Generic placeholder image

Recent Advances in Inflammation & Allergy Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-2708
ISSN (Online): 2772-2716

Research Article

Structural Insights to the Pathophysiology of Effector Induced Immunostimulation in Salmonella Typhimurium: Biocomputational Methods

Author(s): Abhigyan Choudhury*

Volume 17, Issue 2, 2023

Published on: 14 June, 2023

Page: [133 - 144] Pages: 12

DOI: 10.2174/2772270817666230515125053

Price: $65

Abstract

Introduction: The worldwide impact of the foodborne pathogen Salmonella can never be overstated, nor can be the fatal threat of septicemia in patients infected with its Typhimurium serovar. Behind the hyperimmune response in the case of septicemia lies a critical phenomenon of the bacterial pathogenic signals being sensed by different pattern recognition receptors, such as the Typhimurium effector proteins that are detected by toll-like receptors.

Methods: To mitigate such a threat, precise structural and functional description of these effectors is necessary. The same has been addressed in this article using accelerated biocomputational techniques, beginning with the identification of the functional niche of the effectors and their influence over other proteins.

Results: The molecular crystal structures were retrieved, and rigorous molecular docking experiments were conducted among the TLRs and effector proteins in order to examine the interactions. The interactions were thereby evaluated and screened according to their respective strengths using parameters including binding affinity, dissociation constant, hydropathy variation, etc. SopB effectors were found to be detected by three different TLR proteins and GtgE by two other TLRs, while SifA, SrfJ, and SsaV had only a single interacting TLR partner each. Interestingly, TLR9 presented lower sensitivity towards PAMPs of this bacterium.

Conclusion: Normal modal analyses in combination with atomistic molecular dynamics simulations that tend to imitate natural cytosolic environments reveal stable and consistent interactions and realistic conformations among the effector-bound TLR complexes. The findings open up new avenues for the development of targeted therapies against Salmonella, which could significantly reduce the global burden of this foodborne pathogen.

Graphical Abstract

[1]
Kaufmann SHE, Raupach B, Brett Finlay B. Introduction: Microbiology and immunology: Lessons learned from Salmonella. Microbes Infect 2001; 3(14-15): 1177-81.
[http://dx.doi.org/10.1016/S1286-4579(01)01498-8] [PMID: 11755405]
[2]
Pui CF. Salmonella: A foodborne pathogen. Int Food Res J 2011; 18: 465-73.
[3]
Kumar S, Kumar Y, Kumar G, Kumar G, Tahlan AK. Non-typhoidal Salmonella infections across India: emergence of a neglected group of enteric pathogens. J Taibah Univ Med Sci 2022; 17(5): 747-54.
[http://dx.doi.org/10.1016/j.jtumed.2022.02.011] [PMID: 36050954]
[4]
Chaudhuri D, Roy Chowdhury A, Biswas B, Chakravortty D. Salmonella Typhimurium Infection Leads to Colonization of the Mouse Brain and Is Not Completely Cured With Antibiotics. Front Microbiol 2018; 9: 1632.
[http://dx.doi.org/10.3389/fmicb.2018.01632] [PMID: 30072981]
[5]
Su D-H, Huang T-S. Acute suppurative thyroiditis caused by Salmonella typhimurium: A case report and review of the literature. Thyroid 2002; 12(11): 1023-7.
[6]
Genzen JR, Towle DM, Kravetz JD, Campbell SM. Salmonella typhimurium pulmonary infection in an immunocompetent patient. Conn Med 2008; 72(3): 139-42.
[7]
Arsenault RJ, Napper S, Kogut MH. Salmonella enterica Typhimurium infection causes metabolic changes in chicken muscle involving AMPK, fatty acid and insulin/mTOR signaling. Vet Res 2013; 44(1): 35.
[http://dx.doi.org/10.1186/1297-9716-44-35] [PMID: 23682635]
[8]
Adler SP, Markowitz SM. Failure of moxalactam in the treatment of neonatal sepsis and meningitis from Salmonella typhimurium. J Pediatr 1983; 103(6): 913-6.
[http://dx.doi.org/10.1016/S0022-3476(83)80713-6] [PMID: 6358437]
[9]
Jotwani R, Tanaka Y, Watanabe K, Tanaka K, Kato N, Ueno K. Cytokine stimulation during Salmonella typhimurium sepsis in itys mice. J Med Microbiol 1995; 42(5): 348-52.
[http://dx.doi.org/10.1099/00222615-42-5-348]
[10]
Raupach B, Kaufmann SHE. Bacterial virulence, proinflammatory cytokines and host immunity: how to choose the appropriate Salmonella vaccine strain? Microbes Infect 2001; 3(14-15): 1261-9.
[http://dx.doi.org/10.1016/S1286-4579(01)01486-1] [PMID: 11755414]
[11]
Coburn B, Grassl GA, Finlay BB. Salmonella, the host and disease: A brief review. Immunol Cell Biol 2007; 85(2): 112-8.
[http://dx.doi.org/10.1038/sj.icb.7100007]
[12]
Arpaia N, Godec J, Lau L, et al. TLR signaling is required for Salmonella typhimurium virulence. Cell 2011; 144(5): 675-88.
[http://dx.doi.org/10.1016/j.cell.2011.01.031] [PMID: 21376231]
[13]
Broz P, Ohlson MB, Monack DM. Innate immune response to Salmonella typhimurium, a model enteric pathogen. Gut Microbes 2012; 3(2): 62-70.
[http://dx.doi.org/10.4161/gmic.19141]
[14]
Patel S, McCormick BA. Mucosal inflammatory response to salmonella typhimurium infection. Front Immunol 2014; 5: 311.
[http://dx.doi.org/10.3389/fimmu.2014.00311] [PMID: 25071772]
[15]
Wong CE, Sad S, Coombes BK. Salmonella enterica serovar typhimurium exploits Toll-like receptor signaling during the host-pathogen interaction. Infect Immun 2009; 77(11): 4750-60.
[http://dx.doi.org/10.1128/IAI.00545-09] [PMID: 19720755]
[16]
Lee JS, Jung ID, Lee CM, et al. Outer membrane protein a of Salmonella enterica serovar Typhimurium activates dendritic cells and enhances Th1 polarization. BMC Microbiol 2010; 10(1): 263.
[http://dx.doi.org/10.1186/1471-2180-10-263] [PMID: 20950448]
[17]
Salazar GA, Peñaloza HF, Pardo-Roa C, et al. Interleukin-10 production by T and B cells is a key factor to promote systemic salmonella enterica serovar typhimurium infection in mice. Front Immunol 2017; 8.
[http://dx.doi.org/10.3389/fimmu.2017.00889]
[18]
Kim JE, Phan TX, Nguyen VH, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Theranostics 2015; 5(12): 1328-42.
[http://dx.doi.org/10.7150/thno.11432] [PMID: 26516371]
[19]
Galán JE. Salmonella Typhimurium and inflammation: A pathogen-centric affair. Nat Rev Microbiol 2021; 19(11): 716-25.
[http://dx.doi.org/10.1038/s41579-021-00561-4] [PMID: 34012042]
[20]
Azimi T, Zamirnasta M, Sani MA, Soltan Dallal MM, Nasser A. Molecular Mechanisms of Salmonella Effector Proteins: A Comprehensive Review. Infect Drug Resist 2020; 13: 11-26.
[http://dx.doi.org/10.2147/IDR.S230604] [PMID: 32021316]
[21]
Fattinger SA, Sellin ME, Hardt WD. Salmonella effector driven invasion of the gut epithelium: Breaking in and setting the house on fire. Curr Opin Microbiol 2021; 64: 9-18.
[http://dx.doi.org/10.1016/j.mib.2021.08.007] [PMID: 34492596]
[22]
Jiang L, Wang P, Song X, et al. Salmonella Typhimurium reprograms macrophage metabolism via T3SS effector SopE2 to promote intracellular replication and virulence. Nat Commun 2021; 12(1): 879.
[http://dx.doi.org/10.1038/s41467-021-21186-4] [PMID: 33563986]
[23]
Wemyss MA, Pearson JS. Host cell death responses to non-typhoidal Salmonella infection. Front Immunol 2019; 10: 1758.
[http://dx.doi.org/10.3389/fimmu.2019.01758] [PMID: 31402916]
[24]
Johnson R, Mylona E, Frankel G. Typhoidal Salmonella: Distinctive virulence factors and pathogenesis. Cell Microbiol 2018; 20(9): e12939.
[http://dx.doi.org/10.1111/cmi.12939] [PMID: 30030897]
[25]
Patel S, Wall DM, Castillo A, McCormick BA. Caspase-3 cleavage of Salmonella type III secreted effector protein SifA is required for localization of functional domains and bacterial dissemination. Gut Microbes 2019; 10(2): 172-87.
[http://dx.doi.org/10.1080/19490976.2018.1506668] [PMID: 30727836]
[26]
Meng K, Zhu P, Shi L, Li S. Determination of the Salmonella intracellular lifestyle by the diversified interaction of Type III secretion system effectors and host GTPases. WIREs Mech Dis 2023; 15(2): e1587.
[http://dx.doi.org/10.1002/wsbm.1587] [PMID: 36250298]
[27]
Valenzuela C, Gil M, Urrutia ÍM, Sabag A, Enninga J, Santiviago CA. SopB- and SifA-dependent shaping of the Salmonella -containing vacuole proteome in the social amoeba Dictyostelium discoideum. Cell Microbiol 2021; 23(1): e13263.
[http://dx.doi.org/10.1111/cmi.13263] [PMID: 32945061]
[28]
Röder J, Hensel M. Presence of SopE and mode of infection result in increased Salmonella -containing vacuole damage and cytosolic release during host cell infection by SALMONELLA ENTERICA. Cell Microbiol 2020; 22(5): e13155.
[http://dx.doi.org/10.1111/cmi.13155] [PMID: 31872936]
[29]
Pinaud L, Sansonetti PJ, Phalipon A. Host cell targeting by enteropathogenic bacteria T3SS effectors. Trends Microbiol 2018; 26(4): 266-83.
[http://dx.doi.org/10.1016/j.tim.2018.01.010] [PMID: 29477730]
[30]
Sanchez-Garrido J, Ruano-Gallego D, Choudhary JS, Frankel G. The type III secretion system effector network hypothesis. Trends Microbiol 2022; 30(6): 524-33.
[http://dx.doi.org/10.1016/j.tim.2021.10.007] [PMID: 34840074]
[31]
Kim YG, Kim JH, Kim KJ. Crystal structure of the Salmonella enterica serovar typhimurium virulence factor SrfJ, a glycoside hydrolase family enzyme. J Bacteriol 2009; 191(21): 6550-4.
[http://dx.doi.org/10.1128/JB.00641-09] [PMID: 19717598]
[32]
Johnson R, Ravenhall M, Pickard D, Dougan G, Byrne A, Frankel G. Comparison of salmonella enterica serovars typhi and typhimurium reveals typhoidal serovar-specific responses to bile. Infect Immun 2018; 86(3): e00490-17.
[http://dx.doi.org/10.1128/IAI.00490-17] [PMID: 29229736]
[33]
Kim SI, Kim S, Kim E, Hwang SY, Yoon H. Secretion of salmonella pathogenicity island 1-encoded type III secretion system effectors by outer membrane vesicles in salmonella enterica serovar typhimurium. Front Microbiol 2018; 9.
[http://dx.doi.org/10.3389/fmicb.2018.02810]
[34]
Fattinger SA, Böck D, Di Martino ML, et al. Salmonella Typhimurium discreet-invasion of the murine gut absorptive epithelium. PLoS Pathog 2020; 16(5): e1008503.
[http://dx.doi.org/10.1371/journal.ppat.1008503] [PMID: 32365138]
[35]
Matthews-palmer TRS, Gonzalez-Rodriguez N, Calcraft T, et al. Structure of the cytoplasmic domain of SctV (SsaV) from the Salmonella SPI-2 injectisome and implications for a pH sensing mechanism. J Struct Biol 2021; 213(2): 107729.
[http://dx.doi.org/10.1016/j.jsb.2021.107729] [PMID: 33774138]
[36]
Hug H, Mohajeri M, La Fata G. Toll-Like Receptors. Nutrients 2018; 10(2): 203.
[http://dx.doi.org/10.3390/nu10020203] [PMID: 29438282]
[37]
Stocks CJ, Schembri MA, Sweet MJ, Kapetanovic R. For when bacterial infections persist: Toll-like receptor-inducible direct antimicrobial pathways in macrophages. J Leukoc Biol 2018; 103(1): 35-51.
[http://dx.doi.org/10.1002/JLB.4RI0917-358R] [PMID: 29345056]
[38]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[39]
Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021; 49(D1): D605-12.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[40]
Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982; 157(1): 105-32.
[http://dx.doi.org/10.1016/0022-2836(82)90515-0] [PMID: 7108955]
[41]
Grantham R. Amino Acid Difference Formula to Help Explain Protein Evolution 1974; 185(4154): 862-4.
[42]
Kozakov D, Hall DR, Xia B, et al. The ClusPro web server for protein–protein docking. Nat Protoc 2017; 12(2): 255-78.
[http://dx.doi.org/10.1038/nprot.2016.169] [PMID: 28079879]
[43]
Alekseenko A, Ignatov M, Jones G, Sabitova M, Kozakov D. Protein–Protein and Protein–Peptide Docking with ClusPro ServerProtein Structure Prediction. New York, NY: Springer US 2020; pp. 157-74.
[http://dx.doi.org/10.1007/978-1-0716-0708-4_9]
[44]
Yueh C, Hall DR, Xia B, Padhorny D, Kozakov D, Vajda S. ClusPro-DC: Dimer Classification by the Cluspro Server for Protein–Protein Docking. J Mol Biol 2017; 429(3): 372-81.
[http://dx.doi.org/10.1016/j.jmb.2016.10.019] [PMID: 27771482]
[45]
Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: A fully automated algorithm for protein-protein docking Nucleic Acids Res 2004; 32(Web Server Suppl. 2): W96-9.
[http://dx.doi.org/10.1093/nar/gkh354] [PMID: 15215358]
[46]
Bahar I, Rader AJ. Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 2005; 15(5): 586-92.
[http://dx.doi.org/10.1016/j.sbi.2005.08.007] [PMID: 16143512]
[47]
Skjaerven L, Hollup SM, Reuter N. Normal mode analysis for proteins. J Mol Struc-Theochem 2009; 898(1-3): 42-8.
[http://dx.doi.org/10.1016/j.theochem.2008.09.024]
[48]
López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P. iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res 2014; 42(W1): W271-6.
[http://dx.doi.org/10.1093/nar/gku339] [PMID: 24771341]
[49]
López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P. Imods: Fast exploration of macromolecular collective motions. Biophysical Journal 2014; 106(2): 653a.
[50]
Karplus M, Petsko GA. Molecular dynamics simulations in biology. Nature 1990; 347(6294): 631-9.
[http://dx.doi.org/10.1038/347631a0] [PMID: 2215695]
[51]
Jamroz M, Kolinski A, Kmiecik S. CABS-flex predictions of protein flexibility compared with NMR ensembles. Bioinformatics 2014; 30(15): 2150-4.
[http://dx.doi.org/10.1093/bioinformatics/btu184] [PMID: 24735558]
[52]
Kurcinski M, Oleniecki T, Ciemny MP, Kuriata A, Kolinski A, Kmiecik S. CABS-flex standalone: A simulation environment for fast modeling of protein flexibility. Bioinformatics 2019; 35(4): 694-5.
[http://dx.doi.org/10.1093/bioinformatics/bty685] [PMID: 30101282]
[53]
Jamroz M, Kolinski A, Kmiecik S. CABS-flex: Server for fast simulation of protein structure fluctuations. Nucleic Acids Res 2013; 41(W1): W427-31.
[http://dx.doi.org/10.1093/nar/gkt332] [PMID: 23658222]
[54]
Kuriata A, Gierut AM, Oleniecki T, et al. CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures. Nucleic Acids Res 2018; 46(W1): W338-43.
[http://dx.doi.org/10.1093/nar/gky356] [PMID: 29762700]
[55]
Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A. PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 2016; 32(23): 3676-8.
[http://dx.doi.org/10.1093/bioinformatics/btw514] [PMID: 27503228]
[56]
Vangone A, Bonvin A. PRODIGY: A contact-based predictor of binding affinity in protein-protein complexes. Bio Protoc 2017; 7(3): e2124.
[http://dx.doi.org/10.21769/BioProtoc.2124] [PMID: 34458447]
[57]
Jiménez-García B, Elez K, Koukos PI, Bonvin AM, Vangone A. PRODIGY-crystal: A web-tool for classification of biological interfaces in protein complexes. Bioinformatics 2019; 35(22): 4821-3.
[http://dx.doi.org/10.1093/bioinformatics/btz437] [PMID: 31141126]
[58]
Porollo A, Meller J. Prediction-based fingerprints of protein-protein interactions. Proteins 2007; 66(3): 630-45.
[http://dx.doi.org/10.1002/prot.21248] [PMID: 17152079]
[59]
Porollo A, Meller J, Cai W, Hong H, Tools E. Computational methods for prediction of protein–protein interaction sites. In: Protein- Protein Interactions. 2012; 472: pp. 3-26.
[60]
Kabsch W, Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22(12): 2577-637.
[http://dx.doi.org/10.1002/bip.360221211] [PMID: 6667333]
[61]
Martinez-Archundia M, Garcia-Vazquez J, Colin-Astudillo B, et al. Computational study of the binding modes of diverse DPN analogues on estrogen receptors (ER) and the biological evaluation of a new potential antiestrogenic ligand. Anticancer Agents Med Chem 2018; 18(11): 1508-20.
[62]
Singh V, Dhankhar P, Dalal V, Tomar S, Kumar P. In-silico functional and structural annotation of hypothetical protein from Klebsiella pneumonia: A potential drug target. J Mol Graph Model 2022; 116: 108262.
[http://dx.doi.org/10.1016/j.jmgm.2022.108262] [PMID: 35839717]
[63]
Kumari R, Rathi R, Pathak SR, Dalal V. Computational investigation of potent inhibitors against YsxC: Structure-based pharmacophore modeling, molecular docking, molecular dynamics, and binding free energy. J Biomol Struct Dyn 2023; 41(3): 930-41.
[http://dx.doi.org/10.1080/07391102.2021.2015446] [PMID: 34913841]
[64]
Kumari R, Dalal V. Identification of potential inhibitors for LLM of Staphylococcus aureus: Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. J Biomol Struct Dyn 2022; 40(20): 9833-47.
[http://dx.doi.org/10.1080/07391102.2021.1936179] [PMID: 34096457]
[65]
Savita BK, Dalal V, Choudhary S, et al. Characterization of recombinant pumpkin 2S albumin and mutation studies to unravel potential DNA/RNA binding site. Biochem Biophys Res Commun 2021; 580: 28-34.
[http://dx.doi.org/10.1016/j.bbrc.2021.09.076] [PMID: 34610489]
[66]
Singh N, Dalal V, Kumar V, Sharma M, Kumar P. Characterization of phthalate reductase from Ralstonia eutropha CH34 and in silico study of phthalate dioxygenase and phthalate reductase interaction. J Mol Graph Model 2019; 90: 161-70.
[http://dx.doi.org/10.1016/j.jmgm.2019.05.002] [PMID: 31085500]
[67]
Dhankhar P, Dalal V, Singh V, Tomar S, Kumar P. Computational guided identification of novel potent inhibitors of N-terminal domain of nucleocapsid protein of severe acute respiratory syndrome coronavirus 2. J Biomol Struct Dyn 2022; 40(9): 4084-99.
[http://dx.doi.org/10.1080/07391102.2020.1852968] [PMID: 33251943]
[68]
Singh V, Dhankhar P, Dalal V, Tomar S, Golemi-Kotra D, Kumar P. Drug-repurposing approach to combat Staphylococcus aureus: biomolecular and binding interaction study. ACS Omega 2022; 7(43): 38448-58.
[http://dx.doi.org/10.1021/acsomega.2c03671] [PMID: 36340146]
[69]
Dalal V, Kumar P, Rakhaminov G, et al. Repurposing an ancient protein core structure: Structural studies on FmtA, a novel esterase of staphylococcus aureus. J Mol Biol 2019; 431(17): 3107-23.
[http://dx.doi.org/10.1016/j.jmb.2019.06.019] [PMID: 31260692]
[70]
Dalal V, Dhankhar P, Singh V, et al. Structure-based Identification of Potential Drugs Against FmtA of Staphylococcus aureus: Virtual Screening, Molecular Dynamics, MM-GBSA, and QM/MM. Protein J 2021; 40(2): 148-65.
[http://dx.doi.org/10.1007/s10930-020-09953-6] [PMID: 33421024]
[71]
Kesari P, Pratap S, Dhankhar P, et al. Structural characterization and in-silico analysis of Momordica charantia 7S globulin for stability and ACE inhibition. Sci Rep 2020; 10(1): 1160.
[http://dx.doi.org/10.1038/s41598-020-58138-9] [PMID: 31980708]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy