Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

VEGFR2 Mimicking Peptide Inhibits the Proliferation of Human Umbilical Vein Endothelial Cells (Huvecs) by Blocking VEGF

Author(s): Samaneh Ghasemali, Abolfazl Barzegar, Safar Farajnia*, Mohammad Rahmati, Babak Negahdari, Ali Etemadi and Atefeh Nazari

Volume 23, Issue 14, 2023

Published on: 08 June, 2023

Page: [1678 - 1688] Pages: 11

DOI: 10.2174/1871520623666230517141144

Price: $65

Abstract

Introduction: A variety of key human physiological processes rely on angiogenesis, ranging from reproduction and fetal growth to wound healing and tissue repair. Furthermore, this process significantly contributes to tumor progression, invasion, and metastasis. As the strongest inducer of angiogenesis, Vascular Endothelial Growth Factor (VEGF) and its receptor (VEGFR) are targets of therapeutic research for blocking pathological angiogenesis.

Objective: Preventing the interaction between VEGF and VEGFR2 by a peptide is a promising strategy for developing antiangiogenic drug candidates. This study was aimed at designing and evaluating VEGF-targeting peptides using in silico and in vitro techniques.

Methods: The VEGF binding site of VEGFR2 was considered a basis for peptide design. The interaction of VEGF and all three peptides derived from VEGFR2 were analyzed using ClusPro tools. In a complex with VEGF, the peptide with a higher docking score was evaluated to confirm its stability using molecular dynamics (MD) simulation. The gene coding for the selected peptide was cloned and expressed in E. coli BL21. The bacterial cells were cultured on a large scale, and the expressed recombinant peptide was purified using Ni-NTA chromatography. Refolding of the denatured peptide was carried out by the stepwise removal of the denaturant. The reactivity of peptides was confirmed using western blotting and enzyme-linked immunosorbent assay (ELISA) assays. Finally, the inhibition potency of the peptide on human umbilical vein endothelial cells was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl- 2H-tetrazolium bromide (MTT) assay.

Results: Among three peptides, the peptide with the best docking pose and the highest affinity for VEGF was selected for further studies. Then the stability of the peptide was confirmed over the 100 ns MD simulation. After in silico analyses, the selected peptide was presented for in vitro analysis. Expression of the selected peptide in E. coli BL21 resulted in a pure peptide with a yield of approximately 200 μg/ml. Analysis by ELISA revealed the high reactivity of the peptide with VEGF. Western blot analysis confirmed the specific reactivity of selected peptides with VEGF. The MTT assay revealed the growth inhibitory effect of the peptide on human umbilical vein endothelial cells with an IC50 value of 247.8 μM.

Conclusion: In summary, the selected peptide demonstrated a promising inhibitory effect on human umbilical vein endothelial cells that could be a valuable anti-angiogenic candidate for further assessment. Additionally, these in silico and in vitro data provide new insights into peptide design and engineering.

Graphical Abstract

[1]
Ghasemali, S.; Farajnia, S.; Barzegar, A.; Rahmati-Yamchi, M.; Baghban, R.; Rahbarnia, L.; Nodeh, H.R.Y. New developments in anti-angiogenic therapy of cancer, review and update. Anticancer. Agents Med. Chem., 2020, 21(1), 3-19.
[http://dx.doi.org/10.2174/1871520620666200817103219] [PMID: 32807068]
[2]
Ghasemali, S.; Farajnia, S.; Barzegar, A.; Rahmati-Yamchi, M.; Negahdari, B.; Rahbarnia, L.; Yousefi-Nodeh, H. Rational Design of anti-angiogenic peptides to inhibit VEGF/VEGFR2 interactions for cancer therapeutics. Anticancer. Agents Med. Chem., 2021, 22(10), 2026-2035.
[PMID: 34792006]
[3]
Szekanecz, Z.; Besenyei, T.; Paragh, G.; Koch, A.E. Angiogenesis in rheumatoid arthritis. Autoimmunity, 2009, 42(7), 563-573.
[http://dx.doi.org/10.1080/08916930903143083] [PMID: 19863375]
[4]
Zhu, X.X.; Miao, X.Y.; Gong, Y.P.; Fu, B.; Li, C.L. Isolation and culture of rat aortic endothelial cells in vitro: A novel approach without collagenase digestion. J. Cell. Biochem., 2019, 120(8), 14127-14135.
[http://dx.doi.org/10.1002/jcb.28688] [PMID: 31020704]
[5]
Batlle, R.; Andrés, E.; Gonzalez, L.; Llonch, E.; Igea, A.; Gutierrez-Prat, N.; Berenguer-Llergo, A.; Nebreda, A.R. Regulation of tumor angiogenesis and mesenchymal–endothelial transition by p38α through TGF-β and JNK signaling. Nat. Commun., 2019, 10(1), 3071.
[http://dx.doi.org/10.1038/s41467-019-10946-y] [PMID: 31296856]
[6]
Ferrara, N.; Kerbel, R.S. Angiogenesis as a therapeutic target. Nature, 2005, 438(7070), 967-974.
[http://dx.doi.org/10.1038/nature04483] [PMID: 16355214]
[7]
Chung, A.S.; Ferrara, N. Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol., 2011, 27(1), 563-584.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154002] [PMID: 21756109]
[8]
Carmeliet, P.; Jain, R.K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov., 2011, 10(6), 417-427.
[http://dx.doi.org/10.1038/nrd3455] [PMID: 21629292]
[9]
Giacca, M.; Zacchigna, S. VEGF gene therapy: Therapeutic angiogenesis in the clinic and beyond. Gene Ther., 2012, 19(6), 622-629.
[http://dx.doi.org/10.1038/gt.2012.17] [PMID: 22378343]
[10]
Melincovici, C.S. Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol., 2018, 59(2), 455-467.
[PMID: 30173249]
[11]
Kazemi-Lomedasht, F.; Behdani, M.; Pooshang Bagheri, K.; Habibi Anbouhi, M.; Abolhassani, M.; Khanahmad, H.; Shahbazzadeh, D.; Mirzahoseini, H. Expression and purification of functional human vascular endothelial growth factor-a121; the most important angiogenesis factor. Adv. Pharm. Bull., 2014, 4(4), 323-328.
[PMID: 25436186]
[12]
Seyedarabi, A.; Cheng, L.; Zachary, I.; Djordjevic, S. Production of soluble human vascular endothelial growth factor VEGF-A165-heparin binding domain in Escherichia coli. PLoS One, 2013, 8(2)e55690
[http://dx.doi.org/10.1371/journal.pone.0055690] [PMID: 23409021]
[13]
Zahiri, J.; Khorsand-Ghaffari, B.; Zade, S.H.R.; Kargar, M.; Yousefi, A.A. AntAngioCOOL: An R package for computational detection of anti-angiogenic peptides. J. Transl. Med., 2017, 71233601
[http://dx.doi.org/10.1101/233601]
[14]
Wijma, H.J.; Janssen, D.B. Computational design gains momentum in enzyme catalysis engineering. FEBS J., 2013, 280(13), 2948-2960.
[http://dx.doi.org/10.1111/febs.12324] [PMID: 23647554]
[15]
Yeung, N.; Lin, Y.W.; Gao, Y.G.; Zhao, X.; Russell, B.S.; Lei, L.; Miner, K.D.; Robinson, H.; Lu, Y. Rational design of a structural and functional nitric oxide reductase. Nature, 2009, 462(7276), 1079-1082.
[http://dx.doi.org/10.1038/nature08620] [PMID: 19940850]
[16]
Kazlauskas, R.J.; Bornscheuer, U.T. Finding better protein engineering strategies. Nat. Chem. Biol., 2009, 5(8), 526-529.
[http://dx.doi.org/10.1038/nchembio0809-526] [PMID: 19620988]
[17]
Höhne, M.; Schätzle, S.; Jochens, H.; Robins, K.; Bornscheuer, U.T. Rational assignment of key motifs for function guides in silico enzyme identification. Nat. Chem. Biol., 2010, 6(11), 807-813.
[http://dx.doi.org/10.1038/nchembio.447] [PMID: 20871599]
[18]
Yin, H.; Slusky, J.S.; Berger, B.W.; Walters, R.S.; Vilaire, G.; Litvinov, R.I.; Lear, J.D.; Caputo, G.A.; Bennett, J.S.; DeGrado, W.F. Computational design of peptides that target transmembrane helices. Science, 2007, 315(5820), 1817-1822.
[http://dx.doi.org/10.1126/science.1136782] [PMID: 17395823]
[19]
Rismani, E.; Rahimi, H.; Arab, S.S.; Azadmanesh, K.; Karimipoor, M.; Teimoori-Toolabi, L. Computationally design of inhibitory peptides against Wnt signaling pathway: In silico insight on complex of DKK1 and LRP6. Int. J. Pept. Res. Ther., 2018, 24(1), 49-60.
[http://dx.doi.org/10.1007/s10989-017-9589-1]
[20]
Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron, 2018, 99(6), 1129-1143.
[http://dx.doi.org/10.1016/j.neuron.2018.08.011] [PMID: 30236283]
[21]
Laskowski, R.A.; Hutchinson, E.G.; Michie, A.D.; Wallace, A.C.; Jones, M.L.; Thornton, J.M. PDBsum: A web-based database of summaries and analyses of all PDB structures. Trends Biochem. Sci., 1997, 22(12), 488-490.
[http://dx.doi.org/10.1016/S0968-0004(97)01140-7] [PMID: 9433130]
[22]
Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18(15), 2714-2723.
[23]
Laskowski, R.A. Jabłońska, J.; Pravda, L.; Vařeková, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Protein Sci., 2018, 27(1), 129-134.
[http://dx.doi.org/10.1002/pro.3289] [PMID: 28875543]
[24]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[25]
Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc., 2010, 5(4), 725-738.
[http://dx.doi.org/10.1038/nprot.2010.5] [PMID: 20360767]
[26]
Baghban, R.; Farajnia, S.; Ghasemi, Y.; Mortazavi, M.; Ghasemali, S.; Zakariazadeh, M.; Zarghami, N.; Samadi, N. Engineering of ocriplasmin variants by bioinformatics methods for the reduction of proteolytic and autolytic activities. Iran. J. Med. Sci., 2021, 46(6), 454-467.
[PMID: 34840386]
[27]
Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods, 2015, 12(1), 7-8.
[http://dx.doi.org/10.1038/nmeth.3213] [PMID: 25549265]
[28]
Wang, Z.; Sun, H.; Shen, C.; Hu, X.; Gao, J.; Li, D.; Cao, D.; Hou, T. Combined strategies in structure-based virtual screening. Phys. Chem. Chem. Phys., 2020, 22(6), 3149-3159.
[http://dx.doi.org/10.1039/C9CP06303J] [PMID: 31995074]
[29]
Sharifi, M.; Ezzati Nazhad Dolatabadi, J.; Fathi, F.; Zakariazadeh, M.; Barzegar, A.; Rashidi, M.; Tajalli, H.; Rashidi, M.R. Surface plasmon resonance and molecular docking studies of bovine serum albumin interaction with neomycin: Kinetic and thermodynamic analysis. Bioimpacts, 2017, 7(2), 91-97.
[http://dx.doi.org/10.15171/bi.2017.12] [PMID: 28752073]
[30]
Baghban, R.; Ghasemali, S.; Farajnia, S.; Hoseinpoor, R.; Andarzi, S.; Zakariazadeh, M.; Zarredar, H. Design and In Silico evaluation of a novel cyclic disulfide-rich anti-VEGF peptide as a potential antiangiogenic drug. Int. J. Pept. Res. Ther., 2021, 27(4), 2245-2256.
[http://dx.doi.org/10.1007/s10989-021-10250-8]
[31]
Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem., 1997, 18(12), 1463-1472.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H]
[32]
Flores-Canales, J.C.; Kurnikova, M. Targeting electrostatic interactions in accelerated molecular dynamics with application to protein partial unfolding. J. Chem. Theory Comput., 2015, 11(6), 2550-2559.
[http://dx.doi.org/10.1021/ct501090y] [PMID: 26575554]
[33]
Garg, V.K.; Avashthi, H.; Tiwari, A.; Jain, P.A.; Ramkete, P.W.R.; Kayastha, A.M.; Singh, V.K. MFPPI–multi FASTA ProtParam interface. Bioinformation, 2016, 12(2), 74-77.
[http://dx.doi.org/10.6026/97320630012074] [PMID: 28104964]
[34]
Baghban, R.; Farajnia, S.; Ghasemi, Y.; Hoseinpoor, R.; Safary, A.; Mortazavi, M.; Zarghami, N. Mutational analysis of Ocriplasmin to reduce proteolytic and autolytic activity in Pichia pastoris. Biol. Proced. Online, 2020, 22(1), 25.
[http://dx.doi.org/10.1186/s12575-020-00138-0] [PMID: 33308171]
[35]
London, N.; Movshovitz-Attias, D.; Schueler-Furman, O. The structural basis of peptide-protein binding strategies. Structure, 2010, 18(2), 188-199.
[http://dx.doi.org/10.1016/j.str.2009.11.012] [PMID: 20159464]
[36]
Courtois, F.; Agrawal, N.J.; Lauer, T.M.; Trout, B.L. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab. MAbs, 2016, 8(1), 99-112.
[37]
Rouet, R.; Lowe, D.; Christ, D. Stability engineering of the human antibody repertoire. FEBS Lett., 2014, 588(2), 269-277.
[http://dx.doi.org/10.1016/j.febslet.2013.11.029] [PMID: 24291820]
[38]
Zashikhina, N.; Sharoyko, V.; Antipchik, M.; Tarasenko, I.; Anufrikov, Y.; Lavrentieva, A.; Tennikova, T.; Korzhikova-Vlakh, E. Novel formulations of c-peptide with long-acting therapeutic potential for treatment of diabetic complications. Pharmaceutics, 2019, 11(1), 27.
[http://dx.doi.org/10.3390/pharmaceutics11010027] [PMID: 30641932]
[39]
Guryanov, I.; Tennikova, T.; Urtti, A. Peptide inhibitors of vascular endothelial growth factor A: Current situation and perspectives. Pharmaceutics, 2021, 13(9), 1337.
[http://dx.doi.org/10.3390/pharmaceutics13091337] [PMID: 34575413]
[40]
Ferrara, N.; Adamis, A.P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov., 2016, 15(6), 385-403.
[http://dx.doi.org/10.1038/nrd.2015.17] [PMID: 26775688]
[41]
Zhang, X.; Feng, S.; Liu, J.; Li, Q.; Zheng, L.; Xie, L.; Li, H.; Huang, D. Novel small peptides derived from VEGF 125-136: Potential drugs for radioactive diagnosis and therapy in A549 tumor-bearing nude mice. Sci. Rep., 2017, 7(1), 1-13.
[PMID: 28127051]
[42]
Zanella, S.; Bocchinfuso, G.; De Zotti, M.; Arosio, D.; Marino, F.; Raniolo, S.; Pignataro, L.; Sacco, G.; Palleschi, A.; Siano, A.S.; Piarulli, U.; Belvisi, L.; Formaggio, F.; Gennari, C.; Stella, L. Rational design of antiangiogenic helical oligopeptides targeting the vascular endothelial growth factor receptors. Front Chem., 2019, 7, 170.
[http://dx.doi.org/10.3389/fchem.2019.00170] [PMID: 30984741]
[43]
Farzaneh Behelgardi, M.; Zahri, S.; Mashayekhi, F.; Mansouri, K.; Asghari, S.M. A peptide mimicking the binding sites of VEGF-A and VEGF-B inhibits VEGFR-1/-2 driven angiogenesis, tumor growth and metastasis. Sci. Rep., 2018, 8(1), 17924.
[http://dx.doi.org/10.1038/s41598-018-36394-0] [PMID: 30560942]
[44]
Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein–protein docking. Nat. Protoc., 2017, 12(2), 255-278.
[http://dx.doi.org/10.1038/nprot.2016.169] [PMID: 28079879]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy