Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Screening and Activity Evaluation of Novel BCR-ABL/T315I Tyrosine Kinase Inhibitors

Author(s): Jie Su, Chenggong Fu, Shuo Wang, Xuelian Chen, Runan Wang, Huaihuai Shi, Jiazhong Li* and Xin Wang*

Volume 31, Issue 20, 2024

Published on: 14 July, 2023

Page: [2872 - 2894] Pages: 23

DOI: 10.2174/0929867330666230519105900

Price: $65

Abstract

Introduction: Chronic myeloid leukemia (CML) is a kind of malignant tumor formed by the clonal proliferation of bone marrow hematopoietic stem cells. BCR-ABL fusion protein, found in more than 90% of patients, is a vital target for discovering anti- CML drugs. Up to date, imatinib is the first BCR-ABL tyrosine kinase inhibitor (TKI) approved by the FDA for treating CML. However, the drug resistance problems appeared for many reasons, especially the T135I mutation, a "gatekeeper" of BCR-ABL. Currently, there is no long-term effective and low side effect drug in clinical.

Methods: This study intends to find novel TKIs targeting BCR-ABL with high inhibitory activity against T315I mutant protein by combining artificial intelligence technology and cell growth curve, cytotoxicity, flow cytometry and Western blot experiments.

Results: The obtained compound was found to kill leukemia cells, which had good inhibitory efficacy in BaF3/T315I cells. Compound no 4 could induce cell cycle arrest, cause autophagy and apoptosis, and inhibit the phosphorylation of BCR-ABL tyrosine kinase, STAT5 and Crkl proteins.

Conclusion: The results indicated that the screened compound could be used as a lead compound for further research to discover ideal chronic myeloid leukemia therapeutic drugs.

[1]
Deininger, M.W.; Shah, N.P.; Altman, J.K.; Berman, E.; Bhatia, R.; Bhatnagar, B.; DeAngelo, D.J.; Gotlib, J.; Hobbs, G.; Maness, L.; Mead, M.; Metheny, L.; Mohan, S.; Moore, J.O.; Naqvi, K.; Oehler, V.; Pallera, A.M.; Patnaik, M.; Pratz, K.; Pusic, I.; Rose, M.G.; Smith, B.D.; Snyder, D.S.; Sweet, K.L.; Talpaz, M.; Thompson, J.; Yang, D.T.; Gregory, K.M.; Sundar, H. Chronic Myeloid Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw., 2020, 18(10), 1385-1415.
[http://dx.doi.org/10.6004/jnccn.2020.0047] [PMID: 33022644]
[2]
Cortes, J. Natural history and staging of chronic myelogenous leukemia. Hematol. Oncol. Clin. North Am., 2004, 18(3), 569-584.
[http://dx.doi.org/10.1016/j.hoc.2004.03.011] [PMID: 15271393]
[3]
Gale, R.P.; Grosveld, G.; Canaani, E.; Goldman, J.M. Chronic myelogenous leukemia: Biology and therapy. Leukemia, 1993, 7(4), 653-658.
[PMID: 8464245]
[4]
Greenfield, G.; McMullin, M.F.; Mills, K. Molecular pathogenesis of the myeloproliferative neoplasms. J. Hematol. Oncol., 2021, 14(1), 103.
[http://dx.doi.org/10.1186/s13045-021-01116-z] [PMID: 34193229]
[5]
Gonfloni, S. Defying c-Abl signaling circuits through small allosteric compounds. Front. Genet., 2014, 5, 392.
[http://dx.doi.org/10.3389/fgene.2014.00392] [PMID: 25429298]
[6]
Zhou, H.; Xu, R. Leukemia stem cells: The root of chronic myeloid leukemia. Protein Cell, 2015, 6(6), 403-412.
[http://dx.doi.org/10.1007/s13238-015-0143-7] [PMID: 25749979]
[7]
Pane, F.; Intrieri, M.; Quintarelli, C.; Izzo, B.; Muccioli, G.C.; Salvatore, F. BCR/ABL genes and leukemic phenotype: From molecular mechanisms to clinical correlations. Oncogene, 2002, 21(56), 8652-8667.
[http://dx.doi.org/10.1038/sj.onc.1206094] [PMID: 12476311]
[8]
Raitano, A.B.; Whang, Y.E.; Sawyers, C.L. Signal transduction by wild-type and leukemogenic Abl proteins. Biochim. Biophys. Acta, 1997, 1333(3), F201-F216.
[PMID: 9426204]
[9]
Druker, B.J.; Tamura, S.; Buchdunger, E.; Ohno, S.; Segal, G.M.; Fanning, S.; Zimmermann, J.; Lydon, N.B. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nat. Med., 1996, 2(5), 561-566.
[http://dx.doi.org/10.1038/nm0596-561] [PMID: 8616716]
[10]
Jabbour, E.; Kantarjian, H.M.; Jones, D.; Shan, J.; O’Brien, S.; Reddy, N.; Wierda, W.G.; Faderl, S.; Garcia-Manero, G.; Verstovsek, S.; Rios, M.B.; Cortes, J. Imatinib mesylate dose escalation is associated with durable responses in patients with chronic myeloid leukemia after cytogenetic failure on standard-dose imatinib therapy. Blood, 2009, 113(10), 2154-2160.
[http://dx.doi.org/10.1182/blood-2008-04-154344] [PMID: 19060245]
[11]
Soverini, S.; De Benedittis, C.; Polakova, K.M.; Linhartova, J.; Castagnetti, F.; Gugliotta, G.; Papayannidis, C.; Mancini, M.; Klamova, H.; Salvucci, M.; Crugnola, M.; Iurlo, A.; Albano, F.; Russo, D.; Rosti, G.; Cavo, M.; Baccarani, M.; Martinelli, G. Next-generation sequencing for sensitive detection of BCR-ABL1 mutations relevant to tyrosine kinase inhibitor choice in imatinib-resistant patients. Oncotarget, 2016, 7(16), 21982-21990.
[http://dx.doi.org/10.18632/oncotarget.8010] [PMID: 26980736]
[12]
Interferon alfa versus chemotherapy for chronic myeloid leukemia: A meta-analysis of seven randomized trials: Chronic Myeloid Leukemia Trialists’ Collaborative Group. J. Natl. Cancer Inst., 1997, 89(21), 1616-1620.
[http://dx.doi.org/10.1093/jnci/89.21.1616] [PMID: 9362160]
[13]
Santoro, M.; Accurso, V.; Mancuso, S.; Contrino, A.D.; Sardo, M.; Novo, G.; Di Piazza, F.; Perez, A.; Russo, A.; Siragusa, S. Management of ponatinib in patients with chronic myeloid leukemia with cardiovascular risk factors. Chemotherapy, 2019, 64(4), 205-209.
[http://dx.doi.org/10.1159/000504664] [PMID: 31825920]
[14]
Hochhaus, A.; Saglio, G.; Hughes, T.P.; Larson, R.A.; Kim, D-W.; Issaragrisil, S.; le Coutre, P.D.; Etienne, G.; Dorlhiac-Llacer, P.E.; Clark, R.E.; Flinn, I.W.; Nakamae, H.; Donohue, B.; Deng, W.; Dalal, D.; Menssen, H.D.; Kantarjian, H.M. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia, 2016, 30(5), 1044-1054.
[http://dx.doi.org/10.1038/leu.2016.5] [PMID: 26837842]
[15]
Kantarjian, H.; Sawyers, C.; Hochhaus, A.; Guilhot, F.; Schiffer, C.; Gambacorti-Passerini, C.; Niederwieser, D.; Resta, D.; Capdeville, R.; Zoellner, U.; Talpaz, M.; Druker, B.; Goldman, J.; O’Brien, S.G.; Russell, N.; Fischer, T.; Ottmann, O.; Cony-Makhoul, P.; Facon, T.; Stone, R.; Miller, C.; Tallman, M.; Brown, R.; Schuster, M.; Loughran, T.; Gratwohl, A.; Mandelli, F.; Saglio, G.; Lazzarino, M.; Russo, D.; Baccarani, M.; Morra, E. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med., 2002, 346(9), 645-652.
[http://dx.doi.org/10.1056/NEJMoa011573] [PMID: 11870241]
[16]
Nicolini, F.E.; Masszi, T.; Shen, Z.; Gallagher, N.J.; Jootar, S.; Powell, B.L.; Dorlhiac-Llacer, P.E.; Zheng, M.; Szczudlo, T.; Turkina, A. Expanding nilotinib access in clinical trials (ENACT), an open-label multicenter study of oral nilotinib in adult patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase or blast crisis. Leuk. Lymphoma, 2012, 53(5), 907-914.
[http://dx.doi.org/10.3109/10428194.2011.627480] [PMID: 22023530]
[17]
Reff, M.J.; Shillingburg, A.; Shah, B.; Elder, C.; Prescott, H.; Kennerly-Shah, J. Front-line use of tyrosine kinase inhibitors in chronic phase chronic myeloid leukemia: Practice considerations. J. Oncol. Pharm. Pract., 2020, 26(1), 156-174.
[http://dx.doi.org/10.1177/1078155219864640] [PMID: 31354102]
[18]
Cortes, J.E.; Saglio, G.; Kantarjian, H.M.; Baccarani, M.; Mayer, J.; Boqué, C.; Shah, N.P.; Chuah, C.; Casanova, L.; Bradley-Garelik, B.; Manos, G.; Hochhaus, A. Final 5-Year Study Results of DASISION: The Dasatinib versus Imatinib Study in Treatment-Naïve Chronic Myeloid Leukemia Patients Trial. J. Clin. Oncol., 2016, 34(20), 2333-2340.
[http://dx.doi.org/10.1200/JCO.2015.64.8899] [PMID: 27217448]
[19]
Cortes, J.E.; Jimenez, C.A.; Mauro, M.J.; Geyer, A.; Pinilla-Ibarz, J.; Smith, B.D. Pleural effusion in dasatinib-treated patients with chronic myeloid leukemia in chronic phase: Identification and management. Clin. Lymphoma Myeloma Leuk., 2017, 17(2), 78-82.
[http://dx.doi.org/10.1016/j.clml.2016.09.012] [PMID: 28082112]
[20]
Drucker, A.M.; Wu, S.; Busam, K.J.; Berman, E.; Amitay-Laish, I.; Lacouture, M.E. Rash with the multitargeted kinase inhibitors nilotinib and dasatinib: Meta-analysis and clinical characterization. Eur. J. Haematol., 2013, 90(2), 142-150.
[http://dx.doi.org/10.1111/ejh.12052] [PMID: 23240881]
[21]
Cortes, J.E.; Kim, D.W.; Kantarjian, H.M.; Brümmendorf, T.H.; Dyagil, I.; Griskevicius, L.; Malhotra, H.; Powell, C.; Gogat, K.; Countouriotis, A.M.; Gambacorti-Passerini, C. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: Results from the BELA trial. J. Clin. Oncol., 2012, 30(28), 3486-3492.
[http://dx.doi.org/10.1200/JCO.2011.38.7522] [PMID: 22949154]
[22]
Cortes, J.E.; Gambacorti-Passerini, C.; Deininger, M.W.; Mauro, M.J.; Chuah, C.; Kim, D.W.; Dyagil, I.; Glushko, N.; Milojkovic, D.; le Coutre, P.; Garcia-Gutierrez, V.; Reilly, L.; Jeynes-Ellis, A.; Leip, E.; Bardy-Bouxin, N.; Hochhaus, A.; Brümmendorf, T.H. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: Results from the randomized BFORE trial. J. Clin. Oncol., 2018, 36(3), 231-237.
[http://dx.doi.org/10.1200/JCO.2017.74.7162] [PMID: 29091516]
[23]
Rea, D. Management of adverse events associated with tyrosine kinase inhibitors in chronic myeloid leukemia. Ann. Hematol., 2015, 94(S2)(Suppl. 2), 149-158.
[http://dx.doi.org/10.1007/s00277-015-2318-y] [PMID: 25814081]
[24]
Cortes, J.E.; Kim, D.W.; Pinilla-Ibarz, J.; le Coutre, P.; Paquette, R.; Chuah, C.; Nicolini, F.E.; Apperley, J.F.; Khoury, H.J.; Talpaz, M.; DiPersio, J.; DeAngelo, D.J.; Abruzzese, E.; Rea, D.; Baccarani, M.; Müller, M.C.; Gambacorti-Passerini, C.; Wong, S.; Lustgarten, S.; Rivera, V.M.; Clackson, T.; Turner, C.D.; Haluska, F.G.; Guilhot, F.; Deininger, M.W.; Hochhaus, A.; Hughes, T.; Goldman, J.M.; Shah, N.P.; Kantarjian, H. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2013, 369(19), 1783-1796.
[http://dx.doi.org/10.1056/NEJMoa1306494] [PMID: 24180494]
[25]
Cortes, J.E.; Kim, D.W.; Pinilla-Ibarz, J.; le Coutre, P.D.; Paquette, R.; Chuah, C.; Nicolini, F.E.; Apperley, J.F.; Khoury, H.J.; Talpaz, M.; DeAngelo, D.J.; Abruzzese, E.; Rea, D.; Baccarani, M.; Müller, M.C.; Gambacorti-Passerini, C.; Lustgarten, S.; Rivera, V.M.; Haluska, F.G.; Guilhot, F.; Deininger, M.W.; Hochhaus, A.; Hughes, T.P.; Shah, N.P.; Kantarjian, H.M. Ponatinib efficacy and safety in Philadelphia chromosome–positive leukemia: Final 5-year results of the phase 2 PACE trial. Blood, 2018, 132(4), 393-404.
[http://dx.doi.org/10.1182/blood-2016-09-739086] [PMID: 29567798]
[26]
Pin, S.; Mateshaytis, J.; Ghosh, S.; Batuyong, E.; Easaw, J.C. Risk factors for venous thromboembolism in endometrial cancer. Curr. Oncol., 2020, 27(4), 198-203.
[http://dx.doi.org/10.3747/co.27.5981] [PMID: 32905281]
[27]
Shah, N.P.; Nicoll, J.M.; Nagar, B.; Gorre, M.E.; Paquette, R.L.; Kuriyan, J.; Sawyers, C.L. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell, 2002, 2(2), 117-125.
[http://dx.doi.org/10.1016/S1535-6108(02)00096-X] [PMID: 12204532]
[28]
Hochhaus, A.; La Rosée, P. Imatinib therapy in chronic myelogenous leukemia: Strategies to avoid and overcome resistance. Leukemia, 2004, 18(8), 1321-1331.
[http://dx.doi.org/10.1038/sj.leu.2403426] [PMID: 15215876]
[29]
Lu, X.Y.; Cai, Q.; Ding, K. Recent developments in the third generation inhibitors of Bcr-Abl for overriding T315I mutation. Curr. Med. Chem., 2011, 18(14), 2146-2157.
[http://dx.doi.org/10.2174/092986711795656135] [PMID: 21517764]
[30]
Jiang, L.; Wang, Y.; Li, Q.; Tu, Z.; Zhu, S.; Tu, S.; Zhang, Z.; Ding, K.; Lu, X. Design, synthesis, and biological evaluation of Bcr-Abl PROTACs to overcome T315I mutation. Acta Pharm. Sin. B, 2021, 11(5), 1315-1328.
[http://dx.doi.org/10.1016/j.apsb.2020.11.009] [PMID: 34094836]
[31]
Ren, X.; Pan, X.; Zhang, Z.; Wang, D.; Lu, X.; Li, Y.; Wen, D.; Long, H.; Luo, J.; Feng, Y.; Zhuang, X.; Zhang, F.; Liu, J.; Leng, F.; Lang, X.; Bai, Y.; She, M.; Tu, Z.; Pan, J.; Ding, K. Identification of GZD824 as an orally bioavailable inhibitor that targets phosphorylated and nonphosphorylated breakpoint cluster region-Abelson (Bcr-Abl) kinase and overcomes clinically acquired mutation-induced resistance against imatinib. J. Med. Chem., 2013, 56(3), 879-894.
[http://dx.doi.org/10.1021/jm301581y] [PMID: 23301703]
[32]
Jiang, Q.; Li, Z.; Qin, Y.; Li, W.; Xu, N.; Liu, B.; Zhang, Y.; Meng, L.; Zhu, H.; Du, X.; Chen, S.; Liang, Y.; Hu, Y.; Liu, X.; Song, Y.; Men, L.; Chen, Z.; Niu, Q.; Wang, H.; Lu, M.; Yang, D.; Zhai, Y.; Huang, X. Olverembatinib (HQP1351), a well-tolerated and effective tyrosine kinase inhibitor for patients with T315I-mutated chronic myeloid leukemia: Results of an open-label, multicenter phase 1/2 trial. J. Hematol. Oncol., 2022, 15(1), 113.
[http://dx.doi.org/10.1186/s13045-022-01334-z] [PMID: 35982483]
[33]
Changeux, J.P.; Christopoulos, A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Cell, 2016, 166(5), 1084-1102.
[http://dx.doi.org/10.1016/j.cell.2016.08.015] [PMID: 27565340]
[34]
Tsai, C.J.; Nussinov, R. A unified view of “how allostery works”. PLOS Comput. Biol., 2014, 10(2), e1003394.
[http://dx.doi.org/10.1371/journal.pcbi.1003394] [PMID: 24516370]
[35]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919.
[http://dx.doi.org/10.1038/nprot.2016.051] [PMID: 27077332]
[36]
Huang, S.Y.; Zou, X. Advances and challenges in protein-ligand docking. Int. J. Mol. Sci., 2010, 11(8), 3016-3034.
[http://dx.doi.org/10.3390/ijms11083016] [PMID: 21152288]
[37]
Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[38]
O’Hare, T.; Shakespeare, W.C.; Zhu, X.; Eide, C.A.; Rivera, V.M.; Wang, F.; Adrian, L.T.; Zhou, T.; Huang, W.S.; Xu, Q.; Metcalf, C.A., III; Tyner, J.W.; Loriaux, M.M.; Corbin, A.S.; Wardwell, S.; Ning, Y.; Keats, J.A.; Wang, Y.; Sundaramoorthi, R.; Thomas, M.; Zhou, D.; Snodgrass, J.; Commodore, L.; Sawyer, T.K.; Dalgarno, D.C.; Deininger, M.W.N.; Druker, B.J.; Clackson, T. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 2009, 16(5), 401-412.
[http://dx.doi.org/10.1016/j.ccr.2009.09.028] [PMID: 19878872]
[39]
Al-Balas, Q.; Amawi, H.; Hassan, M.; Qandil, A.; Almaaytah, A.; Mhaidat, N. Virtual lead identification of farnesyltransferase inhibitors based on ligand and structure-based pharmacophore techniques. Pharmaceuticals, 2013, 6(6), 700-715.
[http://dx.doi.org/10.3390/ph6060700] [PMID: 24276257]
[40]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[41]
Zhou, X.; Yu, S.; Su, J.; Sun, L. Computational study on new natural compound inhibitors of pyruvate dehydrogenase kinases. Int. J. Mol. Sci., 2016, 17(3), 340.
[http://dx.doi.org/10.3390/ijms17030340] [PMID: 26959013]
[42]
Rampogu, S.; Zeb, A.; Baek, A.; Park, C.; Son, M.; Lee, K.W. Discovery of potential plant-derived peptide deformylase (PDF) inhibitors for multidrug-resistant bacteria using computational studies. J. Clin. Med., 2018, 7(12), 563.
[http://dx.doi.org/10.3390/jcm7120563] [PMID: 30563019]
[43]
Rampogu, S.; Son, M.; Park, C.; Kim, H.H.; Suh, J.K.; Lee, K.W. Sulfonanilide derivatives in identifying novel aromatase inhibitors by applying docking, virtual screening, and MD simulations studies. BioMed Res. Int., 2017, 2017, 1-17.
[http://dx.doi.org/10.1155/2017/2105610] [PMID: 29312992]
[44]
Ren, J.; Huangfu, Y.; Ge, J.; Wu, B.; Li, W.; Wang, X.; Zhao, L. Computational study on natural compounds inhibitor of c-Myc. Medicine, 2020, 99(50), e23342.
[http://dx.doi.org/10.1097/MD.0000000000023342] [PMID: 33327259]
[45]
Han, W.; Shi, Y.; Su, J.; Zhao, Z.; Wang, X.; Li, J.; Liu, H. Virtual screening and bioactivity evaluation of novel androgen receptor antagonists from Anti-PCa traditional chinese medicine prescriptions. Front Chem., 2020, 8, 582861.
[http://dx.doi.org/10.3389/fchem.2020.582861] [PMID: 33094102]
[46]
Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[47]
Gaurav, A.; Gautam, V. Pharmacophore based virtual screening approach to identify selective PDE4B inhibitors. Iran. J. Pharm. Res., 2017, 16(3), 910-923.
[PMID: 29201082]
[48]
Buchdunger, E.; Zimmermann, J.; Mett, H.; Meyer, T.; Müller, M.; Druker, B.J.; Lydon, N.B. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res., 1996, 56(1), 100-104.
[PMID: 8548747]
[49]
Bu, Q.; Cui, L.; Li, J.; Du, X.; Zou, W.; Ding, K.; Pan, J. SAHA and S116836, a novel tyrosine kinase inhibitor, synergistically induce apoptosis in imatinib-resistant chronic myelogenous leukemia cells. Cancer Biol. Ther., 2014, 15(7), 951-962.
[http://dx.doi.org/10.4161/cbt.28931] [PMID: 24759597]
[50]
Salerno, L.; Romeo, G.; Modica, M.N.; Amata, E.; Sorrenti, V.; Barbagallo, I.; Pittalà, V. Heme oxygenase-1: A new druggable target in the management of chronic and acute myeloid leukemia. Eur. J. Med. Chem., 2017, 142, 163-178.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.031] [PMID: 28756878]
[51]
Azam, M.; Powers, J.T.; Einhorn, W.; Huang, W.S.; Shakespeare, W.C.; Zhu, X.; Dalgarno, D.; Clackson, T.; Sawyer, T.K.; Daley, G.Q. AP24163 inhibits the gatekeeper mutant of BCR-ABL and suppresses in vitro resistance. Chem. Biol. Drug Des., 2010, 75(2), 223-227.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00911.x] [PMID: 20028401]
[52]
Jatiani, S.S.; Cosenza, S.C.; Reddy, M.V.R.; Ha, J.H.; Baker, S.J.; Samanta, A.K.; Olnes, M.J.; Pfannes, L.; Sloand, E.M.; Arlinghaus, R.B.; Reddy, E.P. A non-ATP-competitive dual inhibitor of JAK2V617F and BCR-ABLT315I kinases: Elucidation of a novel therapeutic spectrum based on substrate competitive inhibition. Genes Cancer, 2010, 1(4), 331-345.
[http://dx.doi.org/10.1177/1947601910371337] [PMID: 20717479]
[53]
Gumireddy, K.; Baker, S.J.; Cosenza, S.C.; John, P.; Kang, A.D.; Robell, K.A.; Reddy, M.V.R.; Reddy, E.P. A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance. Proc. Natl. Acad. Sci. USA, 2005, 102(6), 1992-1997.
[http://dx.doi.org/10.1073/pnas.0408283102] [PMID: 15677719]
[54]
Greene, L.M.; Kelly, L.; Onnis, V.; Campiani, G.; Lawler, M.; Williams, D.C.; Zisterer, D.M. STI-571 (imatinib mesylate) enhances the apoptotic efficacy of pyrrolo-1,5-benzoxazepine-6, a novel microtubule-targeting agent, in both STI-571-sensitive and -resistant Bcr-Abl-positive human chronic myeloid leukemia cells. J. Pharmacol. Exp. Ther., 2007, 321(1), 288-297.
[http://dx.doi.org/10.1124/jpet.106.116640] [PMID: 17202400]
[55]
Ebos, J.M.; Tran, J.; Master, Z.; Dumont, D.; Melo, J.V.; Buchdunger, E.; Kerbel, R.S. Imatinib mesylate (STI-571) reduces Bcr-Abl-mediated vascular endothelial growth factor secretion in chronic myelogenous leukemia. Mol. Cancer Res., 2002, 1(2), 89-95.
[PMID: 12496355]
[56]
Park, E.; Jue, M.S. Radotinib-induced eruptive melanocytic nevi in patient with chronic myeloid leukemia: A case report and literature review. Ann. Hematol., 2019, 98(2), 533-535.
[http://dx.doi.org/10.1007/s00277-018-3444-0] [PMID: 30032412]
[57]
Heo, S.K.; Noh, E.K.; Kim, J.Y.; Jeong, Y.K.; Jo, J.C.; Choi, Y.; Koh, S.; Baek, J.H.; Min, Y.J.; Kim, H. Targeting c-KIT (CD117) by dasatinib and radotinib promotes acute myeloid leukemia cell death. Sci. Rep., 2017, 7(1), 15278.
[http://dx.doi.org/10.1038/s41598-017-15492-5] [PMID: 29127384]
[58]
Park, H.J.; Woo, Y.R.; Kim, J.; Kim, D.W. Development of dysplastic nevus during radotinib therapy in patients with chronic myeloid leukemia. Indian J. Dermatol. Venereol. Leprol., 2017, 83(6), 704-707.
[http://dx.doi.org/10.4103/ijdvl.IJDVL_1030_16] [PMID: 28891531]
[59]
Deng, Q.; Wang, E.; Wu, X.; Cheng, Q.; Liu, J.; Li, X. Combination of axitinib with dasatinib improves the outcome of a chronic myeloid leukemia patient with BCR-ABL1 T315I mutation. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2020, 45(7), 874-880.
[PMID: 32879093]
[60]
Halbach, S.; Hu, Z.; Gretzmeier, C.; Ellermann, J.; Wöhrle, F.U.; Dengjel, J.; Brummer, T. Axitinib and sorafenib are potent in tyrosine kinase inhibitor resistant chronic myeloid leukemia cells. Cell Commun. Signal., 2016, 14(1), 6.
[http://dx.doi.org/10.1186/s12964-016-0129-y] [PMID: 26912052]
[61]
Huang, T.T.; Wang, X.; Qiang, S.J.; Zhao, Z.N.; Wu, Z.X.; Ashby, C.R., Jr; Li, J.Z.; Chen, Z.S. The discovery of novel BCR-ABL tyrosine kinase inhibitors using a pharmacophore modeling and virtual screening approach. Front. Cell Dev. Biol., 2021, 9, 649434.
[http://dx.doi.org/10.3389/fcell.2021.649434] [PMID: 33748144]
[62]
Warsch, W.; Grundschober, E.; Berger, A.; Gille, L.; Cerny-Reiterer, S.; Tigan, A.S.; Hoelbl-Kovacic, A.; Valent, P.; Moriggl, R.; Sexl, V. STAT5 triggers BCR-ABL1 mutation by mediating ROS production in chronic myeloid leukaemia. Oncotarget, 2012, 3(12), 1669-1687.
[http://dx.doi.org/10.18632/oncotarget.806] [PMID: 23458731]
[63]
Nichols, G.L.; Raines, M.A.; Vera, J.C.; Lacomis, L.; Tempst, P.; Golde, D.W. Identification of CRKL as the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous leukemia cells. Blood, 1994, 84(9), 2912-2918.
[http://dx.doi.org/10.1182/blood.V84.9.2912.2912] [PMID: 7524758]
[64]
Schindler, T.; Bornmann, W.; Pellicena, P.; Miller, W.T.; Clarkson, B.; Kuriyan, J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science, 2000, 289(5486), 1938-1942.
[http://dx.doi.org/10.1126/science.289.5486.1938] [PMID: 10988075]
[65]
Hamilton, A.; Elrick, L.; Myssina, S.; Copland, M.; Jørgensen, H.; Melo, J.V.; Holyoake, T. BCR-ABL activity and its response to drugs can be determined in CD34+ CML stem cells by CrkL phosphorylation status using flow cytometry. Leukemia, 2006, 20(6), 1035-1039.
[http://dx.doi.org/10.1038/sj.leu.2404189] [PMID: 16572205]
[66]
Senechal, K.; Halpern, J.; Sawyers, C.L. The CRKL adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene. J. Biol. Chem., 1996, 271(38), 23255-23261.
[http://dx.doi.org/10.1074/jbc.271.38.23255] [PMID: 8798523]
[67]
Ye, Y.; Fang, Y.; Xu, W.; Wang, Q.; Zhou, J.; Lu, R. 3,3′-Diindolylmethane induces anti-human gastric cancer cells by the miR-30e-ATG5 modulating autophagy. Biochem. Pharmacol., 2016, 115, 77-84.
[http://dx.doi.org/10.1016/j.bcp.2016.06.018] [PMID: 27372603]
[68]
Kandakatla, N.; Ramakrishnan, G. Ligand based pharmacophore modeling and virtual screening studies to design novel HDAC2 inhibitors. Adv. Bioinforma., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/812148] [PMID: 25525429]
[69]
Dube, D.; Periwal, V.; Kumar, M.; Sharma, S.; Singh, T.P.; Kaur, P. 3D-QSAR based pharmacophore modeling and virtual screening for identification of novel pteridine reductase inhibitors. J. Mol. Model., 2012, 18(5), 1701-1711.
[http://dx.doi.org/10.1007/s00894-011-1187-0] [PMID: 21826447]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy