Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Review Article

Cement-Based Composites Containing Carbon Nanofibers and Carbon Nanotubes

Author(s): Mohankumar Namdeorao Bajad*

Volume 17, Issue 3, 2024

Published on: 03 July, 2023

Page: [240 - 250] Pages: 11

DOI: 10.2174/2666145416666230517164939

Price: $65

Abstract

In cement-based composites, carbon nanotubes (CNTs) and carbon nano fibres (CNFs) can act as crack bridging, delaying the development of nano fractures into microcracks. Recent research on the use of CNTs and CNFs in cement-based composites was reviewed in this paper. Earlier studies have demonstrated that cement-based composites reinforced with CNTs/CNFs have lower porosities and superior mechanical properties to plain cement-based composites. Using CNTs or CNFs in cement-based composites presents challenges due to their low matrix dispersion and weak interfacial contact. Some projected future investigations were indicated.

Graphical Abstract

[1]
Du M, Jing H, Gao Y, Su H, Fang H. Carbon nanomaterials enhanced cement-based composites: Advances and challenges. Nanotechnol Rev 2020; 9(1): 115-35.
[http://dx.doi.org/10.1515/ntrev-2020-0011]
[2]
Parveen S, Rana S, Fangueiro R. A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J Nanomater 2013.
[http://dx.doi.org/10.1155/2013/710175]
[3]
Metaxa ZS, Konsta-Gdoutos MS, Shah SP. Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency. Cement Concr Compos 2013; 36: 25-32.
[http://dx.doi.org/10.1016/j.cemconcomp.2012.10.009]
[4]
Li GY, Wang PM, Zhao X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005; 43(6): 1239-45.
[http://dx.doi.org/10.1016/j.carbon.2004.12.017]
[5]
Musso S, Tulliani JM, Ferro G, Tagliaferro A. Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos Sci Technol 2009; 69(11-12): 1985-90.
[http://dx.doi.org/10.1016/j.compscitech.2009.05.002]
[6]
Shah SP, Konsta-Gdoutos MS, Metaxa ZS.
[http://dx.doi.org/10.1504/IJMPT.2009.027839]
[7]
Tyson BM, Abu Al-Rub RK, Yazdanbakhsh A, Grasley Z. Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials. J Mater Civ Eng 2011; 23(7): 1028-35.
[http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000266]
[8]
Yoo DY, You I, Lee SJ. Electrical properties of cement-based composites with carbon nanotubes, graphene, and graphite nanofibers. Sensors (Basel) 2017; 17(5): 1064.
[http://dx.doi.org/10.3390/s17051064] [PMID: 28481296]
[9]
Foldyna J, Foldyna V. Zeleňák M. Dispersion of carbon nanotubes for application in cement composites. Procedia Eng 2016; 149: 94-9.
[http://dx.doi.org/10.1016/j.proeng.2016.06.643]
[10]
Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354: 56-8.
[11]
Mroz Z, Yanakieva A, Valeva V, Ivanova J. Analytical pull-out analysis for carbon nanotube-cement composites under static loading. Bulgare Sci 2013; 66(3): 431-8.
[12]
Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000; 287(5453): 637-40.
[http://dx.doi.org/10.1126/science.287.5453.637] [PMID: 10649994]
[13]
Siddique R, Mehta A. Effect of carbon nanotubes on properties of cement mortars. Constr Build Mater 2014; 50: 116-29.
[http://dx.doi.org/10.1016/j.conbuildmat.2013.09.019]
[14]
Odom TW, Huang JL, Kim P, Lieber CM. Structure and electronic properties of carbon nanotubes. J Phys Chem B 2000; 104(13): 2794-809.
[http://dx.doi.org/10.1021/jp993592k]
[15]
Nochaiya T, Chaipanich A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Appl Surf Sci 2011; 257(6): 1941-5.
[http://dx.doi.org/10.1016/j.apsusc.2010.09.030]
[16]
Konsta-Gdoutos MS, Metaxa ZS, Shah SP. Highly dispersed carbon nanotube reinforced cement based materials. Cement Concr Res 2010; 40(7): 1052-9.
[http://dx.doi.org/10.1016/j.cemconres.2010.02.015]
[17]
Sanchez F, Zhang L, Ince C. Multi-scale performance and durability of carbon nanofiber/cement composites. Proceedings of the 3rd International Symposium on Nanotechnology in Construction. Prague. Czech Republic. 2009; pp. 345-50.
[http://dx.doi.org/10.1007/978-3-642-00980-8_46]
[18]
Tibbetts G, Lake M, Strong K, Rice B. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 2007; 67(7-8): 1709-18.
[http://dx.doi.org/10.1016/j.compscitech.2006.06.015]
[19]
Makar J, Margeson J, Luh J. Proceedings of the 3rd International Conference on Construction Materials: Performance. Innovations and Structural ImplicationsVancouverCanada 2005.
[20]
Sáez de Ibarra Y, Gaitero JJ, Erkizia E, Campillo I. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Phys Status Solidi, A Appl Mater Sci 2006; 203(6): 1076-81.
[http://dx.doi.org/10.1002/pssa.200566166]
[21]
Cwirzen A, Habermehl-Cwirzen K, Penttala V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv Cement Res 2008; 20(2): 65-73.
[http://dx.doi.org/10.1680/adcr.2008.20.2.65]
[22]
Metaxa ZS, Konsta-Gdoutos MS, Shah SP. Carbon Nanotubes Reinforced Concrete. ACI Fall 2009 Convention.
[23]
Wang B, Han Y, Liu S. Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites. Constr Build Mater 2013; 46: 8-12.
[http://dx.doi.org/10.1016/j.conbuildmat.2013.04.014]
[24]
Abu Al-Rub RK, Ashour AI, Tyson BM. On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. Constr Build Mater 2012; 35: 647-55.
[http://dx.doi.org/10.1016/j.conbuildmat.2012.04.086]
[25]
Metaxa ZS, Konsta-Gdoutos MS, Shah SP. Carbon nanofiber–reinforced cement-based materials. Transp Res Rec 2010; 2142(1): 114-8.
[http://dx.doi.org/10.3141/2142-17]
[26]
Lawrence JG, Berhan LM, Nadarajah A. Elastic properties and morphology of individual carbon nanofibers. ACS Nano 2008; 2(6): 1230-6.
[http://dx.doi.org/10.1021/nn7004427] [PMID: 19206341]
[27]
Ozkan T, Chen Q, Naraghi M, Chasiotis I. Mechanical and Interface Properties of Carbon Nanofibers for Polymer Nanocomposites. 2008 SAMPE Fall Technical Conference and Exhibition - Multifunctional Materials: Working Smarter Together, SAMPE '08Memphis, TN, United States. 2008.
[28]
Qin F, Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 2012; 111(6): 061301.
[http://dx.doi.org/10.1063/1.3688435]
[29]
Gao D, Peng LM, Mo YL. Electrical resistance of self-consolidating concrete containing carbon nanofibers. J Sichuan Univ 2011; 43(5): 52-8.
[30]
Sanchez F, Ince C. Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Compos Sci Technol 2009; 69(7-8): 1310-8.
[http://dx.doi.org/10.1016/j.compscitech.2009.03.006]
[31]
Gay C, Sanchez F. Performance of carbon nanofiber–cement composites with a high-range water reducer. Transp Res Rec 2010; 2142(1): 109-13.
[http://dx.doi.org/10.3141/2142-16]
[32]
Metaxa ZS, Tolkou AK, Efstathiou S, et al. Nanomaterials in cementitious composites: An update. Molecules 2021; 26(5): 1430.
[http://dx.doi.org/10.3390/molecules26051430] [PMID: 33800797]
[33]
Iqbal Khan Z, Habib U, Binti Mohamad Z, Razak Bin Rahmat A, Amira Sahirah Binti Abdullah N. Mechanical and thermal properties of sepiolite strengthened thermoplastic polymer nanocomposites: A comprehensive review. Alex Eng J 2022; 61(2): 975-90.
[http://dx.doi.org/10.1016/j.aej.2021.06.015]
[34]
Yazdanbakhsh A, Grasley Z, Tyson B, Al-Rub RKA. Distribution of carbon nanofibers and nanotubes in cementitious composites. Transp Res Rec 2010; 2142(1): 89-95.
[http://dx.doi.org/10.3141/2142-13]
[35]
Yazdanbakhsh A, Grasley Z. The theoretical maximum achievable dispersion of nanoinclusions in cement paste. Cement Concr Res 2012; 42(6): 798-804.
[http://dx.doi.org/10.1016/j.cemconres.2012.03.001]
[36]
Gopalakrishnan K, Birgisson B, Taylor P, Attoh-Okine NO. Nanotechnology in civil infrastructure: A paradigm shift. Springer 2011.
[http://dx.doi.org/10.1007/978-3-642-16657-0]
[37]
Chen W, Auad ML, Williams RJJ, Nutt SR. Improving the dispersion and flexural strength of multiwalled carbon nanotubes–stiff epoxy composites through β-hydroxyester surface functionalization coupled with the anionic homopolymerization of the epoxy matrix. Eur Polym J 2006; 42(10): 2765-72.
[http://dx.doi.org/10.1016/j.eurpolymj.2006.04.016]
[38]
Grunlan JC, Liu L, Regev O. Weak polyelectrolyte control of carbon nanotube dispersion in water. J Colloid Interface Sci 2008; 317(1): 346-9.
[http://dx.doi.org/10.1016/j.jcis.2007.08.057] [PMID: 17904154]
[39]
Bystrzejewski M, Huczko A, Lange H, Gemming T, Büchner B, Rümmeli MH. Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions. J Colloid Interface Sci 2010; 345(2): 138-42.
[http://dx.doi.org/10.1016/j.jcis.2010.01.081] [PMID: 20171648]
[40]
Yazdanbakhsh A, Grasley ZC, Tyson B, Abu Al-Rub RK.
[http://dx.doi.org/10.14359/51663280]
[41]
Cwirzen A, Habermehl-Cwirzen K, Shandakov D, et al. Properties of high yield synthesised carbon nano fibres/Portland cement composite. Adv Cement Res 2009; 21(4): 141-6.
[http://dx.doi.org/10.1680/adcr.8.00021]
[42]
Khan ZI, Arsad A, Mohamad Z, Habib U, Zaini MAA. Comparative study on the enhancement of thermo-mechanical properties of carbon fiber and glass fiber reinforced epoxy composites. Mater Today Proc 2021; 39: 956-8.
[http://dx.doi.org/10.1016/j.matpr.2020.04.223]
[43]
Luo J, Duan Z, Li H. The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites. Phys Status Solidi, A Appl Mater Sci 2009; 206(12): 2783-90.
[http://dx.doi.org/10.1002/pssa.200824310]
[44]
Ashori A, Ghiyasi M, Fallah A. Glass fiber-reinforced epoxy composite with surface-modified graphene oxide: enhancement of interlaminar fracture toughness and thermo-mechanical performance. Polym Bull 2019; 76(1): 259-70.
[http://dx.doi.org/10.1007/s00289-018-2387-x]
[45]
Metaxa ZS, Seo JWT, Konsta-Gdoutos MS, Hersam MC, Shah SP. Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cement Concr Compos 2012; 34(5): 612-7.
[http://dx.doi.org/10.1016/j.cemconcomp.2012.01.006]
[46]
Abdullah NAS, Mohamad Z, Khan ZI, Jusoh M, Zakaria ZY, Ngadi N. Alginate based sustainable films and composites for packaging: A review. Chem Eng Trans 2021; 83: 271-6.
[http://dx.doi.org/10.3303/CET2183046]
[47]
Khan ZI, Mohamad ZB, Rahmat ARB, Habib U, Abdullah NASB. A novel recycled polyethylene terephthalate/polyamide 11 (rPET/PA11) thermoplastic blend. Prog Rubber Plast Recycl Technol 2021; 37(3): 233-44.
[http://dx.doi.org/10.1177/14777606211001074]
[48]
Nasibulin AG, Shandakov SD, Nasibulina LI, et al. A novel cement-based hybrid material. New J Phys 2009; 11(2): 023013.https://iopscience.iop.org/article/10.1088/1367-2630/11/2/023013/pdf
[http://dx.doi.org/10.1088/1367-2630/11/2/023013]
[49]
Nasibulin AG, Koltsova T, Nasibulina LI, et al. A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles. Acta Mater 2013; 61(6): 1862-71.
[http://dx.doi.org/10.1016/j.actamat.2012.12.007]
[50]
Asensio M, Herrero M, Núñez K, Merino JC, Pastor JM. The influence of sepiolite orientation and concentration, on the morphological, thermal and mechanical properties of bio‐polyamide 4.10 nanocomposites. Polym Eng Sci 2020; 60(5): 1035-43.
[http://dx.doi.org/10.1002/pen.25359]
[51]
Bernardo V, Martin-de Leon J, Rodriguez-Perez MA. Anisotropy in nanocellular polymers promoted by the addition of needle‐like sepiolites. Polym Int 2019; 68(6): 1204-14.
[http://dx.doi.org/10.1002/pi.5813]
[52]
Collins F, Lambert J, Duan WH. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cement Concr Compos 2012; 34(2): 201-7.
[http://dx.doi.org/10.1016/j.cemconcomp.2011.09.013]
[53]
Morsy MS, Alsayed SH, Aqel M. Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Constr Build Mater 2011; 25(1): 145-9.
[http://dx.doi.org/10.1016/j.conbuildmat.2010.06.046]
[54]
Hunashyal AM, Lohitha SJ, Quadri SS, Banapurmath NR. Experimental investigation of the effect of carbon nanotubes and carbon fibres on the behaviour of plain cement composite beams. IES J Part A: Civil Struct Eng 2011; 4(1): 29-36.
[http://dx.doi.org/10.1080/19373260.2011.548160]
[55]
Eitan A, Jiang K, Dukes D, Andrews R, Schadler LS. Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites. Chem Mater 2003; 15(16): 3198-201.
[http://dx.doi.org/10.1021/cm020975d]
[56]
Li GY, Wang PM, Zhao X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cement Concr Compos 2007; 29(5): 377-82.
[http://dx.doi.org/10.1016/j.cemconcomp.2006.12.011]
[57]
Nasibulina LI, Anoshkin IV, Nasibulin AG, Cwirzen A, Penttala V, Kauppinen EI. Effect of carbon nanotube aqueous dispersion quality on mechanical properties of cement composite. J Nanomater 2012; 2012: 1-6.
[http://dx.doi.org/10.1155/2012/169262]
[58]
Gomes ACO, Backes EH, Ruvolo Filho AC, Paranhos CM, Passador FR, Pessan LA. Hybrids membranes with potential for fuel cells – Part 3: extruded films of nanocomposites based on sepiolite and PC/sulfonated PC blends. Polímeros 2018; 28(2): 112-9.
[http://dx.doi.org/10.1590/0104-1428.02616]
[59]
Barroso-Solares S, Merillas B, Cimavilla-Román P, Rodriguez-Perez MA, Pinto J. Enhanced nitrates-polluted water remediation by polyurethane/sepiolite cellular nanocomposites. J Clean Prod 2020; 254: 120038.
[http://dx.doi.org/10.1016/j.jclepro.2020.120038]
[60]
Konsta-Gdoutos MS, Metaxa ZS, Shah SP. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cement Concr Compos 2010; 32(2): 110-5.
[http://dx.doi.org/10.1016/j.cemconcomp.2009.10.007]
[61]
Galao O, Zornoza E, Baeza FJ, Bernabeu A, Garcés P. Effect of carbon nanofibre addition in the mechanical properties and durability of cementitious materials. In: Materialesde construcción torrossa . 2012.
[http://dx.doi.org/10.3989/mc.2012.01211]
[62]
Zhang J, Yu H, Liang Y, Sun Z, Liu Y, Jing G. Influence of EVA/nano-sepiolite on the wax crystal and rheological property of Daqing crude oil. J Dispers Sci Technol 2021; 42(8): 1125-31.
[http://dx.doi.org/10.1080/01932691.2020.1727749]
[63]
Pellenq RJM, Kushima A, Shahsavari R, et al. A realistic molecular model of cement hydrates. Proc Natl Acad Sci USA 2009; 106(38): 16102-7.
[http://dx.doi.org/10.1073/pnas.0902180106] [PMID: 19805265]
[64]
Zhu YF, Chen WJ, Jiang Y, Wang FY. Effects of structure characteristics of carbon nanotubes on properties of composites. J Reinf Plast Compos 2012; 31(16): 1097-102.
[http://dx.doi.org/10.1177/0731684412453213]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy