pineapple fruits using residual networks and green-relative color transformation attached with Mask R-CNN. Postharvest Biol. Technol., 2023, 196, 112174.
[http://dx.doi.org/10.1016/j.postharvbio.2022.112174]
[8]
Hisham, B.; Bakar, A.; Ishak, A.J.; Shamsuddin, R.; Zuha, W.; Hassan, W. Ripeness level classification for pineapple using rgb and hsi colour maps. J. Theor. Appl. Inf. Technol., 2013, 57(3)
[9]
Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem., 2012, 135(3), 1520-1526.
[http://dx.doi.org/10.1016/j.foodchem.2012.05.057] [PMID: 22953888]
[10]
Agrawal, P.; Nikhade, P.; Patel, A.; Mankar, N.; Sedani, S. Bromelain: A potent phytomedicine. Cureus, 2022, 14(8), e27876.
[PMID: 36110474]
[11]
Pineapple. Available from: http://nhb.gov.in/report_files/pineapple/PINEAPPLE.htm (Accessed on: 2021 Dec 28).
[12]
Meena, L.; Sengar, A.S.; Neog, R. Sunil, CK Pineapple processing waste (PPW): Bioactive compounds, their extraction, and utilisation: A review. J. Food Sci. Technol., 2022, 59(11), 4152-4164.
[13]
Reinhardt, D.H.R.C.; Bartholomew, D.P.; Souza, F.V.D.; Carvalho, A.C.P.P.; Pádua, T.R.P.; Junghans, D.T.; Matos, A.P. Advances in pineapple plant propagation. Rev. Bras. Frutic., 2018, 40(6)
[http://dx.doi.org/10.1590/0100-29452018302]
[14]
George, J.; Nguyen, T.; Williams, D.; Hardner, C.; Sanewski, G.; Smyth, H.E. Review of the aroma chemistry of pineapple (Ananas comosus). J. Agric. Food Chem., 2023, 71(9), 4069-4082.
[http://dx.doi.org/10.1021/acs.jafc.2c08546] [PMID: 36827381]
[15]
Farid Hossain, M. Nutritional value and medicinal benefits of pineapple. Int. J. Nutrition Food Sci., 2015, 4(1), 84.
[http://dx.doi.org/10.11648/j.ijnfs.20150401.22]
[16]
Bromelain-C39H66N2O29. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Bromelain (Accessed on: 2023 Apr 1).
[17]
Bromelain - Creative Enzymes. Available from: https://www.creative-enzymes.com/similar/bromelain_90.html (Accessed on: 2023 Apr 1).
[18]
Chemical structure of bromelain. Available from: https://www.researchgate.net/figure/Chemical-structure-of-bromelain_fig3_354331399 (Accessed on: 2023 Apr 1).
[19]
Scocca, J.; Lee, Y.C. The composition and structure of the carbohydrate of pineapple stem bromelain. J. Biol. Chem., 1969, 244(18), 4852-4863.
[http://dx.doi.org/10.1016/S0021-9258(18)94282-1] [PMID: 4309986]
[20]
Pavan, R.; Jain, S. Shraddha; Kumar, A. Properties and therapeutic application of bromelain: A review. Biotechnol. Res. Int., 2012, 2012, 1-6.
[http://dx.doi.org/10.1155/2012/976203]
[21]
Ajayi, A.M.; Coker, A.I.; Oyebanjo, O.T.; Adebanjo, I.M.; Ademowo, O.G. Ananas comosus (L) Merrill (pineapple) fruit peel extract demonstrates antimalarial, anti-nociceptive and anti-inflammatory activities in experimental models. J. Ethnopharmacol., 2022, 282, 114576.
[http://dx.doi.org/10.1016/j.jep.2021.114576] [PMID: 34461191]
[22]
Debnath, B.; Singh, W.S.; Manna, K. A phytopharmacological review on Ananas comosus. Adv. Tradition. Med., 2021, (Mar), 1-8.
[23]
Eckert, K.; Grabowska, E.; Stange, R.; Schneider, U.; Eschmann, K.; Maurer, H.R. Effects of oral bromelain administration on the impaired immunocytotoxicity of mononuclear cells from mammary tumor patients. Oncol. Rep., 1999, 6(6), 1191-1199.
[http://dx.doi.org/10.3892/or.6.6.1191] [PMID: 10523679]
[24]
Chakraborty, A.J.; Mitra, S.; Tallei, T.E.; Tareq, A.M.; Nainu, F.; Cicia, D.; Dhama, K.; Emran, T.B.; Simal-Gandara, J.; Capasso, R. Bromelain a potential bioactive compound: A comprehensive overview from a pharmacological perspective. Life, 2021, 11(4), 317.
[http://dx.doi.org/10.3390/life11040317] [PMID: 33917319]
[25]
DA, R. The effectiveness of waste crude bromelain pineapple and papaya fruit mixture as anti-plaque toothpaste. J. Medical Sci. clin. Res., 2018, 6(2)
[26]
Seenak, P.; Kumphune, S.; Malakul, W.; Chotima, R.; Nernpermpisooth, N. Pineapple consumption reduced cardiac oxidative stress and inflammation in high cholesterol diet-fed rats. Nutr. Metab., 2021, 18(1), 36.
[http://dx.doi.org/10.1186/s12986-021-00566-z] [PMID: 33827626]
[27]
Yantih, N.; Harahap, Y.; Sumaryono, W.; Setiabudy, R.; Rahayu, L. Hepatoprotective activity of pineapple (Ananas comosus) juice on isoniazid-induced rats. J. Biol. Sci., 2017, 17(8), 388-393.
[http://dx.doi.org/10.3923/jbs.2017.388.393]
[28]
Rosenberg, L.; Lapid, O.; Bogdanov-Berezovsky, A.; Glesinger, R.; Krieger, Y.; Silberstein, E.; Sagi, A.; Judkins, K.; Singer, A.J. Safety and efficacy of a proteolytic enzyme for enzymatic burn débridement: A preliminary report. Burns, 2004, 30(8), 843-850.
[http://dx.doi.org/10.1016/j.burns.2004.04.010] [PMID: 15555800]
[29]
Loon, Y.K.; Satari, M.H.; Dewi, W. Antibacterial effect of pineapple (Ananas comosus) extract towards Staphylococcus aureus. Padjadjaran Journal of Dentistry, 2018, 30(1), 1.
[http://dx.doi.org/10.24198/pjd.vol30no1.16099]
[30]
Das, G.; Patra, J.K.; Debnath, T.; Ansari, A.; Shin, H.S. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS One, 2019, 14(8), e0220950.
[http://dx.doi.org/10.1371/journal.pone.0220950] [PMID: 31404086]
[31]
Pandit Sharma, D. A study on nutritional efficacy of pineapple juice in the treatment of bronchial asthma. Int J. Scienti. Res. Publication., 2015, 5(1), 1-4.
[32]
Buyel, J.F. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol. Adv., 2018, 36(2), 506-520.
[http://dx.doi.org/10.1016/j.biotechadv.2018.02.002] [PMID: 29408560]
[33]
Khan, M.A.; Islam, M.K.; Siraj, M.A.; Saha, S.; Barman, A.K.; Awang, K.; Rahman, M.M.; Shilpi, J.A.; Jahan, R.; Islam, E.; Rahmatullah, M. Ethnomedicinal survey of various communities residing in Garo Hills of Durgapur, Bangladesh. J. Ethnobiol. Ethnomed., 2015, 11(1), 44.
[http://dx.doi.org/10.1186/s13002-015-0033-3] [PMID: 26025456]
[34]
Khazir, J.; Mir, B.A.; Pilcher, L.; Riley, D.L. Role of plants in anticancer drug discovery. Phytochem. Lett., 2014, 7(1), 173-181.
[http://dx.doi.org/10.1016/j.phytol.2013.11.010]
[35]
Yang, M.H.; Kim, J.; Khan, I.A.; Walker, L.A.; Khan, S.I. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents. Life Sci., 2014, 100(2), 75-84.
[http://dx.doi.org/10.1016/j.lfs.2014.01.075] [PMID: 24530873]
[36]
Majumder, D.; Debnath, R.; Nath, P.; Libin Kumar, K.V.; Debnath, M.; Tribedi, P.; Maiti, D. Bromelain and Olea europaea (L.) leaf extract mediated alleviation of benzo(a)pyrene induced lung cancer through Nrf2 and NFκB pathway. Environ. Sci. Pollut. Res. Int., 2021, 28(34), 47306-47326.
[http://dx.doi.org/10.1007/s11356-021-13803-y] [PMID: 33893581]
[37]
Kumar, V.; Kumar, D.; Garg, V.; Dureja, H. An updated review of pineapple and its bioactive compounds in breast cancer. Cancer Adv., 2023, 6, e23005.
[38]
Pauzi, A.Z.M.; Yeap, S.K.; Abu, N.; Lim, K.L.; Omar, A.R.; Aziz, S.A.; Chow, A.L.T.; Subramani, T.; Tan, S.G.; Alitheen, N.B. Combination of cisplatin and bromelain exerts synergistic cytotoxic effects against breast cancer cell line MDA-MB-231 in vitro. Chin. Med., 2016, 11(1), 46.
[http://dx.doi.org/10.1186/s13020-016-0118-5] [PMID: 27891174]
[39]
Amini, A.; Masoumi-Moghaddam, S.; Morris, D.L. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells: Significance of combination therapy. Ann. Oncol., 2015, 26, ii25.
[http://dx.doi.org/10.1093/annonc/mdv094.6]
[40]
Ferah Okkay, I.; Okkay, U.; Bayram, C.; Cicek, B.; Sezen, S.; Aydin, I.C.; Mendil, A.S.; Hacimuftuoglu, A. Bromelain protects against cisplatin-induced ocular toxicity through mitigating oxidative stress and inflammation. Drug Chem. Toxicol., 2023, 46(1), 69-76.
[http://dx.doi.org/10.1080/01480545.2021.2011308] [PMID: 34894956]
[41]
Murthy, S.S.; Narsaiah, T.B. Cytotoxic effect of bromelain on HepG2 hepatocellular carcinoma cell line. Appl. Biochem. Biotechnol., 2021, 193(6), 1873-1897.
[http://dx.doi.org/10.1007/s12010-021-03505-z] [PMID: 33735410]
[42]
Azarkan, M.; Maquoi, E.; Delbrassine, F.; Herman, R.; M’Rabet, N.; Calvo Esposito, R.; Charlier, P.; Kerff, F. Structures of the free and inhibitors-bound forms of bromelain and ananain from Ananas comosus stem and in vitro study of their cytotoxicity. Sci. Rep., 2020, 10(1), 19570.
[http://dx.doi.org/10.1038/s41598-020-76172-5] [PMID: 33177555]
[43]
Debnath, R.; Majumder, D.; Nath, P.; Ghosh, D.; Maiti, D. Bromelain plus peroxidase reduces non-Hodgkin lymphoma progression in invivo via up-regulation of antioxidant enzymes and modulating apoptotic protein expression. Nutr. Cancer, 2020, 72(7), 1200-1210.
[http://dx.doi.org/10.1080/01635581.2019.1670217] [PMID: 31591915]
[44]
Gani, M.B.A.; Nasiri, R.; Hamzehalipour Almaki, J.; Majid, F.A.A.; Marvibaigi, M.; Amini, N.; Chermahini, S.H.; Mashudin, M. In vitro antiproliferative activity of fresh pineapple juices on ovarian and colon cancer cell lines. Int. J. Pept. Res. Ther., 2015, 21(3), 353-364.
[http://dx.doi.org/10.1007/s10989-015-9462-z]
[45]
Becerra-García, J.A.; Sánchez-Gutiérrez, T. Long-COVID psychological symptoms in child and adolescent population: A standardized proposal for its exploration. Enferm. Infecc. Microbiol. Clin., 2023, 41(1), 384-385.
[46]
Sakurada, Y.; Otsuka, Y.; Tokumasu, K.; Sunada, N.; Honda, H.; Nakano, Y.; Matsuda, Y.; Hasegawa, T.; Ochi, K.; Hagiya, H.; Ueda, K.; Kataoka, H.; Otsuka, F. Trends in long COVID symptoms in japanese teenage patients. Medicina, 2023, 59(2), 261.
[http://dx.doi.org/10.3390/medicina59020261]
[47]
Bhagat, S.; Yadav, N.; Shah, J.; Dave, H.; Swaraj, S.; Tripathi, S.; Singh, S. Novel corona virus (COVID-19) pandemic: Current status and possible strategies for detection and treatment of the disease. Expert Rev. Anti Infect. Ther., 2022, 20(10), 1275-1298.
[http://dx.doi.org/10.1080/14787210.2021.1835469] [PMID: 33043740]
[48]
Rafiei, H.; Salehi, A.; Baghbani, F.; Parsa, P.; Akbarzadeh-T, M.R. Interval type-2 Fuzzy control and stochastic modeling of COVID-19 spread based on vaccination and social distancing rates. Comput. Methods Programs Biomed., 2023, 232, 107443.
[http://dx.doi.org/10.1016/j.cmpb.2023.107443] [PMID: 36889249]
[49]
Gupta, M.; Gupta, N.; Esang, M. Long COVID in children and adolescents. Prim. Care Companion CNS Disord., 2022, 24(2), 21r03218.
[http://dx.doi.org/10.4088/PCC.21r03218] [PMID: 35486940]
[50]
Martins, M.M.; Prata-Barbosa, A.; da Cunha, A.J.L.A. Update on SARS-CoV-2 infection in children. Paediatr. Int. Child Health, 2021, 41(1), 56-64.
[http://dx.doi.org/10.1080/20469047.2021.1888026] [PMID: 33616026]
[51]
Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci., 2020, 63(3), 457-460.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[52]
Wong, J.E.L.; Leo, Y.S.; Tan, C.C. COVID-19 in Singapore-current experience. JAMA, 2020, 323(13), 1243-1244.
[http://dx.doi.org/10.1001/jama.2020.2467] [PMID: 32077901]
[53]
Li, H.; Liu, S.M.; Yu, X.H.; Tang, S.L.; Tang, C.K. Coronavirus disease 2019 (COVID-19): Current status and future perspectives. Int. J. Antimicrob. Agents, 2020, 55(5), 105951.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105951] [PMID: 32234466]
[54]
Tahir ul Qamar, M.; Alqahtani, SM.; Alamri, MA.; Chen, LL. Structural basis of SARS-CoV-2 3CL pro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020, 10(4), 313-319.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[55]
Wahedi, H.M.; Ahmad, S.; Abbasi, S.W. Stilbene-based natural compounds as promising drug candidates against COVID-19. J. Biomol. Struct. Dyn., 2021, 39(9), 3225-3234.
[PMID: 32345140]
[56]
Williamson, G.; Kerimi, A. Testing of natural products in clinical trials targeting the SARS-CoV-2 (Covid-19) viral spike protein-angiotensin converting enzyme-2 (ACE2) interaction. Biochem. Pharmacol., 2020, 178, 114123.
[http://dx.doi.org/10.1016/j.bcp.2020.114123] [PMID: 32593613]
[57]
Sagar, S.; Rathinavel, A.K.; Lutz, W.E.; Struble, L.R.; Khurana, S.; Schnaubelt, A.T.; Mishra, N.K.; Guda, C.; Palermo, N.Y.; Broadhurst, M.J.; Hoffmann, T.; Bayles, K.W.; Reid, S.P.M.; Borgstahl, G.E.O.; Radhakrishnan, P. Bromelain inhibits SARS‐CoV‐2 infection via targeting ACE‐2, TMPRSS2, and spike protein. Clin. Transl. Med., 2021, 11(2), e281.
[http://dx.doi.org/10.1002/ctm2.281] [PMID: 33635001]
[58]
Sayıner, S; Velioğlu-Öğünç, A; Şehirli, AO Bromelain: A potential therapeutic application in SARS-CoV-2 infected patients. Ann. Antivir. Antiretrovir., 2021, 5(1), 015-018.
[59]
Kritis, P.; Karampela, I.; Kokoris, S.; Dalamaga, M. The combination of bromelain and curcumin as an immune-boosting nutraceutical in the prevention of severe COVID-19. Metabolism Open, 2020, 8, 100066.
[http://dx.doi.org/10.1016/j.metop.2020.100066] [PMID: 33205039]
[60]
Rafiqul Islam, A.T.M.; Ferdousi, J.; Shahinozzaman, M. Previously published ethno-pharmacological reports reveal the potentiality of plants and plant-derived products used as traditional home remedies by Bangladeshi COVID-19 patients to combat SARS-CoV-2. Saudi J. Biol. Sci., 2021, 28(11), 6653-6673.
[http://dx.doi.org/10.1016/j.sjbs.2021.07.036] [PMID: 34305428]
[61]
Singer, A.J.; Clark, R.A.F. Cutaneous wound healing. N. Engl. J. Med., 1999, 341, 738-746.
[http://dx.doi.org/10.1056/NEJM199909023411006]
[62]
Enoch, S.; Leaper, D.J. Basic science of wound healing. Surgery, 2008, 26(2), 31-37.
[63]
Mustoe, T. Understanding chronic wounds: A unifying hypothesis on their pathogenesis and implications for therapy. Am. J. Surg., 2004, 187(5), S65-S70.
[http://dx.doi.org/10.1016/S0002-9610(03)00306-4] [PMID: 15147994]
[64]
Martin, P. Wound healing-aiming for perfect skin regeneration. Science, 1997, 276(5309), 75-81.
[http://dx.doi.org/10.1126/science.276.5309.75] [PMID: 9082989]
[65]
Pandit, A.; Ashar, R.; Feldman, D. The effect of TGF-beta delivered through a collagen scaffold on wound healing. J. Invest. Surg., 1999, 12(2), 89-100.
[http://dx.doi.org/10.1080/089419399272647] [PMID: 10327078]
[66]
Fathi, A.N.; Sakhaie, M.H.; Babaei, S.; Babaei, S.; Slimabad, F.; Babaei, S. Use of bromelain in cutaneous wound healing in streptozocin-induced diabetic rats: An experimental model. J. Wound Care, 2020, 29(9), 488-495.
[http://dx.doi.org/10.12968/jowc.2020.29.9.488] [PMID: 32924815]
[67]
Rahayu, P.; Agustina, L.; Tjandrawinata, R.R. Tacorin, an extract from Ananas comosus stem, stimulates wound healing by modulating the expression of tumor necrosis factor α, transforming growth factor β and matrix metalloproteinase 2. FEBS Open Bio, 2017, 7(7), 1017-1025.
[http://dx.doi.org/10.1002/2211-5463.12241] [PMID: 28680814]
[68]
Aichele, K.; Bubel, M.; Deubel, G.; Pohlemann, T.; Oberringer, M. Bromelain down-regulates myofibroblast differentiation in an in vitro wound healing assay. Naunyn Schmiedebergs Arch. Pharmacol., 2013, 386(10), 853-863.
[http://dx.doi.org/10.1007/s00210-013-0890-z] [PMID: 23771413]
[69]
Pereira, I.C.; Sátiro Vieira, E.E.; de Oliveira Torres, L.R.; Carneiro da Silva, F.C. de Castro e Sousa, J.M.; Torres-Leal, F.L. Bromelain supplementation and inflammatory markers: A systematic review of clinical trials. Clin. Nutr. ESPEN, 2023, 55, 116-127.
[http://dx.doi.org/10.1016/j.clnesp.2023.02.028]
[70]
Kargutkar, S.; Brijesh, S. Anti-inflammatory evaluation and characterization of leaf extract of Ananas comosus. Inflammopharmacology, 2018, 26(2), 469-477.
[http://dx.doi.org/10.1007/s10787-017-0379-3] [PMID: 28766086]
[71]
Engwerda, C.R.; Andrew, D.; Murphy, M.; Mynott, T.L. Bromelain activates murine macrophages and natural killer cells in vitro. Cell. Immunol., 2001, 210(1), 5-10.
[http://dx.doi.org/10.1006/cimm.2001.1793] [PMID: 11485347]
[72]
Engwerda, C.R.; Andrew, D.; Ladhams, A.; Mynott, T.L. Bromelain modulates T cell and B cell immune responses in vitro and in vivo. Cell. Immunol., 2001, 210(1), 66-75.
[http://dx.doi.org/10.1006/cimm.2001.1807] [PMID: 11485354]
[73]
Desser, L.; Rehberger, A. Induction of tumor necrosis factor in human peripheral-blood mononuclear cells by proteolytic enzymes. Oncology, 1990, 47(6), 475-477.
[http://dx.doi.org/10.1159/000226875] [PMID: 2243666]
[74]
Desser, L.; Rehberger, A.; Paukovits, W. Proteolytic enzymes and amylase induce cytokine production in human peripheral blood mononuclear cells in vitro. Cancer Biother., 1994, 9(3), 253-263.
[http://dx.doi.org/10.1089/cbr.1994.9.253] [PMID: 7529614]
[75]
Insuan, O.; Janchai, P.; Thongchuai, B.; Chaiwongsa, R.; Khamchun, S.; Saoin, S.; Insuan, W.; Pothacharoen, P.; Apiwatanapiwat, W.; Boondaeng, A.; Vaithanomsat, P. Anti-inflammatory effect of pineapple rhizome bromelain through downregulation of the NF-B- and MAPKs-signaling pathways in Lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Curr. Issues Mol. Biol., 2021, 43(1), 93-106.
[http://dx.doi.org/10.3390/cimb43010008] [PMID: 34067064]
[76]
Leipner, J.; Iten, F.; Saller, R. Therapy with proteolytic enzymes in rheumatic disorders. BioDrugs, 2001, 15(12), 779-789.
[http://dx.doi.org/10.2165/00063030-200115120-00001] [PMID: 11784210]
[77]
Bierie, B.; Moses, H.L. Tumour microenvironment: TGFbeta: The molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer, 2006, 6(7), 506-520.
[http://dx.doi.org/10.1038/nrc1926] [PMID: 16794634]
[78]
Rathnavelu, V.; Alitheen, N.B.; Sohila, S.; Kanagesan, S.; Ramesh, R. Potential role of bromelain in clinical and therapeutic applications. Biomed. Rep., 2016, 5(3), 283-288.
[http://dx.doi.org/10.3892/br.2016.720] [PMID: 27602208]
[79]
Bottega, R.; Persico, I.; De Seta, F.; Romano, F.; Di Lorenzo, G. Anti-inflammatory properties of a proprietary bromelain extract (Bromeyal™) after in vitro simulated gastrointestinal digestion. Int. J. Immunopathol. Pharmacol., 2021, 35.
[http://dx.doi.org/10.1177/20587384211034686] [PMID: 34387509]
[80]
Rajah, N.; Webb, E.J.D.; Hulme, C.; Kingsbury, S.R.; West, R.; Martin, A. How does arthritis affect employment? Longitudinal evidence on 18,000 British adults with arthritis compared to matched controls. Soc. Sci. Med., 2023, 321, 115606.
[http://dx.doi.org/10.1016/j.socscimed.2022.115606] [PMID: 36732169]
[81]
McCarter, KR; Wolfgang, T; Arabelovic, S; Wang, X; Yoshida, K; Banasiak, EP Mortality and immune-related adverse events after immune checkpoint inhibitor initiation for cancer among patients with pre-existing rheumatoid arthritis: A retrospective, comparative, cohort study. Lancet Rheumatol., 2023, S2665-9913(23), 00064-4.
[http://dx.doi.org/10.1016/S2665-9913(23)00064-4]
[82]
Arthritis: Symptoms, causes, types & treatment. Available from: https://my.clevelandclinic.org/health/diseases/12061-arthritis (Accessed on: 2023 Mar 30).
[83]
Senthelal, S.; Li, J.; Ardeshirzadeh, S.; Thomas, M.A. Arthritis.; StatPearls: Treasure Island, FL, 2022. Available from: https://www.ncbi.nlm.nih.gov/books (Accessed on: 2023 Mar 30).
[84]
Hootman, J.M.; Helmick, C.G.; Barbour, K.E.; Theis, K.A.; Boring, M.A. Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among US adults, 2015-2040. Arthritis Rheumatol., 2016, 68(7), 1582-1587.
[http://dx.doi.org/10.1002/art.39692] [PMID: 27015600]
[85]
8 Impressive Health Benefits of Pineapple. Available from: https://www.healthline.com/nutrition/benefits-of-pineapple (Accessed on: 2023 Mar 30).
[86]
Health Benefits of Pineapple. Available from: https://www.webmd.com/diet/ss/slideshow-health-benefits-pineapple (Accessed on: 2023 Mar 30).
[87]
Walker, A.F.; Bundy, R.; Hicks, S.M.; Middleton, R.W. Bromelain reduces mild acute knee pain and improves well-being in a dose-dependent fashion in an open study of otherwise healthy adults. Phytomedicine, 2002, 9(8), 681-686.
[http://dx.doi.org/10.1078/094471102321621269] [PMID: 12587686]
[88]
Mojcik, C.F.; Shevach, E.M. Adhesion molecules. A rheumatologic perspective. Arthritis Rheum., 1997, 40(6), 991-1004.
[http://dx.doi.org/10.1002/art.1780400602] [PMID: 9182908]
[89]
Brien, S.; Lewith, G.T.; McGregor, G. Devil’s Claw (Harpagophytum procumbens) as a treatment for osteoarthritis: A review of efficacy and safety. J. Altern. Complement. Med., 2006, 12(10), 981-993.
[http://dx.doi.org/10.1089/acm.2006.12.981] [PMID: 17212570]
[90]
Kumakura, S.; Yamashita, M.; Tsurufuji, S. Effect of bromelain on kaolin-induced inflammation in rats. Eur. J. Pharmacol., 1988, 150(3), 295-301.
[http://dx.doi.org/10.1016/0014-2999(88)90010-6] [PMID: 3046953]
[91]
Pothacharoen, P.; Chaiwongsa, R.; Chanmee, T.; Insuan, O.; Wongwichai, T.; Janchai, P.; Vaithanomsat, P. Bromelain extract exerts antiarthritic effects via chondroprotection and the suppression of TNF-α–Induced NF-κB and MAPK Signaling. Plants, 2021, 10(11), 2273.
[http://dx.doi.org/10.3390/plants10112273] [PMID: 34834636]
[92]
Grover, A.K.; Samson, S.E. Benefits of antioxidant supplements for knee osteoarthritis: Rationale and reality. Nutr. J., 2015, 15(1), 1.
[http://dx.doi.org/10.1186/s12937-015-0115-z] [PMID: 26728196]
[93]
Akhtar, N.M.; Naseer, R.; Farooqi, A.Z.; Aziz, W.; Nazir, M. Oral enzyme combination versus diclofenac in the treatment of osteoarthritis of the knee? a double-blind prospective randomized study. Clin. Rheumatol., 2004, 23(5), 410-415.
[http://dx.doi.org/10.1007/s10067-004-0902-y] [PMID: 15278753]
[94]
Italiano, G.; Raimondo, M.; Giannetti, G.; Gargiulo, A. Benefits of a food supplement containing Boswellia serrata and bromelain for improving the quality of life in patients with osteoarthritis: A pilot study. J. Altern. Complement. Med., 2020, 26(2), 123-129.
[http://dx.doi.org/10.1089/acm.2019.0258] [PMID: 31674795]
[95]
Taussig, S.J.; Batkin, S. Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application. An update. J. Ethnopharmacol., 1988, 22(2), 191-203.
[http://dx.doi.org/10.1016/0378-8741(88)90127-4] [PMID: 3287010]
[96]
Azarkan, M.; González, M.M.; Esposito, R.C.; Errasti, M.E. Stem bromelain proteolytic machinery: Study of the effects of its components on fibrin (ogen) and blood coagulation. Protein Pept. Lett., 2020, 27(11), 1159-1170.
[http://dx.doi.org/10.2174/0929866527666200525163622] [PMID: 32484078]
[97]
Palta, S.; Saroa, R.; Palta, A. Overview of the coagulation system. Indian J. Anaesth., 2014, 58(5), 515-523.
[http://dx.doi.org/10.4103/0019-5049.144643] [PMID: 25535411]
[98]
Göbel, K.; Eichler, S.; Wiendl, H.; Chavakis, T.; Kleinschnitz, C.; Meuth, S.G. The coagulation factors fibrinogen, thrombin, and factor XII in inflammatory disorders-a systematic review. Front. Immunol., 2018, 9(JUL), 1731.
[http://dx.doi.org/10.3389/fimmu.2018.01731] [PMID: 30105021]
[99]
Chaudhry, R.; Usama, S.M.; Babiker, H.M. Physiology, coagulation pathways; StatPearls: Treasure Island, FL, 2022.
[100]
Kelly, G. Bromelain: A literature review and discussion of its therapeutic applications. Altern. Med. Rev., 1996, 1, 243-257.
[101]
Sugars and dental caries. Available from: https://apps.who.int/iris/handle/10665/259413 (Accessed on: 2021 Dec 11).
[102]
Peres, M.A.; Macpherson, L.M.D.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C.; Benzian, H.; Allison, P.; Watt, R.G. Oral diseases: A global public health challenge. Lancet, 2019, 394(10194), 249-260.
[http://dx.doi.org/10.1016/S0140-6736(19)31146-8] [PMID: 31327369]
[103]
Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat. Rev. Dis. Primers, 2017, 3(1), 17030.
[http://dx.doi.org/10.1038/nrdp.2017.30] [PMID: 28540937]
[104]
Tadikonda, A.; Pentapati, K.C.; Urala, A.S.; Acharya, S. Antiplaque and anti-gingivitis effect of papain, bromelain, miswak and neem containing dentifrice: A randomized controlled trial. J. Clin. Exp. Dent., 2017, 9(5), 0.
[http://dx.doi.org/10.4317/jced.53593] [PMID: 28512541]
[105]
Lu, H.C.; Ng, M.Y.; Liao, Y.W.; Maekawa, S.; Lin, T.; Yu, C.C. Bromelain inhibits the inflammation and senescence effect in diabetic periodontitis: A preliminary in vitro study. J. Dent. Sci., 2023, 18(2), 659-665.
[http://dx.doi.org/10.1016/j.jds.2022.09.018] [PMID: 37021274]
[106]
Aldoski, M.R.N.; Selivany, B.J.; Sulaiman, T. Bromelain‐based endodontic irrigant: Preparation, properties, and biocompatibility: An in‐vitro study. Aust. Endod. J., 2022, 28, aej.12704.
[http://dx.doi.org/10.1111/aej.12704] [PMID: 36305605]
[107]
Cardiovascular diseases (CVDs). Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (Accessed on: 2021 Dec 11).
[108]
Pineapple-benefits, nutrition value, side effects & recipes. Available from: https://www.healthifyme.com/blog/benefits-of-pineapple/ (Accessed on: 2023 Mar 30).
[109]
Is pineapple good for high blood pressure? Apollo 247. Available from: https://www.apollo247.com/health-queries/pineapple-good-high-blood-pressure_hqu (Accessed on: 2023 Mar 30).
[110]
Maurer, H.R. Bromelain: biochemistry, pharmacology and medical use. Cell. Mol. Life Sci., 2001, 58(9), 1234-1245.
[http://dx.doi.org/10.1007/PL00000936] [PMID: 11577981]
[111]
Juhasz, B.; Thirunavukkarasu, M.; Pant, R.; Zhan, L.; Penumathsa, S.V.; Secor, E.R., Jr; Srivastava, S.; Raychaudhuri, U.; Menon, V.P.; Otani, H.; Thrall, R.S.; Maulik, N. Bromelain induces cardioprotection against ischemia-reperfusion injury through Akt/FOXO pathway in rat myocardium. Am. J. Physiol. Heart Circ. Physiol., 2008, 294(3), H1365-H1370.
[http://dx.doi.org/10.1152/ajpheart.01005.2007] [PMID: 18192224]
[112]
Neumayer, C.; Fügl, A.; Nanobashvili, J.; Blumer, R.; Punz, A.; Gruber, H.; Polterauer, P.; Huk, I. Combined enzymatic and antioxidative treatment reduces ischemia-reperfusion injury in rabbit skeletal muscle. J. Surg. Res., 2006, 133(2), 150-158.
[http://dx.doi.org/10.1016/j.jss.2005.12.005] [PMID: 16458926]
[113]
Bahde, R.; Palmes, D.; Minin, E.; Stratmann, U.; Diller, R.; Haier, J.; Spiegel, H.U. Bromelain ameliorates hepatic microcirculation after warm ischemia. J. Surg. Res., 2007, 139(1), 88-96.
[http://dx.doi.org/10.1016/j.jss.2006.10.004] [PMID: 17292418]
[114]
Bloomer, R.J. The role of nutritional supplements in the prevention and treatment of resistance exercise-induced skeletal muscle injury. Sports Med., 2007, 37(6), 519-532.
[http://dx.doi.org/10.2165/00007256-200737060-00005] [PMID: 17503877]
[115]
Heinicke, R.M.; van der Wal, L.; Yokoyama, M. Effect of bromelain (ananase®) on human platelet aggregation. Experientia, 1972, 28(7), 844-845.
[http://dx.doi.org/10.1007/BF01923166] [PMID: 4658882]
[116]
The Natural Blood Thinners. Available from: https://www.greaterkashmir.com/op-ed-2/the-natural-blood-thinners (Accessed on: 2023 Mar 30).
[117]
Lichota, A.; Szewczyk, E.M.; Gwozdzinski, K. Factors affecting the formation and treatment of thrombosis by natural and synthetic compounds. Int. J. Mol. Sci., 2020, 21(21), 7975.
[http://dx.doi.org/10.3390/ijms21217975]
[118]
Does pineapple juice help with swelling-TSMP Medical Blog. Available from: https://www.tsmp.com.au/blog/does-pineapple-juice-help-with-swelling.html (Accessed on: 2023 Mar 30).
[119]
Samad, M.A.; Kaleem, M.A.; Sharif, M.N.; Huda, A.N.U. Hepatoprotective activity of ethanolic fruit extract of A. comosus in paracetamol induced liver toxicity in rats. Int. J. Appl. Pharm. Sci. Res., 2018, 3(04), 67-71.
[120]
Dougnon, T.J.; Kpodekon, T.M.; Laleye, A. Protective effects of pineapple (Ananas comosus) on liver and kidney of Wistar rats intoxicated with Doliprane®. Int. J. Biol. Chem. Sci., 2009, 3(3)
[http://dx.doi.org/10.4314/ijbcs.v3i3.45341]
[121]
Dougnon, T.J.; Kpodékon, T.; Ahissou, H.; Gbenou, J.; Loko, F.; Laleye, L. Protective effect of stem pineapple on Wistar rat poisoning with paracetamol. Int. J. Biol. Chem. Sci., 2009, 3(4), 688-693.
[122]
Mohamad, N.E.; Yeap, S.K.; Lim, K.L.; Yusof, H.M.; Beh, B.K.; Tan, S.W.; Ho, W.Y.; Sharifuddin, S.A.; Jamaluddin, A.; Long, K.; Nik Abd Rahman, N.M.A.; Alitheen, N.B. Antioxidant effects of pineapple vinegar in reversing of paracetamol-induced liver damage in mice. Chin. Med., 2015, 10(1), 3.
[http://dx.doi.org/10.1186/s13020-015-0030-4] [PMID: 25699088]
[123]
Elisa da Silva López, R. Debridement Applications of Bromelain: A complex of cysteine proteases from pineapple. Adv. Biotechnol. Microbiol., 2017, 3(5)
[http://dx.doi.org/10.19080/AIBM.2017.03.555624]
[124]
Cordts, T.; Horter, J.; Vogelpohl, J.; Kremer, T.; Kneser, U.; Hernekamp, J.F. Enzymatic debridement for the treatment of severely burned upper extremities-early single center experiences. BMC Dermatol., 2016, 16(1), 8.
[http://dx.doi.org/10.1186/s12895-016-0045-2] [PMID: 27342276]
[125]
Krieger, Y.; Bogdanov-Berezovsky, A.; Gurfinkel, R.; Silberstein, E.; Sagi, A.; Rosenberg, L. Efficacy of enzymatic debridement of deeply burned hands. Burns, 2012, 38(1), 108-112.
[http://dx.doi.org/10.1016/j.burns.2011.06.002] [PMID: 22103988]
[126]
Hirche, C.; Kreken Almeland, S.; Dheansa, B.; Fuchs, P.; Governa, M.; Hoeksema, H.; Korzeniowski, T.; Lumenta, D.B.; Marinescu, S.; Martinez-Mendez, J.R.; Plock, J.A.; Sander, F.; Ziegler, B.; Kneser, U. Eschar removal by bromelain based enzymatic debridement (Nexobrid®) in burns: European consensus guidelines update. Burns, 2020, 46(4), 782-796.
[http://dx.doi.org/10.1016/j.burns.2020.03.002] [PMID: 32241591]
[127]
Rosenberg, L.; Krieger, Y.; Bogdanov-Berezovski, A.; Silberstein, E.; Shoham, Y.; Singer, A.J. A novel rapid and selective enzymatic debridement agent for burn wound management: A multi-center RCT. Burns, 2014, 40(3), 466-474.
[http://dx.doi.org/10.1016/j.burns.2013.08.013] [PMID: 24074719]
[128]
Eldad, A.; Weinberg, A.; Breiterman, S.; Chaouat, M.; Palanker, D.; Ben-Bassat, H. Early nonsurgical removal of chemically injured tissue enhances wound healing in partial thickness burns. Burns, 1998, 24(2), 166-172.
[http://dx.doi.org/10.1016/S0305-4179(97)00086-7] [PMID: 9625245]
[129]
Krieger, Y.; Rosenberg, L.; Lapid, O.; Glesinger, R.; Bogdanov-Berezovsky, A.; Silberstein, E.; Sagi, A.; Judkins, K. Escharotomy using an enzymatic debridement agent for treating experimental burn-induced compartment syndrome in an animal model. J. Trauma, 2005, 58(6), 1259-1264.
[http://dx.doi.org/10.1097/01.TA.0000169867.08607.F1] [PMID: 15995479]
[130]
Gurfinkel, R.; Lavon, I.; Cagnano, E.; Volgin, K.; Shaltiel, L.; Grossman, N.; Kost, J.; Singer, A.J.; Rosenberg, L. Combined ultrasonic and enzymatic debridement of necrotic eschars in an animal model. J. Burn Care Res., 2009, 30(3), 505-513.
[http://dx.doi.org/10.1097/BCR.0b013e3181a28d89] [PMID: 19349883]
[131]
Liu, W.L.; Jiang, Y.L.; Wang, Y.Q.; Li, Y.X.; Liu, Y.X. Combined debridement in chronic wounds: A literature review. Clin. Nurs. Res., 2017, 4(1), 5-8.
[132]
Singer, A.J.; McClain, S.A.; Taira, B.R.; Rooney, J.; Steinhauff, N.; Rosenberg, L. Rapid and selective enzymatic debridement of porcine comb burns with bromelain-derived Debrase: Acute-phase preservation of noninjured tissue and zone of stasis. J. Burn Care Res., 2010, 31(2), 304-309.
[http://dx.doi.org/10.1097/BCR.0b013e3181d0f4d4] [PMID: 20182376]
[133]
Singer, A.J.; Taira, B.R.; Anderson, R.; McClain, S.A.; Rosenberg, L. The effects of rapid enzymatic debridement of deep partial-thickness burns with Debrase on wound reepithelialization in swine. J. Burn Care Res., 2010, 31(5), 795-802.
[http://dx.doi.org/10.1097/BCR.0b013e3181eed48e] [PMID: 20661148]
[134]
Berner, J.E.; Keckes, D.; Pywell, M.; Dheansa, B. Limitations to the use of bromelain-based enzymatic debridement (NexoBrid®) for treating diabetic foot burns: A case series of disappointing results. Scars. Burn. Heal., 2018, 4, 205951311881653.
[135]
Mamo, J. Antibacterial and anticancer property of Bromelain: A plant protease enzyme from Pineapples (Ananas comosus). Curr. Trends Biomed. Eng. Biosci., 2019, 19(2), 556009.
[http://dx.doi.org/10.19080/CTBEB.2019.19.556009]
[136]
Mynott, T.L.; Guandalini, S.; Raimondi, F.; Fasano, A. Bromelain prevents secretion caused by Vibrio cholerae and Escherichia coli enterotoxins in rabbit ileum in vitro. Gastroenterology, 1997, 113(1), 175-184.
[http://dx.doi.org/10.1016/S0016-5085(97)70093-3] [PMID: 9207276]
[137]
Báez, R.; Lopes, M.; Salas, C.; Hernández, M. In vivo antitumoral activity of stem pineapple (Ananas comosus) bromelain. Planta Med., 2007, 73(13), 1377-1383.
[http://dx.doi.org/10.1055/s-2007-990221] [PMID: 17893836]
[138]
Uzor, P.F.; Ishiwu, B.U.; Nwodo, N.J. In vivo antimalarial effect of Ananas comosus (L) Merr (Bromeliaceae) fruit peel, and gas chromatography-mass spectroscopy profiling: A possible role for polyunsaturated fatty acid. Trop. J. Pharm. Res., 2020, 19(1), 137-145.
[http://dx.doi.org/10.4314/tjpr.v19i1.21]
[139]
Babajide, J.M.; Olaluwoye, A.A.; Taofik Shittu, T.A.; Adebisi, M.A. Physicochemical properties and phytochemical components of spiced cucumber-pineapple fruit drink. Niger. Food J., 2013, 31(1), 40-52.
[http://dx.doi.org/10.1016/S0189-7241(15)30055-2]
[140]
Xie, W.; Xing, D.; Sun, H.; Wang, W.; Ding, Y.; Du, L. The effects of Ananas comosus L. leaves on diabetic-dyslipidemic rats induced by alloxan and a high-fat/high-cholesterol diet. Am. J. Chin. Med., 2005, 33(1), 95-105.
[http://dx.doi.org/10.1142/S0192415X05002692] [PMID: 15844837]
[141]
Riya, M.P.; Antu, K.A.; Vinu, T.; Chandrakanth, K.C.; Anilkumar, K.S.; Raghu, K.G. An in vitro study reveals nutraceutical properties of Ananas comosus (L.) Merr. var. Mauritius fruit residue beneficial to diabetes. J. Sci. Food Agric., 2014, 94(5), 943-950.
[http://dx.doi.org/10.1002/jsfa.6340] [PMID: 23929507]
[142]
Xie, W.; Wang, W.; Su, H.; Xing, D.; Pan, Y.; Du, L. Effect of ethanolic extracts of Ananas comosus L. leaves on insulin sensitivity in rats and HepG2. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2006, 143(4), 429-435.
[http://dx.doi.org/10.1016/j.cbpc.2006.04.002] [PMID: 16753349]
[143]
Abo El-Magd, N.F.; Ramadan, N.M.; Eraky, S.M. The ameliorative effect of bromelain on STZ-induced type 1 diabetes in rats through Oxi-LDL/LPA/LPAR1 pathway. Life Sci., 2021, 285, 119982.
[http://dx.doi.org/10.1016/j.lfs.2021.119982] [PMID: 34592232]
[144]
Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2013, 4.
[PMID: 24454289]
[145]
Secor, ER; Szczepanek, SM; Castater, CA; Adami, AJ; Matson, AP; Rafti, ET; Guernsey, L; Natarajan, P; McNamara, J.T; Schramm, C.M.; Thrall, R.S.; Silbart, L.K. Bromelain inhibits allergic sensitization and murine asthma via modulation of dendritic cells. Evid. Based Complement Alternat. Med., 2013, 2013
[http://dx.doi.org/10.1155/2013/702196]
[146]
Secor, E.R., Jr; Singh, A.; Guernsey, L.A.; McNamara, J.T.; Zhan, L.; Maulik, N.; Thrall, R.S. Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro. Int. Immunopharmacol., 2009, 9(3), 340-346.
[http://dx.doi.org/10.1016/j.intimp.2008.12.012] [PMID: 19162239]
[147]
Hoque, M.; Talukdar, S.; Roy, K.R.; Hossain, M.A.; Zzaman, W. Sonication and thermal treatment of pineapple juice: Comparative assessment of the physicochemical properties, antioxidant activities and microbial inactivation. Food Sci. Technol. Int., 2022.
[http://dx.doi.org/10.1177/10820132221127504] [PMID: 36128774]
[148]
Saptarini, N.; Rahayu, D.; Herawati, I. Antioxidant activity of crude bromelain of pineapple (Ananas comosus (L.) Merr) crown from Subang district, Indonesia. J. Pharm. Bioallied Sci., 2019, 11(8)(Suppl. 4), 551.
[http://dx.doi.org/10.4103/jpbs.JPBS_200_19] [PMID: 32148362]
[149]
Ozgen, M.; Reese, R.N.; Tulio, A.Z., Jr; Scheerens, J.C.; Miller, A.R. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (abts) method to measure antioxidant capacity of Selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem., 2006, 54(4), 1151-1157.
[http://dx.doi.org/10.1021/jf051960d] [PMID: 16478230]
[150]
Mhatre, M.; Tilak-Jain, J.; De, S.; Devasagayam, T.P.A. Evaluation of the antioxidant activity of non-transformed and transformed pineapple: A comparative study. Food Chem. Toxicol., 2009, 47(11), 2696-2702.
[http://dx.doi.org/10.1016/j.fct.2009.06.031] [PMID: 19563857]
[151]
Li, T.; Shen, P.; Liu, W.; Liu, C.; Liang, R.; Yan, N.; Chen, J. Major polyphenolics in pineapple peels and their antioxidant interactions. International Journal of Food Properties, 2014, 17(8), 1805-1817.
[http://dx.doi.org/10.1080/10942912.2012.732168]
[152]
Hossain, M.A.; Rahman, S.M.M. Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res. Int., 2011, 44(3), 672-676.
[http://dx.doi.org/10.1016/j.foodres.2010.11.036]
[153]
Ahmad, S.; Parveen, A.; Parveen, B.; Parveen, R. Challenges and guidelines for clinical trial of herbal drugs. J. Pharm. Bioallied Sci., 2015, 7(4), 329-333.
[http://dx.doi.org/10.4103/0975-7406.168035] [PMID: 26681895]
[154]
Home - ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ (Accessed on: 2021 Dec 28).
[155]
Amini, A.; Ehteda, A.; Masoumi Moghaddam, S.; Akhter, J.; Pillai, K.; Morris, D.L. Cytotoxic effects of bromelain in human gastrointestinal carcinoma cell lines (MKN45, KATO-III, HT29-5F12, and HT29-5M21). OncoTargets Ther., 2013, 6, 403-409.
[PMID: 23620673]
[156]
Tysnes, B.B.; Maurert, H.R.; Porwol, T.; Probst, B.; Bjerkvig, R.; Hoover, F. Bromelain reversibly inhibits invasive properties of glioma cells. Neoplasia, 2001, 3(6), 469-479.
[http://dx.doi.org/10.1038/sj.neo.7900196] [PMID: 11774029]
[157]
Raeisi, E.; Raeisi, F.; Heidarian, E.; Shahbazi-Gahroui, D.; Lemoigne, Y. Bromelain inhibitory effect on colony formation: An in vitro study on human AGS, PC3, and MCF7 cancer cells. J. Med. Signals Sens., 2019, 9(4), 267-273.
[http://dx.doi.org/10.4103/jmss.JMSS_42_18] [PMID: 31737556]
[158]
Müller, A.; Barat, S.; Chen, X.; Bui, K.C.; Bozko, P.; Malek, N.P. Comparative study of antitumor effects of bromelain and papain in human cholangiocarcinoma cell lines. Int. J. Oncol., 2016, 48(5), 2025-2034.
[http://dx.doi.org/10.3892/ijo.2016.3411]
[159]
Mohamad, N.E.; Abu, N.; Yeap, S.K.; Alitheen, N.B. Bromelain enhances the anti-tumor effects of cisplatin on 4t1 breast tumor model in vivo. Integr. Cancer Ther., 2019, 18, 1-1.
[http://dx.doi.org/10.1177/1534735419880258] [PMID: 31752555]
[160]
Mohamad, N.E.; Abu, N.; Yeap, S.K.; Lim, K.L.; Romli, M.F.; Sharifuddin, S.A.; Long, K.; Alitheen, N.B. Apoptosis and metastasis inhibitory potential of pineapple vinegar against mouse mammary gland cells in vitro and in vivo. Nutr. Metab., 2019, 16(1), 49.
[http://dx.doi.org/10.1186/s12986-019-0380-5] [PMID: 31372176]
[161]
Chang, T.C.; Wei, P.L.; Makondi, P.T.; Chen, W.T.; Huang, C.Y.; Chang, Y.J. Bromelain inhibits the ability of colorectal cancer cells to proliferate via activation of ROS production and autophagy. PLoS One, 14(1), e0210274.
[http://dx.doi.org/10.1371/journal.pone.0210274]
[162]
Haiyan, S.; Funing, M.; Keming, L.; Wei, S.; Guiying, X.; Rulin, Z.; Shenghe, C. Growth of breast cancer cells inhibited by bromelains extracted from the different tissues of pineapple. Folia Biol., 2020, 68(3), 81-88.
[http://dx.doi.org/10.3409/fb_68-3.10]
[163]
Mekkawy, A.H.; Pillai, K.; Badar, S.; Akhter, J.; Képénékian, V.; Ke, K.; Valle, S.J.; Morris, D.L. Bromelain and Acetylcysteine (BromAc) alone and in combination with Gemcitabine inhibits subcutaneous deposits of pancreatic cancer after intraperitoneal injection. bioRxiv, 2021, 2021.05.05.442745.
[http://dx.doi.org/10.1101/2021.05.05.442745]
[164]
Hong, J.H.; Kim, M.R.; Lee, B.N.; Oh, W.M.; Min, K.S.; Im, Y.G.; Hwang, Y.C. Anti-inflammatory and mineralization effects of bromelain on lipopolysaccharide-induced inflammation of human dental pulp cells. Medicina, 2021, 57(6), 591.
[http://dx.doi.org/10.3390/medicina57060591] [PMID: 34201357]
[165]
Secor, E.R., Jr; Carson, W.F., IV; Cloutier, M.M.; Guernsey, L.A.; Schramm, C.M.; Wu, C.A.; Thrall, R.S. Bromelain exerts anti-inflammatory effects in an ovalbumin-induced murine model of allergic airway disease. Cell. Immunol., 2005, 237(1), 68-75.
[http://dx.doi.org/10.1016/j.cellimm.2005.10.002] [PMID: 16337164]
[166]
Bayat, S.; Amiri, N.; Pishavar, E.; Kalalinia, F.; Movaffagh, J.; Hashemi, M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci., 2019, 229, 57-66.
[http://dx.doi.org/10.1016/j.lfs.2019.05.028] [PMID: 31085247]
[167]
Fadlilah, M.; Ulla, M.; Poddar, S. The effect of pineapple consumption on uric acid levels in elderly at panti Sosial Harapan Kita Palembang. Malay. J. Med. Health Sci., 2021, 17(Suppl. 4), 2636-9346.
[168]
Kargutkar, S.; Brijesh, S. Anti-rheumatic activity of Ananas comosus fruit peel extract in a complete Freund’s adjuvant rat model. Pharm. Biol., 2016, 54(11), 2616-2622.
[http://dx.doi.org/10.3109/13880209.2016.1173066] [PMID: 27181794]
[169]
Lotz-Winter, H. On the pharmacology of bromelain: An update with special regard to animal studies on dose-dependent effects. Planta Med., 1990, 56(3), 249-253.
[http://dx.doi.org/10.1055/s-2006-960949] [PMID: 2203073]
[170]
Chandler, D.S.; Mynott, T.L. Bromelain protects piglets from diarrhoea caused by oral challenge with K88 positive enterotoxigenic Escherichia coli. Gut, 1998, 43(2), 196-202.
[http://dx.doi.org/10.1136/gut.43.2.196] [PMID: 10189844]
[171]
Praveen, N.C.; Rajesh, A.; Madan, M.; Chaurasia, V.R.; Hiremath, N.V.; Sharma, A.M. In vitro evaluation of antibacterial efficacy of pineapple extract (Bromelain) on periodontal pathogens. J. Int. Oral Health, 2014, 6(5), 96-98.
[PMID: 25395802]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy