Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthetic Strategies Towards and Around the CF3S(O) Structural Motif

Author(s): Vadim D. Romanenko*

Volume 27, Issue 5, 2023

Published on: 13 June, 2023

Page: [411 - 434] Pages: 24

DOI: 10.2174/1385272827666230517114921

Price: $65

Abstract

This account reviews synthetic strategies for constructing and transforming CF3S(O) structural moiety developed during the last decades. Existing paths to the synthesis of CF3S(O)-containing organic molecules are demonstrated. Among these are direct trifluoromethanesulfinylation reactions, oxidation of compounds having CF3S function, substitutive trifluoromethylation reactions of sulfinic acid halides and esters, and rearrangement reactions. The reactivity and substituent modification procedures are covered. Also included are sections on the synthetic application of the CF3S(O)-bearing molecules for the design of biologically important molecules and synthesis of other organofluorine compounds.

Graphical Abstract

[1]
Cahard, D.; Ma, J-A. Eds.; Emerging Fluorinated Motifs: Synthesis, Properties, and Applications; Wiley-VCH: Weinheim, 2020.
[2]
Ni, C.; Hu, M.; Hu, J. Good partnership between sulfur and fluorine: Sulfur-based fluorination and fluoroalkylation reagents for organic synthesis. Chem. Rev., 2015, 115(2), 765-825.
[http://dx.doi.org/10.1021/cr5002386] [PMID: 25144886]
[3]
Kukhar, V.; Romanenko, V. Phosphorus and fluorine-the union for bioregulators. Kem. Ind., 2007, 56(6), 329-344.
[4]
Beier, P.; Zibinsky, M.; Prakash, G.K.S. Nucleophilic additions of perfluoroalkyl groups.In: Organic Reactions; Wiley & Sons: N. J., 2016, Vol. 91, pp. 1-492.
[http://dx.doi.org/10.1002/0471264180.or091.01]
[5]
Liu, X.; Xu, C.; Wang, M.; Liu, Q. Trifluoromethyltrimethylsilane: Nucleophilic trifluoromethylation and beyond. Chem. Rev., 2015, 115(2), 683-730.
[http://dx.doi.org/10.1021/cr400473a] [PMID: 24754488]
[6]
Romanenko, V.D.; Kukhar, V.P. Fluorinated phosphonates: Synthesis and biomedical application. Chem. Rev., 2006, 106(9), 3868-3935.
[http://dx.doi.org/10.1021/cr051000q] [PMID: 16967924]
[7]
Romanenko, V.D.; Kukhar, V.P. Fluorinated organophosphates for biomedical targets. Tetrahedron, 2008, 64(27), 6153-6190.
[http://dx.doi.org/10.1016/j.tet.2008.04.064]
[8]
Leroux, F. Jeschke, P.; Schlosser, M. α-fluorinated ethers, thioethers, and amines: Anomerically biased species. Chem. Rev., 2005, 105(3), 827-856.
[http://dx.doi.org/10.1021/cr040075b] [PMID: 15755078]
[9]
Liang, T.; Neumann, C.N.; Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed., 2013, 52(32), 8214-8264.
[http://dx.doi.org/10.1002/anie.201206566] [PMID: 23873766]
[10]
Toulgoat, F.; Alazet, S.; Billard, T. Direct Trifluoromethylthiolation Reactions: The “renaissance” of an old concept. Eur. J. Org. Chem., 2014, 2014(12), 2415-2428.
[http://dx.doi.org/10.1002/ejoc.201301857]
[11]
Xu, X.H.; Matsuzaki, K.; Shibata, N. Synthetic methods for compounds having CF3-S units on carbon by trifluoromethylation, trifluoromethylthiolation, triflylation, and related reactions. Chem. Rev., 2015, 115(2), 731-764.
[http://dx.doi.org/10.1021/cr500193b] [PMID: 25121343]
[12]
Yang, X.; Wu, T.; Phipps, R.J.; Toste, F.D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev., 2015, 115(2), 826-870.
[http://dx.doi.org/10.1021/cr500277b] [PMID: 25337896]
[13]
Shainyan, B.A.; Tolstikova, L.L. Trifluoromethanesulfonamides and related compounds. Chem. Rev., 2013, 113(1), 699-733.
[http://dx.doi.org/10.1021/cr300220h] [PMID: 23167801]
[14]
Zhang, C.; Yan, K.; Fu, C.; Peng, H.; Hawker, C.J.; Whittaker, A.K. Biological utility of fluorinated compounds: From materials design to molecular imaging, therapeutics and environmental remediation. Chem. Rev., 2022, 122(1), 167-208.
[http://dx.doi.org/10.1021/acs.chemrev.1c00632] [PMID: 34609131]
[15]
Hansch, C.; Leo, A.; Taft, R.W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev., 1991, 91(2), 165-195.
[http://dx.doi.org/10.1021/cr00002a004]
[16]
Brändström, A. Prediction of Taft’s σ* parameter for alkyl groups and alkyl groups containing polar substituents. J. Chem. Soc., Perkin Trans. 2, 1999, (9), 1855-1857.
[http://dx.doi.org/10.1039/a904819g]
[17]
Hansch, C.; Leo, A.; Unger, S.H.; Kim, K.H.; Nikaitani, D.; Lien, E.J. Aromatic substituent constants for structure-activity correlations. J. Med. Chem., 1973, 16(11), 1207-1216.
[http://dx.doi.org/10.1021/jm00269a003] [PMID: 4747963]
[18]
Haszeldine, R.N.; Kidd, J.M. Perfluoroalkyl derivatives of sulfur. J. Chem. Soc., 1955, 2901-2910.
[http://dx.doi.org/10.1039/JR9550002901]
[19]
Sauer, D.T.; Shreeve, J.M. Chemistry of trifluoromethylsulfinyl fluoride. Trifluoromethylsulfinamides and trifluoromethylsulfinate esters. Inorg. Chem., 1971, 10(2), 358-362.
[http://dx.doi.org/10.1021/ic50096a028]
[20]
Roesky, H.W.; Holtschneider, G. The chemistry of trifluorosulfinic acid and its derivatives. J. Fluor. Chem., 1976, 7(1-3), 77-84.
[http://dx.doi.org/10.1016/S0022-1139(00)83984-6]
[21]
Yu, S.L.; Sauer, D.T.; Shreeve, J.M. Oxidations of partially fluorinated alkyl sulfides. Preparation of methyltrifluoromethyl sulfoxide and methyl(trifluoromethyl)sulfur tetrafluoride. Inorg. Chem., 1974, 13(2), 484-486.
[http://dx.doi.org/10.1021/ic50132a054]
[22]
Sauer, D.T.; Shreeve, J.M. Bis(perfluoroalkyl)sulfur difluorides and bis(perfluoroalkyl) sulfoxides. J. Fluor. Chem., 1971, 1(1), 1-11.
[http://dx.doi.org/10.1016/S0022-1139(00)82528-2]
[23]
a) Gautier, M.; Derois, J. Insect control method using 1-phenylpyrazoles or 2Heteroarylpyrazoles. US Patent WO9701278A1, 1977.;
b) Bertrand, G.; Romanenko, V. D.; Raynier, B.; Derrier, G. Environment friendly reagents and process for halogenoalkylsulfinylation of organic compounds. EP 1331222 A1, 2003.
[24]
Becker, A. Inventory of Industrial Fluoro-Biochemicals; Eyrolles: Paris, 1999.
[25]
Saeed, A.; Larik, F.A.; Channar, P.A. Recent synthetic approaches to fipronil, a super-effective and safe pesticide. Res. Chem. Intermed., 2016, 42(9), 6805-6813.
[http://dx.doi.org/10.1007/s11164-016-2527-6]
[26]
Il’chenko, A.Y. Product class 15: Tetraheterosubstituted methanes with a carbon-halogen bond. Sci. Synth., 2005, 18, 1135-1201.
[http://dx.doi.org/10.1055/sos-SD-018-01314]
[27]
Boiko, V.N. Aromatic and heterocyclic perfluoroalkyl sulfides. Methods of preparation. Beilstein J. Org. Chem., 2010, 6, 880-921.
[http://dx.doi.org/10.3762/bjoc.6.88] [PMID: 20978611]
[28]
Guyon, H.; Chachignon, H.; Cahard, D. CF 3 SO 2 X (X = Na, Cl) as reagents for trifluoromethylation, trifluoromethylsulfenyl-, -sulfinyl- and -sulfonylation. Part 1: Use of CF3SO2 Na. Beilstein J. Org. Chem., 2017, 13, 2764-2799.
[http://dx.doi.org/10.3762/bjoc.13.272] [PMID: 30018665]
[29]
Huang, Zh.; Shibata, N. Development of Shelf-stable Reagents for Electrophilic Trifluoromethylthiolation Reaction.In: New Horizons of Process Chemistry; Tomioka, K.; Shioiri, T.; Sajiki, H., Eds.; Springer, 2017, pp. 1-285.
[http://dx.doi.org/10.1007/978-981-10-3421-3_12]
[30]
Shen, J.; Xu, J.; He, L.; Liang, C.; Li, W. Application of Langlois’ reagent (NaSO2CF3) in C–H functionalisation. Chin. Chem. Lett., 2022, 33(3), 1227-1235.
[http://dx.doi.org/10.1016/j.cclet.2021.09.005]
[31]
Kaboudin, B.; Ghashghaee, M.; Bigdeli, A.; Farkhondeh, A.; Eskandari, M.; Esfandiari, H. Recent advances on the application of Langlois’ reagent in organic transformations. ChemistrySelect, 2021, 6(45), 12998-13014.
[http://dx.doi.org/10.1002/slct.202103867]
[32]
Reddy, R.J.; Kumari, A.H. Synthesis and applications of sodium sulfinates (RSO 2 Na): A powerful building block for the synthesis of organosulfur compounds. RSC Advances, 2021, 11(16), 9130-9221.
[http://dx.doi.org/10.1039/D0RA09759D] [PMID: 35423435]
[33]
Billard, T.; Greiner, A.; Langlois, B.R. A new equivalent of the CF 3 S(O) + cation. Synthesis of trifluoromethanesulfinates and trifluoromethanesulfinamides. Tetrahedron, 1999, 55(23), 7243-7250.
[http://dx.doi.org/10.1016/S0040-4020(99)00364-6]
[34]
Cao, H.P.; Chen, Q.Y. Practical and efficient synthesis of perfluoroalkyl iodides from perfluoroalkyl chlorides via modified sulfinatodehalogenation. J. Fluor. Chem., 2007, 128(10), 1187-1190.
[http://dx.doi.org/10.1016/j.jfluchem.2007.04.018]
[35]
Tordeux, M.; Langlois, B.; Wakselman, C. Reactions of bromotrifluoromethane and related halides. 8. Condensations with dithionite and hydroxymethanesulfinate salts. J. Org. Chem., 1989, 54(10), 2452-2453.
[http://dx.doi.org/10.1021/jo00271a041]
[36]
Saint-Jalmes, L.; Forat, G.; Mas, J.-M. Reagent and process for the synthesis of organic sulfoxylated and fluorinated derivatives. EP 735023, 1996.
[37]
Braverman, S.; Pechenick, T.; Zafrani, Y. Facile synthesis and rearrangement of propargylic trifluoromethanesulfinates. Tetrahedron Lett., 2001, 42(7), 1391-1393.
[http://dx.doi.org/10.1016/S0040-4039(00)02255-3]
[38]
Hendrickson, J.B.; Skipper, P.L. Synthetic manipulation of the triflone group. Tetrahedron, 1976, 32(14), 1627-1635.
[http://dx.doi.org/10.1016/0040-4020(76)85149-6]
[39]
Langlois, B.R.; Billard, T.; Mulatier, J.C.; Yezeguelian, C. A new preparation of trifluoromethanesulfinate salts. J. Fluor. Chem., 2007, 128(7), 851-856.
[http://dx.doi.org/10.1016/j.jfluchem.2007.04.012]
[40]
Hendrickson, J.B.; Bergeron, R.; Giga, A.; Sternbach, D. J. Am. Chem. Soc., 1973, 95(10), 3412-3413.
[http://dx.doi.org/10.1021/ja00791a072]
[41]
Sun, D.W.; Jiang, X.; Jiang, M.; Lin, Y.; Liu, J.T. Selective trifluoromethylthiolation and trifluoromethylsulfinylation of indoles with sodium trifluoromethanesulfinate promoted by phosphorus reagents. Eur. J. Org. Chem., 2017, 2017(24), 3505-3511.
[http://dx.doi.org/10.1002/ejoc.201700661]
[42]
Zhao, X.; Wei, A.; Yang, B.; Li, T.; Li, Q.; Qiu, D.; Lu, K. Transition-metal-free direct trifluoromethylthiolation and trifluoromethylsulfoxidation of electron-rich aromatics with CF3SO2Na in the presence of PCl3. J. Org. Chem., 2017, 82(17), 9175-9181.
[http://dx.doi.org/10.1021/acs.joc.7b01226] [PMID: 28809561]
[43]
Wakselman, C.; Tordeux, M.; Freslon, C.; Saint-Jalmes, L. Aryltrifluoromethylsulfoxides: Sulfinylation or aromatics by triflinate salts in acid medium. Synlett, 2001, 2001(4), 0550-0552.
[http://dx.doi.org/10.1055/s-2001-12316]
[44]
Klunder, J.M.; Sharpless, K.B. Convenient synthesis of sulfinate esters from sulfonyl chlorides. J. Org. Chem., 1987, 52(12), 2598-2602.
[http://dx.doi.org/10.1021/jo00388a051]
[45]
Chachignon, H.; Cahard, D. Interrupted reduction of CF 3 SO 2 Cl using tricyclohexylphosphine allows for electrophilic trifluoromethylsulfinylation. J. Fluor. Chem., 2017, 198, 82-88.
[http://dx.doi.org/10.1016/j.jfluchem.2016.11.020]
[46]
Romanenko, V.D.; Thoumazet, C.; Lavallo, V.; Tham, F.S.; Bertrand, G. Synthesis and reactivity of a stable crystalline diastereomerically pure trifluoromethanesulfinic acid derivative: (S)-(-)-1-trifluoromethylsulfinyl-(R)-4-phenyloxazolidin-2-one. Chem. Commun., 2003, 3(14), 1680-1681.
[http://dx.doi.org/10.1039/B303574C]
[47]
Burton, C.A.; Shreeve, J.M. Trifluoromethanesulfinate esters. Inorg. Chem., 1977, 16(5), 1039-1042.
[http://dx.doi.org/10.1021/ic50171a015]
[48]
Jiang, L.; Yan, Q.; Wang, R.; Ding, T.; Yi, W.; Zhang, W. Trifluoromethanesulfinyl chloride for electrophilic trifluoromethythiolation and bifunctional chlorotrifluoromethythiolation. Chemistry, 2018, 24(70), 18749-18756.
[http://dx.doi.org/10.1002/chem.201804027] [PMID: 30240046]
[49]
Yagupol’skii, L.M.; Panteleimonov, A.G. Trifluoromethyl(methyl)sulfoxide. Zh. Obshch. Khim., 1965, 35, 1123.
[50]
Haszeldine, R.N.; Rigby, R.B.; Tipping, A.E. Perfluoroalkyl derivatives of sulphur. Part XV. Preparation and certain reactions of methyl polyfluoroalkyl sulphoxides and sulphones and their conversion into polyfluoroalkanesul-phonic acids. J. Chem. Soc., Perkin Trans. 1, 1973, 676, 676.
[http://dx.doi.org/10.1039/p19730000676]
[51]
Knunyants, I.N.; Rozhkov, I.N.; Alexandrov, A.M.; Yagupolskii, L.M.J. Gen. Chem., 1967, 37, 1210.
[52]
Sokolenko, L.; Maletina, I.; Yagupolskii, L.; Yagupolskii, Y. A Convenient and efficient synthesis of trifluoromethyl vinyl sulfoxide and its reactivity in addition reactions. Synlett, 2010, 2010(14), 2075-2078.
[http://dx.doi.org/10.1055/s-0030-1258515]
[53]
Magnier, E.; Tordeux, M.; Goumont, R.; Magder, K.; Wakselman, C. Perfluoroalkylation of 2-mercaptoethanol as a key step for a new synthesis of perfluoroalkyl vinyl sulfides, sulfoxides and sulfones. J. Fluor. Chem., 2003, 124(1), 55-59.
[http://dx.doi.org/10.1016/S0022-1139(03)00170-2]
[54]
Wakselman, C.; Moïse, J.; Goumont, R.; Magnier, E. Synthesis of fluoroalkyl vinyl sulfoxides and their use in Diels-Alder reactions. Synthesis, 2004, 2004(14), 2297-2302.
[http://dx.doi.org/10.1055/s-2004-831201]
[55]
Sokolenko, L.; Orlova, R.; Filatov, A.; Yagupolskii, Y.; Magnier, E.; Pégot, B.; Diter, P. General, practical and selective oxidation protocol for CF3S into CF3S(O) Group. Molecules, 2019, 24(7), 1249.
[http://dx.doi.org/10.3390/molecules24071249] [PMID: 30935001]
[56]
Mulvey, D.M.; Jones, H. Novel electrophilic substitution of the imidazole nucleus. J. Heterocycl. Chem., 1975, 12(3), 597-597.
[http://dx.doi.org/10.1002/jhet.5570120334]
[57]
Yang, J.J.; Kirchmeier, R.L.; Shreeve, J.M. New electrophilic trifluoromethylating agents. J. Org. Chem., 1998, 63(8), 2656-2660.
[http://dx.doi.org/10.1021/jo972213l] [PMID: 11672133]
[58]
Umemoto, T.; Ishihara, S. Power-variable electrophilic trifluoromethylating agents. S-, Se-, and Te-(trifluoromethyl)dibenzothio-, -seleno-, and -tellurophenium salt system. J. Am. Chem. Soc., 1993, 115(6), 2156-2164.
[http://dx.doi.org/10.1021/ja00059a009]
[59]
Liu, X.G.; Li, Q.; Wang, H. (Pentamethylcyclopentadienyl)cobalt(III)-catalyzed direct trifluoromethylthiolation of arenes via C-H activation. Adv. Synth. Catal., 2017, 359(11), 1942-1946.
[http://dx.doi.org/10.1002/adsc.201700066]
[60]
Jardim, G.A.M.; Oliveira, W.X.C.; de Freitas, R.P.; Menna-Barreto, R.F.S.; Silva, T.L.; Goulart, M.O.F.; da Silva Júnior, E.N. Direct sequential C–H iodination/organoyl-thiolation for the benzenoid A-ring modification of quinonoid deactivated systems: a new protocol for potent trypanocidal quinones. Org. Biomol. Chem., 2018, 16(10), 1686-1691.
[http://dx.doi.org/10.1039/C8OB00196K] [PMID: 29450434]
[61]
Kirsch, P.; Lenges, M.; Kühne, D.; Wanczek, K.P. Synthesis and structural characterization of highly fluorinated sulfimides and sulfoximides as functional building blocks for materials science. Eur. J. Org. Chem., 2005, 2005(5), 797-802.
[http://dx.doi.org/10.1002/ejoc.200400702]
[62]
Tang, R.Y.; Zhong, P.; Lin, Q.L. A convenient conversion of pyrazolyl disulfide to sulfides by sodium dithionite and synthesis of sulfoxides. J. Fluor. Chem., 2006, 127(7), 948-953.
[http://dx.doi.org/10.1016/j.jfluchem.2006.04.002]
[63]
Tang, R.Y.; Zhong, P.; Lin, Q.L. Selective oxidation and chlorination of trifluoromethylsulfide using trichloroisocyanuric acid in ionic liquid. J. Fluor. Chem., 2007, 128(6), 636-640.
[http://dx.doi.org/10.1016/j.jfluchem.2007.02.018]
[64]
Kesavan, A.; Chaitanya, M.; Anbarasan, P. Palladium-catalyzed trifluoromethylthiolation of chelation-assisted C-H bonds. Eur. J. Org. Chem., 2018, 2018(25), 3276-3279.
[http://dx.doi.org/10.1002/ejoc.201800451]
[65]
Gan, S.; Yin, J.; Yao, Y.; Liu, Y.; Chang, D.; Zhu, D.; Shi, L. Metal- and additive-free oxygen-atom transfer reaction: An efficient and chemoselective oxidation of sulfides to sulfoxides with cyclic diacyl peroxides. Org. Biomol. Chem., 2017, 15(12), 2647-2654.
[http://dx.doi.org/10.1039/C7OB00021A] [PMID: 28267186]
[66]
Baciocchi, E.; Gerini, M.F.; Lapi, A. Synthesis of sulfoxides by the hydrogen peroxide induced oxidation of sulfides catalyzed by iron tetrakis(pentafluorophenyl)porphyrin: Scope and chemoselectivity. J. Org. Chem., 2004, 69(10), 3586-3589.
[http://dx.doi.org/10.1021/jo049879h] [PMID: 15132579]
[67]
Marom, H.; Antonov, S.; Popowski, Y.; Gozin, M. Selective sulfoxidation of thioethers and thioaryl boranes with nitrate, promoted by a molybdenum-copper catalytic system. J. Org. Chem., 2011, 76(13), 5240-5246.
[http://dx.doi.org/10.1021/jo2001808] [PMID: 21612290]
[68]
Hunsen, M. Greener oxidation of alcohols, glycosides and sulfides. ACS Symposium Series, 2014, Vol. 1186, 117-128.
[http://dx.doi.org/10.1021/bk-2014-1186.ch006]
[69]
Bulman Page, P.C.; Wilkes, R.D.; Reynolds, D. Alkyl chalcogenides: Sulfur-based functional groups. Compr. Org. Funct. Gr. Transform. II, 1995, 2, 113-275.
[http://dx.doi.org/10.1016/B0-08-044705-8/00156-4]
[70]
Movchun, V.N.; Kolomeitsev, A.A.; Yagupolskii, Y.L. Nucleophilic trifluoromethylation of organic substrates using (trifluoromethyl)-trimethylsilane in the presence of a fluoride anion II. A convenient route to aryltrifluoromethyl-sulfides, -sulfoxides and -sulfones. J. Fluor. Chem., 1995, 70(2), 255-257.
[http://dx.doi.org/10.1016/0022-1139(94)03124-I]
[71]
Singh, R.P.; Cao, G.; Kirchmeier, R.L.; Shreeve, J.M. Cesium fluoride catalyzed trifluoromethylation of esters, aldehydes, and ketones with (trifluoromethyl)trimethylsilane. J. Org. Chem., 1999, 64(8), 2873-2876.
[http://dx.doi.org/10.1021/jo982494c] [PMID: 11674359]
[72]
Maeno, M.; Shibata, N.; Cahard, D. Trifluoromethyl sulfoxides from allylic alcohols and electrophilic SCF3 donor by [2,3]-sigmatropic rearrangement. Org. Lett., 2015, 17(8), 1990-1993.
[http://dx.doi.org/10.1021/acs.orglett.5b00750] [PMID: 25831154]
[73]
Elassar, A.Z.A.; El-Khair, A.A. Recent developments in the chemistry of enaminones. Tetrahedron, 2003, 59(43), 8463-8480.
[http://dx.doi.org/10.1016/S0040-4020(03)01201-8]
[74]
Sokolenko, L.V.; Yagupolskii, Y.L.; Kumanetska, L.S.; Marrot, J.; Magnier, E.; Lipetskij, V.O.; Kalinin, I.V. CF3S(O)n-containing enaminones as precursors for the synthesis of pyrimidine-4(3 H)-ones. Tetrahedron Lett., 2017, 58(13), 1308-1311.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.046]
[75]
Sokolenko, L.V.; Yagupolskii, Y.L.; Vlasenko, Y.G.; Babichenko, L.N.; Lipetskij, V.O.; Anselmi, E.; Magnier, E. Arylation of perfluoroalkyl vinyl sulfoxides via the Heck reaction. Tetrahedron Lett., 2015, 56(10), 1259-1262.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.136]
[76]
Chen, X.; Tordeux, M.; Desmurs, J.R.; Wakselman, C. Thia-Fries rearrangement of aryl triflinates to trifluoromethanesulfinylphenols. J. Fluor. Chem., 2003, 123(1), 51-56.
[http://dx.doi.org/10.1016/S0022-1139(03)00106-4]
[77]
Kramer, W.; Schirmer, U.; Jeschke, P.; Witschel, M. Eds.; Modern Crop Protection Compounds, 2nd ed.; Wiley-VCH: Weinheim, 2012.
[78]
Langlois, D.R.; Dillard, T.; Large, S.; Roques, N. Fluorinated Bio-Active Compounds in the Agricultural and Medical Fields; Belgium: Brussels, 1999.
[79]
Hainzl, D.; Cole, L.M.; Casida, J.E. Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct. Chem. Res. Toxicol., 1998, 11(12), 1529-1535.
[http://dx.doi.org/10.1021/tx980157t] [PMID: 9860498]
[80]
Clavel, J-L.; Langlois, B.; Nantermet, R.; Tordeux, M.; Wakselman, C. Reactions of bromotrifluoromethane and related halides. J. Chem. Soc. Perkin, 1992, 1, 3371-3375.
[http://dx.doi.org/10.1039/p19920003371]
[81]
Hainzl, D.; Casida, J.E. Fipronil insecticide: Novel photochemical desulfinylation with retention of neurotoxicity. Proc. Natl. Acad. Sci. USA, 1996, 93(23), 12764-12767.
[http://dx.doi.org/10.1073/pnas.93.23.12764] [PMID: 8917493]
[82]
Beeler, A.B.; Schlenk, D.K.; Rimoldi, J.M. Synthesis of fipronil sulfide, an active metabolite, from the parent insecticide fipronil. Tetrahedron Lett., 2001, 42(32), 5371-5372.
[http://dx.doi.org/10.1016/S0040-4039(01)01043-7]
[83]
Zhang, X.; Lv, T.; Li, S.; Chen, Y. Zhong, Synthesis and insecticidal activity of 5-substituted-sulfonylaminopyrazole derivatives. J. Chem. Res., 2010, 34(2), 92-94.
[http://dx.doi.org/10.3184/030823410X12656400473100]
[84]
Liu, C.; Qian, X.; Wang, J.; Li, Z. Anion recognition by a novel Fipronil-based receptor: Efficient deprotonation or stable intermolecular hydrogen bonding. Tetrahedron Lett., 2008, 49(6), 1087-1090.
[http://dx.doi.org/10.1016/j.tetlet.2007.10.155]
[85]
Jiang, D.; Zheng, X.; Shao, G.; Ling, Z.; Xu, H. Discovery of a novel series of phenyl pyrazole inner salts based on fipronil as potential dual-target insecticides. J. Agric. Food Chem., 2014, 62(16), 3577-3583.
[http://dx.doi.org/10.1021/jf405512e] [PMID: 24689457]
[86]
Yang, W.; Wu, H.X.; Xu, H.H.; Hu, A.L.; Lu, M.L. Synthesis of glucose-fipronil conjugate and its phloem mobility. J. Agric. Food Chem., 2011, 59(23), 12534-12542.
[http://dx.doi.org/10.1021/jf2031154] [PMID: 22029402]
[87]
Ma, Y.; Yang, W.; Li, D.; Xu, H. Synthesis and bioactivity of fipronil derivatives with phosphate esters and carbamates. Chin. J. Pestcide Chem., 2011, 13(5), 531-534.
[88]
Chen, L.; Wu, Z.; Du, Y.; Huang, Y.; Jin, S. Solvothermal synthesis of novel phenylpyrazole Schiff base fluorescent insecticides fused extended conjugate units for enhancing bioactivities, photophysical and electrochemical properties. J. Mol. Struct., 2019, 1196, 555-566.
[http://dx.doi.org/10.1016/j.molstruc.2019.06.093]
[89]
Aloisi, A.; Franchet, A.; Ferrandon, D.; Bianco, A.; Ménard-Moyon, C. Fluorescent-fipronil: Design and synthesis of a stable conjugate. Bioorg. Med. Chem. Lett., 2018, 28(15), 2631-2635.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.036] [PMID: 29945796]
[90]
Sheng, Q.; Liu, X.; Xie, Y.; Lin, F.; Zhang, Z.; Zhao, C.; Xu, H. Synthesis of novel amino acid–fipronil conjugates and study on their phloem loading mechanism. Molecules, 2018, 23(4), 778.
[http://dx.doi.org/10.3390/molecules23040778] [PMID: 29597301]
[91]
Langlois, B.R.; Laurent, E.; Roidot, N. Trifluoromethylation of aromatic compounds with sodium trifluoromethanesulfinate under oxidative conditions. Tetrahedron Lett., 1991, 32(51), 7525-7528.
[http://dx.doi.org/10.1016/0040-4039(91)80524-A]
[92]
Langlois, B.R. Once upon a time was the Langlois ’ reagent: A “ sleeping beauty.Modern Synthesis Processes and Reactivity of Fluorinated Compounds: Progress in Fluorine Science; Elsevier: Amsterdam, 2017, pp. 125-140.
[http://dx.doi.org/10.1016/B978-0-12-803740-9.00005-6]
[93]
Clavel, J.L.; Langlois, B.; Laurent, E.; Roidot, N. Trifluoromethylation of organic disulfides with sodium trifluoromethanesulfinate under oxidative conditions: Synthesis of trifluoromethyl thioethers. Phosphorus Sulfur Silicon Relat. Elem., 1991, 59(1-4), 169-172.
[http://dx.doi.org/10.1080/10426509108045716]
[94]
Lu, Y.; Li, Y.; Zhang, R.; Jin, K.; Duan, C. Highly efficient Cu(I)-catalyzed trifluoromethylation of aryl(heteroaryl) enol acetates with CF3 radicals derived from CF3SO2Na and TBHP at room temperature. J. Fluor. Chem., 2014, 161(I), 128-133.
[http://dx.doi.org/10.1016/j.jfluchem.2014.01.020]
[95]
Cui, J.; Tong, Y.; Li, Y. Synthesis of trifluoromethylated γ-lactams through radical cascades of N-cyano alkenes with CF3SO2Na. J. Org. Chem., 2022, 87(23), 16090-16098.
[http://dx.doi.org/10.1021/acs.joc.2c01775] [PMID: 36370090]
[96]
Louvel, D.; Souibgui, A.; Taponard, A.; Rouillon, J. ben Mosbah, M.; Moussaoui, Y.; Pilet, G.; Khrouz, L.; Monnereau, C.; Vantourout, J.C.; Tlili, A. Tailoring the reactivity of the Langlois reagent and styrenes with cyanoarenes organophotocatalysts under visible-light. Adv. Synth. Catal., 2022, 364(1), 139-148.
[http://dx.doi.org/10.1002/adsc.202100828]
[97]
Dong, L.; Wang, X.; Nie, Y.; Yu, S.; Li, H.; Zhao, Q.; Fan, Z.; Wang, Y.; Tan, X.; Yu, Z. Regioselective perfluoroalkylation of 4-quinolones using sodium perfluoroalkyl sulfinates. Eur. J. Org. Chem., 2022, 2022(37)e202200842
[http://dx.doi.org/10.1002/ejoc.202200842]
[98]
Mehta, J.; Aryal, P.; Prakash Reddy, V. Cu-catalyzed C(Sp2-H)-trifluoromethylation of aldehyde hydrazones with Langlois reagent. Eur. J. Org. Chem., 2021, 2021(13), 2018-2024.
[http://dx.doi.org/10.1002/ejoc.202100205]
[99]
Vil’, V.A.; Merkulova, V.M.; Ilovaisky, A.I.; Paveliev, S.A.; Nikishin, G.I.; Terent’ev, A.O. Electrochemical synthesis of fluorinated ketones from enol acetates and sodium perfluoroalkyl sulfinates. Org. Lett., 2021, 23(13), 5107-5112.
[http://dx.doi.org/10.1021/acs.orglett.1c01643] [PMID: 34124913]
[100]
Sandeep, M.; Shantharjun, B.; Pradeep Kumar, G.; Rajender Reddy, K. Oxidative copper-catalyzed regioselective trifluoromethylation of fused imidazo[1,5-a]-N-heteroarenes using Langlois reagent. Eur. J. Org. Chem., 2021, 2021(2), 246-252.
[http://dx.doi.org/10.1002/ejoc.202001266]
[101]
Soni, S.; Pali, P.; Ansari, M.A.; Singh, M.S. Visible-light photocatalysis of Eosin Y: HAT and complementing MS-CPET strategy to trifluoromethylation of β-ketodithioesters with Langlois’ reagent. J. Org. Chem., 2020, 85(15), 10098-10109.
[http://dx.doi.org/10.1021/acs.joc.0c01355] [PMID: 32648747]
[102]
Meng, N.; Wang, L.; Liu, Q.; Li, Q.; Lv, Y.; Yue, H.; Wang, X.; Wei, W. Metal-free trifluoroalkylation of quinoxalin-2(1H)-ones with unactivated alkenes and Langlois’ reagent. J. Org. Chem., 2020, 85(11), 6888-6896.
[http://dx.doi.org/10.1021/acs.joc.9b03505] [PMID: 32392413]
[103]
Li, Z.; Jiao, L.; Sun, Y.; He, Z.; Wei, Z.; Liao, W.W. CF3SO2Na as a bifunctional reagent: Electrochemical trifluoromethylation of alkenes accompanied by SO2 insertion to access trifluoromethylated cyclic N-sulfonylimines. Angew. Chem. Int. Ed., 2020, 59(18), 7266-7270.
[http://dx.doi.org/10.1002/anie.202001262] [PMID: 32077562]
[104]
Zhang, C. Application of Langlois’ reagent in trifluoromethylation reactions. Adv. Synth. Catal., 2014, 356(14-15), 2895-2906.
[http://dx.doi.org/10.1002/adsc.201400370]
[105]
Lefebvre, Q. toward sustainable trifluoromethylation reactions: Sodium triflinate under the spotlight. Synlett, 2016, 28(1), 19-23.
[http://dx.doi.org/10.1055/s-0036-1588643]
[106]
Ji, Y.; Brueckl, T.; Baxter, R.D.; Fujiwara, Y.; Seiple, I.B.; Su, S.; Blackmond, D.G.; Baran, P.S. Innate C-H trifluoromethylation of heterocycles. Proc. Natl. Acad. Sci. USA, 2011, 108(35), 14411-14415.
[http://dx.doi.org/10.1073/pnas.1109059108] [PMID: 21844378]
[107]
Fujiwara, Y.; Dixon, J.A.; O’Hara, F.; Funder, E.D.; Dixon, D.D.; Rodriguez, R.A.; Baxter, R.D.; Herlé, B.; Sach, N.; Collins, M.R.; Ishihara, Y.; Baran, P.S. Practical and innate carbon–hydrogen functionalization of heterocycles. Nature, 2012, 492(7427), 95-99.
[http://dx.doi.org/10.1038/nature11680] [PMID: 23201691]
[108]
Deb, A.; Manna, S.; Modak, A.; Patra, T.; Maity, S.; Maiti, D. Oxidative trifluoromethylation of unactivated olefins: an efficient and practical synthesis of α-trifluoromethyl-substituted ketones. Angew. Chem. Int. Ed., 2013, 52(37), 9747-9750.
[http://dx.doi.org/10.1002/anie.201303576] [PMID: 23934929]
[109]
Maji, A.; Hazra, A.; Maiti, D. Direct synthesis of α-trifluoromethyl ketone from (hetero)arylacetylene: design, intermediate trapping, and mechanistic investigations. Org. Lett., 2014, 16(17), 4524-4527.
[http://dx.doi.org/10.1021/ol502071g] [PMID: 25127202]
[110]
Lu, Q.; Liu, C.; Huang, Z.; Ma, Y.; Zhang, J.; Lei, A. Relay cooperation of K 2 S 2 O 8 and O 2 in oxytrifluoromethylation of alkenes using CF3SO2 Na. Chem. Commun., 2014, 50(91), 14101-14104.
[http://dx.doi.org/10.1039/C4CC06328G] [PMID: 25278113]
[111]
Matcha, K.; Antonchick, A.P. Cascade multicomponent synthesis of indoles, pyrazoles, and pyridazinones by functionalization of alkenes. Angew. Chem. Int. Ed., 2014, 53(44), 11960-11964.
[http://dx.doi.org/10.1002/anie.201406464] [PMID: 25287788]
[112]
Zhang, Y.; Zhang, H-Y.; Huo, W.; Ge, C.; Zhao, J. Copper-promoted intramolecular aminotrifluoromethylation of alkenes with langlois reagent as the trifluoromethyl source. Synlett, 2017, 28(8), 962-965.
[http://dx.doi.org/10.1055/s-0036-1588400]
[113]
Tommasino, J.B.; Brondex, A.; Médebielle, M.; Thomalla, M.; Langlois, B.R.; Billard, T. Trifluoromethylation reactions with potassium trifluoromethanesulfinate under electrochemical oxidation. Synlett, 2002, (10), 1697-1699.
[http://dx.doi.org/10.1055/s-2002-34210]
[114]
Lefebvre, Q.; Hoffmann, N.; Rueping, M. Photoorganocatalysed and visible light photoredox catalysed trifluoromethylation of olefins and (hetero)aromatics in batch and continuous flow. Chem. Commun., 2016, 52(12), 2493-2496.
[http://dx.doi.org/10.1039/C5CC09881E] [PMID: 26736069]
[115]
Zhu, L.; Wang, L.S.; Li, B.; Fu, B.; Zhang, C.P.; Li, W. Operationally simple hydrotrifluoromethylation of alkenes with sodium triflinate enabled by Ir photoredox catalysis. Chem. Commun., 2016, 52(38), 6371-6374.
[http://dx.doi.org/10.1039/C6CC01944G] [PMID: 26996326]
[116]
Cui, B.; Sun, H.; Xu, Y.; Li, L.; Duan, L.; Li, Y.M. Mn(OAc) 3 -Mediated Hydrotrifluoromethylation of unactivated alkenes using CF3SO2Na as the trifluoromethyl source. J. Org. Chem., 2018, 83(11), 6015-6024.
[http://dx.doi.org/10.1021/acs.joc.8b00633] [PMID: 29733609]
[117]
Wilger, D.J.; Gesmundo, N.J.; Nicewicz, D.A. Catalytic hydrotrifluoromethylation of styrenes and unactivated aliphatic alkenes via an organic photoredox system. Chem. Sci., 2013, 4(8), 3160.
[http://dx.doi.org/10.1039/c3sc51209f]
[118]
Yu, X.L.; Chen, J.R.; Chen, D.Z.; Xiao, W.J. Visible-light-induced photocatalytic azotrifluoromethylation of alkenes with aryldiazonium salts and sodium triflinate. Chem. Commun., 2016, 52(53), 8275-8278.
[http://dx.doi.org/10.1039/C6CC03335K] [PMID: 27292589]
[119]
Xiong, Y.; Sun, Y.; Zhang, G. Copper-catalyzed synthesis of β-azido sulfonates or fluorinated alkanes: Divergent reactivity of sodium sulfinates. Org. Lett., 2018, 20(19), 6250-6254.
[http://dx.doi.org/10.1021/acs.orglett.8b02735] [PMID: 30246540]
[120]
Zhang, Y.; Han, X.; Zhao, J.; Qian, Z.; Li, T.; Tang, Y.; Zhang, H.Y. Synthesis of β-trifluoromethylated alkyl azides via a manganese-catalyzed trifluoromethylazidation of alkenes with CF3SO2Na and TMSN3. Adv. Synth. Catal., 2018, 360(14), 2659-2667.
[http://dx.doi.org/10.1002/adsc.201800488]
[121]
Hang, Z.; Li, Z.; Liu, Z.Q. Iodotrifluoromethylation of alkenes and alkynes with sodium trifluoromethanesulfinate and iodine pentoxide. Org. Lett., 2014, 16(14), 3648-3651.
[http://dx.doi.org/10.1021/ol501380e] [PMID: 24983328]
[122]
Liu, Z.Q.; Liu, D. Free-radical bromotrifluoromethylation of olefin via single-electron oxidation of NaSO2CF3 by NaBrO3. J. Org. Chem., 2017, 82(3), 1649-1656.
[http://dx.doi.org/10.1021/acs.joc.6b02812] [PMID: 28054777]
[123]
Patra, T.; Deb, A.; Manna, S.; Sharma, U.; Maiti, D. Iron-mediated decarboxylative trifluoromethylation of αβ-unsaturated carboxylic acids with trifluoromethanesulfinate. Eur. J. Org. Chem., 2013, 2013(24), 5247-5250.
[http://dx.doi.org/10.1002/ejoc.201300473]
[124]
Li, Z.; Cui, Z.; Liu, Z.Q. Copper- and iron-catalyzed decarboxylative tri- and difluoromethylation of αβ-unsaturated carboxylic acids with CF3SO2Na and (CF2HSO2)2Zn via a radical process. Org. Lett., 2013, 15(2), 406-409.
[http://dx.doi.org/10.1021/ol3034059] [PMID: 23305217]
[125]
Li, Y.; Duan, C.; Yin, J.; Zhang, R.; Jin, K. Copper/silver-mediated decarboxylative trifluoromethylation of αβ-unsaturated carboxylic acids with CF3SO2Na. Synthesis, 2013, 46(5), 607-612.
[http://dx.doi.org/10.1055/s-0033-1338578]
[126]
Shang, X.J.; Li, Z.; Liu, Z.Q. An I2O5-promoted decarboxylative trifluoromethylation of cinnamic acids. Tetrahedron Lett., 2015, 56(1), 233-235.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.076]
[127]
Huang, P.; Li, Y.; Fu, X.; Zhang, R.; Jin, K.; Wang, W.; Duan, C. Silver(I)-catalyzed denitrative trifluoromethylation of β-nitrostyrenes with CF3SO2Na. Tetrahedron Lett., 2016, 57(42), 4705-4708.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.016]
[128]
Huang, H.M.; Bellotti, P.; Ma, J.; Dalton, T.; Glorius, F. Bifunctional reagents in organic synthesis. Nat. Rev. Chem., 2021, 5(5), 301-321.
[http://dx.doi.org/10.1038/s41570-021-00266-5]
[129]
Prakash, G.K.S.; Hu, J.; Olah, G.A. Preparation of tri- and difluoromethylsilanes via an unusual magnesium metal-mediated reductive tri- and difluoromethylation of chlorosilanes using tri- and difluoromethyl sulfides, sulfoxides, and sulfones. J. Org. Chem., 2003, 68(11), 4457-4463.
[http://dx.doi.org/10.1021/jo030110z] [PMID: 12762751]
[130]
Prakash, G.K.S.; Hu, J.; Olah, G.A. Alkoxide- and hydroxide-induced nucleophilic trifluoromethylation using trifluoromethyl sulfone or sulfoxide. Org. Lett., 2003, 5(18), 3253-3256.
[http://dx.doi.org/10.1021/ol035045u] [PMID: 12943400]
[131]
Li, X.; Zhao, J.; Zhang, L.; Hu, M.; Wang, L.; Hu, J. Copper-mediated trifluoromethylation using phenyl trifluoromethyl sulfoxide. Org. Lett., 2015, 17(2), 298-301.
[http://dx.doi.org/10.1021/ol5034018] [PMID: 25541645]
[132]
Wang, D.; Carlton, C.G.; Tayu, M.; McDouall, J.J.W.; Perry, G.J.P.; Procter, D.J. Trifluoromethyl sulfoxides: reagents for metal-free C-H trifluoromethylthiolation. Angew. Chem. Int. Ed., 2020, 59(37), 15918-15922.
[http://dx.doi.org/10.1002/anie.202005531] [PMID: 32463942]
[133]
Wu, W.L.; Asberom, T.; Bara, T.; Bennett, C.; Burnett, D.A.; Clader, J.; Domalski, M.; Greenlee, W.J.; Josien, H.; McBriar, M.; Rajagopalan, M.; Vicarel, M.; Xu, R.; Hyde, L.A.; Del Vecchio, R.A.; Cohen-Williams, M.E.; Song, L.; Lee, J.; Terracina, G.; Zhang, Q.; Nomeir, A.; Parker, E.M.; Zhang, L. Structure activity relationship studies of tricyclic bispyran sulfone γ-secretase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(3), 844-849.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.047] [PMID: 23265892]
[134]
Meshcheryakov, V.I.; Shainyan, B.A. Trifluoromethyl sulfones and perfluoroalkanesulfonamides of the azole series. Russ. J. Org. Chem., 2004, 40(3), 390-396.
[http://dx.doi.org/10.1023/B:RUJO.0000034977.74026.b3]
[135]
Hasegawa, A.; Ishikawa, T.; Ishihara, K.; Yamamoto, H. Facile synthesis of aryl- and alkyl-bis(trifluoromethylsulfonyl)methanes. Bull. Chem. Soc. Jpn., 2005, 78(8), 1401-1410.
[http://dx.doi.org/10.1246/bcsj.78.1401]
[136]
Goumont, R.; Faucher, N.; Moutiers, G.; Tordeux, M.; Wakselman, C. A novel synthesis of deactivated benzylic triflones. Synthesis, 1997, 1997(6), 691-695.
[http://dx.doi.org/10.1055/s-1997-1390]
[137]
Hendrickson, J.B.; Giga, A.; Wareing, J. Triflones (CF3SO2C). Survey of reactivity and synthetic utility. J. Am. Chem. Soc., 1974, 96(7), 2275-2276.
[http://dx.doi.org/10.1021/ja00814a061] [PMID: 4833648]
[138]
Magar, S.S.; Fuchs, P.L. Bis-alkylation of dimetallated phenylsulfonylmethyl triflone. A n+1 annulation strategy for synthesis of cyclic vinyl sulfones. Tetrahedron Lett., 1992, 33(6), 745-748.
[http://dx.doi.org/10.1016/S0040-4039(00)77705-7]
[139]
Hellmann, G.; Hack, A.; Thiemermann, E.; Luche, O.; Raabe, G.; Gais, H.J. Chiral fluorinated α-sulfonyl carbanions: enantioselective synthesis and electrophilic capture, racemization dynamics, and structure. Chemistry, 2013, 19(12), 3869-3897.
[http://dx.doi.org/10.1002/chem.201204014] [PMID: 23401229]
[140]
Hendrickson, J.B.; Judelson, D.A.; Chancellor, T. A Simple preparation of anhydrous trifluoromethanesulfinate (triflinate) salts and synthesis of trifluoromethyl sulfones (Triflones). Synthesis, 1984, 1984(4), 320-322.
[http://dx.doi.org/10.1055/s-1984-30826]
[141]
Hendrickson, J.B.; Sternbach, D.D.; Bair, K.W. Trifyl activation in organic synthesis. Acc. Chem. Res., 1977, 10(8), 306-312.
[http://dx.doi.org/10.1021/ar50116a006]
[142]
Ishihara, K.; Hasegawa, A.; Yamamoto, H. Polystyrene-bound tetrafluorophenyl bis(triflyl)methane as an organic-solvent-swellable and strong Brønsted acid catalyst. Angew. Chem. Int. Ed. Engl., 2001, 40(21), 4077-4079.
[http://dx.doi.org/10.1002/1521-3773(20011105)40:21<4077:AID-ANIE4077>3.0.CO;2-1]
[143]
Hasegawa, A.; Naganawa, Y.; Fushimi, M.; Ishihara, K.; Yamamoto, H. Design of Brønsted acid-assisted chiral Brønsted acid catalyst bearing a bis(triflyl)methyl group for a Mannich-type reaction. Org. Lett., 2006, 8(15), 3175-3178.
[http://dx.doi.org/10.1021/ol060939a] [PMID: 16836359]
[144]
Asghar, B.H. Kinetic studies of reactions of 4-nitrobenzofuroxan with carbanions derived from benzyltriflones in methanol. Int. J. Chem. Kinet., 2012, 44(8), 546-554.
[http://dx.doi.org/10.1002/kin.20621]
[145]
Zhang, M.; Badal, M.M.R.; Koppel, I.A.; Mishima, M. Gas-phase acidities of α- and αα-SO2CF3-substituted toluenes. varying resonance demand in the electron-rich system. Bull. Chem. Soc. Jpn., 2013, 86(7), 813-820.
[http://dx.doi.org/10.1246/bcsj.20130052]
[146]
Coe, J.W.; Bianco, K.E.; Boscoe, B.P.; Brooks, P.R.; Cox, E.D.; Vetelino, M.G. Unexpected migration and oxidative cyclization of substituted 2-acetophenone triflates under basic conditions: synthetic and mechanistic insights. J. Org. Chem., 2003, 68(26), 9964-9970.
[http://dx.doi.org/10.1021/jo0352023] [PMID: 14682689]
[147]
Jolly, P.I.; Fleary-Roberts, N.; O’Sullivan, S.; Doni, E.; Zhou, S.; Murphy, J.A. Reactions of triflate esters and triflamides with an organic neutral super-electron-donor. Org. Biomol. Chem., 2012, 10(30), 5807-5810.
[http://dx.doi.org/10.1039/c2ob25116g] [PMID: 22395414]
[148]
Eugene, F.; Langlois, B.; Laurent, E. Improved synthesis of trifluoromethyl sulfones used as intermediates for the preparation of di- or tri-substituted olefins. J. Fluor. Chem., 1994, 66(3), 301-309.
[http://dx.doi.org/10.1016/0022-1139(93)02909-X]
[149]
Barnes, K.D.; Ward, R. Synthesis of 2-aryl-3-trifluoromethylsulfonylpyrroles. J. Heterocycl. Chem., 1995, 32(3), 871-874.
[http://dx.doi.org/10.1002/jhet.5570320333]
[150]
Kong, H.I.; Crichton, J.E.; Manthorpe, J.M. Stereoselective synthesis of ambiphilic alkenes via regioselective methylation of α-trifluoromethanesulfonyl carbonyl compounds with trimethylsilyldiazomethane. Tetrahedron Lett., 2011, 52(29), 3714-3717.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.015]
[151]
Kong, H.I.; Gill, M.A.; Hrdina, A.H.; Crichton, J.E.; Manthorpe, J.M. Reactivity of α-trifluoromethanesulfonyl esters, amides and ketones: Decarboxylative allylation, methylation, and enol formation. J. Fluor. Chem., 2013, 153, 151-161.
[http://dx.doi.org/10.1016/j.jfluchem.2013.03.020]
[152]
Yamamoto, H.; Ishihara, K.; Hasegawa, A. Single-pass reaction column system with super brønsted acid-loaded resin. Synlett, 2002, (8), 1296-1298.
[http://dx.doi.org/10.1055/s-2002-32964]
[153]
Hasegawa, A.; Ishihara, K.; Yamamoto, H. Trimethylsilyl pentafluorophenylbis(trifluoromethanesulfonyl)methide as a super Lewis acid catalyst for the condensation of trimethylhydroquinone with isophytol. Angew. Chem. Int. Ed., 2003, 42(46), 5731-5733.
[http://dx.doi.org/10.1002/anie.200352382] [PMID: 14661208]
[154]
Kokubo, Y.; Hasegawa, A.; Kuwata, S.; Ishihara, K.; Yamamoto, H.; Ikariya, T. Synthesis of (all-rac)-α-tocopherol in supercritical carbon dioxide: Tuning of the product selectivity in batch and continuous-flow reactors. Adv. Synth. Catal., 2005, 347(2-3), 220-224.
[http://dx.doi.org/10.1002/adsc.200404312]
[155]
Cullen, S.C.; Shekhar, S.; Nere, N.K. Cu-catalyzed couplings of aryl iodonium salts with sodium trifluoromethanesulfinate. J. Org. Chem., 2013, 78(23), 12194-12201.
[http://dx.doi.org/10.1021/jo401868x] [PMID: 24180634]
[156]
Xing, B.; Ni, C.; Hu, J. Copper-mediated di- and monofluoromethanesulfonylation of arenediazonium tetrafluoroborates: Probing the fluorine effect. Chin. J. Chem., 2018, 36(3), 206-212.
[http://dx.doi.org/10.1002/cjoc.201700748]
[157]
Rong, G.; Mao, J.; Yan, H.; Zheng, Y.; Zhang, G. Phosphoric acid-mediated synthesis of vinyl sulfones through decarboxylative coupling reactions of sodium sulfinates with phenylpropiolic acids. J. Org. Chem., 2015, 80(15), 7652-7657.
[http://dx.doi.org/10.1021/acs.joc.5b01212] [PMID: 26207418]
[158]
Aithagani, S.K.; Yempalla, K.R.; Munagala, G.; Vishwakarma, R.A.; Singh, P.P. Metal-free, high yielding synthesis of unsymmetrical biaryl, bi(heteroaryl), aryl vinyl, aryl alkyl sulfones via coupling of aryne with sulfinic acid salts. RSC Advances, 2014, 4(91), 50208-50211.
[http://dx.doi.org/10.1039/C4RA07370C]
[159]
Avdeenko, A.P.; Konovalova, S.A.; Mikhailichenko, O.N.; Shelyazhenko, S.V.; Pirozhenko, V.V.; Yagupol’skii, L.M. Reactions of N-aryl(methyl, trifluoromethyl)sulfonyl-1,4-benzoquinone monoimines with sodium sulfinates. Russ. J. Org. Chem., 2012, 48(2), 221-233.
[http://dx.doi.org/10.1134/S107042801202011X]
[160]
Ochiai, M.; Tada, N.; Nishi, Y.; Murai, K. Tandem Michael addition–carbene insertion reaction of 1-alkynyl(aryl)(tetrafluoroborato)-λ 3 -bromanes: 1-(phenylsulfonyl)- and 1-(trifluoromethylsulfonyl)cyclopentene annulation. Chem. Commun., 2004, (24), 2894-2895.
[http://dx.doi.org/10.1039/B410830B] [PMID: 15599460]
[161]
Yagupolskii, L.M.; Kondratenko, N.V.; Timofeeva, G.N. J. Org. Chem. USSR, 1984, 20, 103-105.
[162]
Teruo, U.; Sumi, I. Power-variable trifluoromethylating agents, (trifluoromethyl)dibenzothio- and -selenophenium salt system. Tetrahedron Lett., 1990, 31(25), 3579-3582.
[http://dx.doi.org/10.1016/S0040-4039(00)94447-2]
[163]
Umemoto, T.; Ishihara, S. Effective methods for preparing S-(trifluoromethyl)dibenzothiophenium salts. J. Fluor. Chem., 1998, 92(2), 181-187.
[http://dx.doi.org/10.1016/S0022-1139(98)00276-0]
[164]
Magnier, E.; Blazejewski, J.C.; Tordeux, M.; Wakselman, C. Straightforward one-pot synthesis of trifluoromethyl sulfonium salts. Angew. Chem. Int. Ed., 2006, 45(8), 1279-1282.
[http://dx.doi.org/10.1002/anie.200503776] [PMID: 16416481]
[165]
Macé, Y.; Raymondeau, B.; Pradet, C.; Blazejewski, J.C.; Magnier, E. Benchmark and solvent-free preparation of sulfonium salt based electrophilic trifluoromethylating reagents. Eur. J. Org. Chem., 2009, 2009(9), 1390-1397.
[http://dx.doi.org/10.1002/ejoc.200801222]
[166]
Xu, X.; Qing, F. ndirect Trifluoromethylthiolation Methods. In: Emerging Fluorinated Motifs: Synthesis, Properties, and Applications; Ma, J.-A..; Cahard, D., Eds.; Wiley & Sons: New Jersey, 2020, 2, pp. 291-308.
[http://dx.doi.org/10.1002/9783527824342.ch11]
[167]
Umemoto, T. Development of Electrophilic Trifluoromethylating Reagents.In: Modern Synthesis Processes and Reactivity of Fluorinated Compounds: Progress in Fluorine Science; Elsevier: Amsterdam, 2017, pp. 265-287.
[http://dx.doi.org/10.1016/B978-0-12-803740-9.00010-X]
[168]
Zhang, C. Recent advances in trifluoromethylation of organic compounds using Umemoto’s reagents. Org. Biomol. Chem., 2014, 12(34), 6580-6589.
[http://dx.doi.org/10.1039/C4OB00671B] [PMID: 25011917]
[169]
Barata-Vallejo, S.; Lantaño, B.; Postigo, A. Recent advances in trifluoromethylation reactions with electrophilic trifluoromethylating reagents. Chemistry, 2014, 20(51), 16806-16829.
[http://dx.doi.org/10.1002/chem.201404005] [PMID: 25335765]
[170]
Macé, Y.; Magnier, E. The new age of electrophilic perfluoroalkylation reactions. Eur. J. Org. Chem., 2012, 2012(13), 2479-2494.
[http://dx.doi.org/10.1002/ejoc.201101535]
[171]
Kosack, S.; Himbert, G. Reaction of N-(1-alkynyl)anilines with sulfonylacetylenes. Chem. Ber., 1987, 120(1), 71-77.
[http://dx.doi.org/10.1002/cber.19871200113]
[172]
González-Núñez, M.E.; Mello, R.; Royo, J.; Ríos, J.V.; Asensio, G. Mechanism of the oxidation of sulfides by dioxiranes. 1. Intermediacy of a 10-S-4 hypervalent sulfur adduct. J. Am. Chem. Soc., 2002, 124(31), 9154-9163.
[http://dx.doi.org/10.1021/ja025868z] [PMID: 12149020]
[173]
Xu, L.; Cheng, J.; Trudell, M.L. Chromium(VI) oxide catalyzed oxidation of sulfides to sulfones with periodic acid. J. Org. Chem., 2003, 68(13), 5388-5391.
[http://dx.doi.org/10.1021/jo030031n] [PMID: 12816505]
[174]
Yagupolskii, L.M. Aromatic compounds with new fluorine-containing substituents. J. Fluor. Chem., 1987, 36(1), 1-28.
[http://dx.doi.org/10.1016/S0022-1139(00)82050-3]
[175]
Wakselman, C.; Magnier, E. The preparation of aliphatic fluorinated sulfoximines. Synthesis, 2003, 2003(4), 0565-0569.
[http://dx.doi.org/10.1055/s-2003-37651]
[176]
Macé, Y.; Urban, C.; Pradet, C.; Marrot, J.; Blazejewski, J.C.; Magnier, E. Sulfilimines and sulfoximines by reaction of nitriles with perfluoroalkyl sulfoxides. Eur. J. Org. Chem., 2009, 2009(19), 3150-3153.
[http://dx.doi.org/10.1002/ejoc.200900410]
[177]
Magnier, E. Construction of S-RF sulfilimines and S-RF sulfoximines. In: Emerging Fluorinated Motifs: Synthesis, Properties, and Applications; Ma, J.-A.; Cahard, D., Eds.; Wiley & Sons, 2020; 2, pp. 675-690.
[http://dx.doi.org/10.1002/9783527824342.ch22]
[178]
Bizet, V.; Kowalczyk, R.; Bolm, C. Fluorinated sulfoximines: Syntheses, properties and applications. Chem. Soc. Rev., 2014, 43(8), 2426-2438.
[http://dx.doi.org/10.1039/c3cs60427f] [PMID: 24549291]
[179]
Shen, X.; Hu, J. Fluorinated sulfoximines: Preparation, reactions and applications. Eur. J. Org. Chem., 2014, 2014(21), 4437-4451.
[http://dx.doi.org/10.1002/ejoc.201402086]
[180]
Braverman, S.; Manor, H. The synthesis, solvolysis and rearrangement of benzyl trifluoromethanesulfinates. Phosphorus Sulfur Silicon Relat. Elem., 1990, 53(1-4), 357-365.
[http://dx.doi.org/10.1080/10426509008038045]
[181]
Braverman, S.; Pechenick, T.; Zafrani, Y. Synthesis, rearrangement and solvolysis of propargylic and allylic trifluoromethanesulfinates. ARKIVOC, 2003, 2004(2), 51-63.
[http://dx.doi.org/10.3998/ark.5550190.0005.204]
[182]
Braverman, S.; Suresh Kumar, E.V.K.; Cherkinsky, M.; Sprecher, M.; Goldberg, I. Electron depleted bis(methylene)cyclobutenes: Sulfinyl and sulfonyl substitution. Tetrahedron, 2005, 61(14), 3547-3557.
[http://dx.doi.org/10.1016/j.tet.2005.01.114]
[183]
Wang, M.; Jiang, X. Prospects and challengers in orgasulfur chemistry. ACS Sustain. Chem.& Eng., 2022, 10(2), 671-677.
[http://dx.doi.org/10.1021/acssuschemeng.1c07636]
[184]
Wang, Z.; Zhang, Z.; Zhao, W.; Sivaguru, P.; Zanoni, G.; Wang, Y.; Anderson, E.A.; Bi, X. Synthetic exploration of sulfinyl radicals using sulfinyl sulfones. Nat. Commun., 2021, 12(1), 5244.
[http://dx.doi.org/10.1038/s41467-021-25593-5] [PMID: 34475405]
[185]
Zhang, Z.; Wang, X.; Sivaguru, P.; Wang, Z. Exploring the synthetic application of sulfinyl radicals. Org. Chem. Front., 2022, 9(21), 6063-6076.
[http://dx.doi.org/10.1039/D2QO01403C]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy