Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Novel Concepts in the Management of Angina in Coronary Artery Disease

Author(s): Panagiotis Theofilis*, Evangelos Oikonomou, Marios Sagris, Nikolaos Papageorgiou, Konstantinos Tsioufis and Dimitris Tousoulis

Volume 29, Issue 23, 2023

Published on: 24 May, 2023

Page: [1825 - 1834] Pages: 10

DOI: 10.2174/1381612829666230512152153

Price: $65

Abstract

Coronary artery disease remains a condition with high prevalence and detrimental effects on the quality of life of affected individuals. Its most frequent manifestation, stable angina pectoris, may be challenging to manage despite the available antianginal pharmacotherapy and adequate risk factor control, especially in subjects not amenable to revascularization. In the direction of refractory angina pectoris, several approaches have been developed over the years with varying degrees of success. Among the most recognized techniques in managing angina is enhanced external counterpulsation, which utilizes mechanical compression of the lower extremities to increase blood flow to the heart. Moving to coronary sinus reduction, it leads to an increase in coronary sinus backward pressure, ultimately augmenting myocardial blood flow redistribution to ischemic regions and ameliorating chronic angina. Clinical trial results of the above-mentioned techniques have been encouraging but are based on small sample sizes to justify their widespread application. Other interventional approaches, such as transmyocardial laser revascularization, extracorporeal shockwave myocardial revascularization, and spinal cord stimulation, have been met with either controversial or negative results, and their use is not recommended. Lastly, angiogenic therapy with targeted intramyocardial vascular endothelial growth factor injection or CD34+ cell therapy may be beneficial and warrants further investigation. In this review, we summarize the current knowledge in the field of angina management, highlighting the potential and the gaps in the existing evidence that ought to be addressed in future larger-scale, randomized studies before these techniques can be safely adapted in the clinical practice of patients with refractory angina pectoris

[1]
Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol 2019; 234(10): 16812-23.
[http://dx.doi.org/10.1002/jcp.28350] [PMID: 30790284]
[2]
Lee YTH, Fang J, Schieb L, Park S, Casper M, Gillespie C. Prevalence and trends of coronary heart disease in the United States, 2011 to 2018. JAMA Cardiol 2022; 7(4): 459-62.
[http://dx.doi.org/10.1001/jamacardio.2021.5613] [PMID: 35044425]
[3]
Sagris M, Antonopoulos AS, Theofilis P, et al. Risk factors profile of young and older patients with Myocardial Infarction. Cardiovasc Res 2021; 118(10): 2281-92.
[PMID: 34358302]
[4]
Sagris M, Theofilis P, Antonopoulos AS, et al. Inflammatory mechanisms in COVID-19 and atherosclerosis: Current pharmaceutical perspectives. Int J Mol Sci 2021; 22(12): 6607.
[http://dx.doi.org/10.3390/ijms22126607] [PMID: 34205487]
[5]
Theofilis P, Sagris M, Oikonomou E, et al. Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines 2021; 9(7): 781.
[http://dx.doi.org/10.3390/biomedicines9070781] [PMID: 34356845]
[6]
Saab KR, Kendrick J, Yracheta JM, Lanaspa MA, Pollard M, Johnson RJ. New insights on the risk for cardiovascular disease in African Americans: The role of added sugars. J Am Soc Nephrol 2015; 26(2): 247-57.
[http://dx.doi.org/10.1681/ASN.2014040393] [PMID: 25090991]
[7]
Blumenthal DM, Howard SE, Searl Como J, et al. Prevalence of angina among primary care patients with coronary artery disease. JAMA Netw Open 2021; 4(6): e2112800.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.12800] [PMID: 34097047]
[8]
Joshi PH, de Lemos JA. Diagnosis and management of stable angina. JAMA 2021; 325(17): 1765-78.
[http://dx.doi.org/10.1001/jama.2021.1527] [PMID: 33944871]
[9]
Knuuti J, Wijns W, Saraste A, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020; 41(3): 407-77.
[http://dx.doi.org/10.1093/eurheartj/ehz425] [PMID: 31504439]
[10]
Andréll P, Ekre O, Grip L, et al. Fatality, morbidity and quality of life in patients with refractory angina pectoris. Int J Cardiol 2011; 147(3): 377-82.
[http://dx.doi.org/10.1016/j.ijcard.2009.09.538] [PMID: 19880202]
[11]
DeJongste MJL, Tio RA, Foreman RD. Chronic therapeutically refractory angina pectoris. Br Heart J 2004; 90(2): 225-30.
[http://dx.doi.org/10.1136/hrt.2003.025031] [PMID: 14729809]
[12]
Rayner-Hartley E, Sedlak T. Ranolazine: A contemporary review. J Am Heart Assoc 2016; 5(3): e003196.
[http://dx.doi.org/10.1161/JAHA.116.003196] [PMID: 26979079]
[13]
Morrow DA, Scirica BM, Karwatowska-Prokopczuk E, et al. Effects of ranolazine on recurrent cardiovascular events in patients with non-ST-elevation acute coronary syndromes: The MERLIN- TIMI 36 randomized trial. JAMA 2007; 297(16): 1775-83.
[http://dx.doi.org/10.1001/jama.297.16.1775] [PMID: 17456819]
[14]
Scirica BM, Braunwald E, Belardinelli L, et al. Relationship between nonsustained ventricular tachycardia after non-ST-elevation acute coronary syndrome and sudden cardiac death: Observations from the metabolic efficiency with ranolazine for less ischemia in non-ST-elevation acute coronary syndrome-thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation 2010; 122(5): 455-62.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.937136] [PMID: 20644019]
[15]
Morrow DA, Scirica BM, Chaitman BR, et al. Evaluation of the glycometabolic effects of ranolazine in patients with and without diabetes mellitus in the MERLIN-TIMI 36 randomized controlled trial. Circulation 2009; 119(15): 2032-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.763912] [PMID: 19349325]
[16]
Fihn SD, Gardin JM, Abrams J, et al. 2012 ACCF/AHA/ACP/ AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: A report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular nurses association, society for cardiovascular angiography and interventions, and society of thoracic surgeons. Circulation 2012; 126(25): e354-471.
[PMID: 23166211]
[17]
Braith RW, Conti CR, Nichols WW, et al. Enhanced external counterpulsation improves peripheral artery flow-mediated dilation in patients with chronic angina: A randomized sham-controlled study. Circulation 2010; 122(16): 1612-20.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.923482] [PMID: 20921442]
[18]
Liang J, Shi J, Wei W, Wu G. External counterpulsation attenuates hypertensive vascular injury through enhancing the function of endothelial progenitor cells. Front Physiol 2021; 11: 590585.
[http://dx.doi.org/10.3389/fphys.2020.590585] [PMID: 33643056]
[19]
Qin X, Deng Y, Wu D, Yu L, Huang R. Does enhanced external counterpulsation (EECP) significantly affect myocardial perfusion?: A systematic review & meta-analysis. PLoS One 2016; 11(4): e0151822.
[http://dx.doi.org/10.1371/journal.pone.0151822] [PMID: 27045935]
[20]
Ahlbom M, Hagerman I, Ståhlberg M, et al. Increases in cardiac output and oxygen consumption during enhanced external counterpulsation. Heart Lung Circ 2016; 25(11): 1133-6.
[http://dx.doi.org/10.1016/j.hlc.2016.04.013] [PMID: 27267480]
[21]
Li B, Wang W, Mao B, et al. Long-term hemodynamic mechanism of enhanced external counterpulsation in the treatment of coronary heart disease: A geometric multiscale simulation. Med Biol Eng Comput 2019; 57(11): 2417-33.
[http://dx.doi.org/10.1007/s11517-019-02028-4] [PMID: 31522354]
[22]
Xu L, Chen X, Cui M, et al. The improvement of the shear stress and oscillatory shear index of coronary arteries during Enhanced External Counterpulsation in patients with coronary heart disease. PLoS One 2020; 15(3): e0230144.
[http://dx.doi.org/10.1371/journal.pone.0230144] [PMID: 32191730]
[23]
Wang Y, Xu D. The effect of enhanced external counterpulsation on platelet aggregation in patients with coronary heart disease. Cardiovasc Drugs Ther 2022; 36(2): 263-9.
[http://dx.doi.org/10.1007/s10557-020-07140-4] [PMID: 33475876]
[24]
Arora RR, Chou TM, Jain D, et al. The multicenter study of enhanced external counterpulsation (MUST-EECP): Effect of EECP on exercise-induced myocardial ischemia and anginal episodes. J Am Coll Cardiol 1999; 33(7): 1833-40.
[http://dx.doi.org/10.1016/S0735-1097(99)00140-0] [PMID: 10362181]
[25]
May O, Lynggaard V, Mortensen JCA, Malczynski J. Enhanced external counterpulsation – Effect on angina pectoris, QoL and exercise capacity after 1 year. Scand Cardiovasc J 2015; 49(1): 1-6.
[http://dx.doi.org/10.3109/14017431.2014.994028] [PMID: 25471629]
[26]
Kumar A, Aronow WS, Vadnerkar A, et al. Effect of enhanced external counterpulsation on clinical symptoms, quality of life, 6-minute walking distance, and echocardiographic measurements of left ventricular systolic and diastolic function after 35 days of treatment and at 1-year follow up in 47 patients with chronic refractory angina pectoris. Am J Ther 2009; 16(2): 116-8.
[http://dx.doi.org/10.1097/MJT.0b013e31814db0ba] [PMID: 19300038]
[27]
Rayegani SM, Heidari S, Maleki M, et al. Safety and effectiveness of enhanced external counterpulsation (EECP) in refractory angina patients: A systematic reviews and meta-analysis. J Cardiovasc Thorac Res 2021; 13(4): 265-76.
[http://dx.doi.org/10.34172/jcvtr.2021.50] [PMID: 35047131]
[28]
Ziad S, Malik J, Isiguzo O, et al. EECP improves markers of functional capacity regardless of underlying ranolazine therapy. Am J Cardiovasc Dis 2020; 10(5): 593-601.
[PMID: 33489463]
[29]
Shaker S, Amran F, Fatima G, Aubaid H, Hadi N. Trimetazidine improves the outcome of EECP therapy in patients with refractory angina pectoris. Med Arh 2020; 74(3): 199-204.
[http://dx.doi.org/10.5455/medarh.2020.74.199-204] [PMID: 32801436]
[30]
Lawson WE, Hui JC, Kennard ED, Linnemeier G. Investigators I-I. enhanced external counterpulsation is cost-effective in reducing hospital costs in refractory angina patients. Clin Cardiol 2015; 38: 344-9.
[http://dx.doi.org/10.1002/clc.22395] [PMID: 25962616]
[31]
Wu E, Mårtensson J, Desta L, Broström A. Adverse events and their management during enhanced external counterpulsation treatment in patients with refractory angina pectoris: Observations from a routine clinical practice. Eur J Cardiovasc Nurs 2022; 21(2): 152-60.
[http://dx.doi.org/10.1093/eurjcn/zvab040] [PMID: 34002207]
[32]
Ezzati P, Sahebjami F, Madani FR, et al. Refractory angina frequencies during 7 weeks treatment by enhanced external counterpulsation in coronary artery disease patients with and without diabetes. Ann Card Anaesth 2019; 22(3): 278-82.
[http://dx.doi.org/10.4103/aca.ACA_86_18] [PMID: 31274489]
[33]
Wu E, Mårtensson J, Desta L, Broström A. Predictors of treatment benefits after enhanced external counterpulsation in patients with refractory angina pectoris. Clin Cardiol 2021; 44(2): 160-7.
[http://dx.doi.org/10.1002/clc.23516] [PMID: 33400292]
[34]
Beck DT, Martin JS, Casey DP, Avery JC, Sardina PD, Braith RW. Enhanced external counterpulsation improves endothelial function and exercise capacity in patients with ischaemic left ventricular dysfunction. Clin Exp Pharmacol Physiol 2014; 41(9): 628-36.
[PMID: 24862172]
[35]
Wu CK, Hung HF, Leu JG, Tarng DC, Tsai MH, Chiang SS. The immediate and one-year outcomes of dialysis patients with refractory angina treated by enhanced external counterpulsation. Clin Nephrol 2014; 82(1): 34-40.
[http://dx.doi.org/10.5414/CN108096] [PMID: 24691011]
[36]
Verheye S, Jolicœur EM, Behan MW, et al. Efficacy of a device to narrow the coronary sinus in refractory angina. N Engl J Med 2015; 372(6): 519-27.
[http://dx.doi.org/10.1056/NEJMoa1402556] [PMID: 25651246]
[37]
Ponticelli F, Khokhar AA, Leenders G, et al. Safety and efficacy of coronary sinus narrowing in chronic refractory angina: Insights from the RESOURCE study. Int J Cardiol 2021; 337: 29-37.
[http://dx.doi.org/10.1016/j.ijcard.2021.05.034] [PMID: 34029618]
[38]
Leon MB, Kornowski R, Downey WE, et al. A blinded, randomized, placebo-controlled trial of percutaneous laser myocardial revascularization to improve angina symptoms in patients with severe coronary disease. J Am Coll Cardiol 2005; 46(10): 1812-9.
[http://dx.doi.org/10.1016/j.jacc.2005.06.079] [PMID: 16286164]
[39]
Eldabe S, Thomson S, Duarte R, et al. The effectiveness and cost-effectiveness of spinal cord stimulation for refractory angina (RASCAL Study): A pilot randomized controlled trial. Neuromodulation 2016; 19(1): 60-70.
[http://dx.doi.org/10.1111/ner.12349] [PMID: 26387883]
[40]
Vervaat FE, van der Gaag A, van Suijlekom H, Botman CJ, Teeuwen K, Wijnbergen I. Improvement in quality of life and angina pectoris: 1-year follow-up of patients with refractory angina pectoris and spinal cord stimulation. Neth Heart J 2020; 28(9): 478-84.
[http://dx.doi.org/10.1007/s12471-020-01422-0] [PMID: 32430654]
[41]
Buiten MS, DeJongste MJL, Beese U, Kliphuis C, Durenkamp A, Staal MJ. Subcutaneous electrical nerve stimulation: A feasible and new method for the treatment of patients with refractory angina. Neuromodulation 2011; 14(3): 258-65.
[http://dx.doi.org/10.1111/j.1525-1403.2011.00355.x] [PMID: 21992250]
[42]
Denby C, Groves DG, Eleuteri A, et al. Temporary sympathectomy in chronic refractory angina: A randomised, double-blind, placebo-controlled trial. Br J Pain 2015; 9(3): 142-8.
[http://dx.doi.org/10.1177/2049463714549775] [PMID: 26516570]
[43]
Hartikainen J, Hassinen I, Hedman A, et al. Adenoviral intramyocardial VEGF-DΔNΔC gene transfer increases myocardial perfusion reserve in refractory angina patients: A phase I/IIa study with 1-year follow-up. Eur Heart J 2017; 38(33): 2547-55.
[http://dx.doi.org/10.1093/eurheartj/ehx352] [PMID: 28903476]
[44]
Henry TD, Grines CL, Watkins MW, et al. Effects of Ad5FGF-4 in patients with angina: An analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol 2007; 50(11): 1038-46.
[http://dx.doi.org/10.1016/j.jacc.2007.06.010] [PMID: 17825712]
[45]
Lee FY, Chen YL, Sung PH, et al. Intracoronary transfusion of circulation-derived CD34+ cells improves left ventricular function in patients with end-stage diffuse coronary artery disease unsuitable for coronary intervention. Crit Care Med 2015; 43(10): 2117-32.
[http://dx.doi.org/10.1097/CCM.0000000000001138] [PMID: 26154930]
[46]
Henry TD, Bairey Merz CN, Wei J, et al. Autologous CD34+ stem cell therapy increases coronary flow reserve and reduces angina in patients with coronary microvascular dysfunction. Circ Cardiovasc Interv 2022; 15(2): e010802.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.121.010802] [PMID: 35067072]
[47]
Corban MT, Toya T, Albers D, et al. IMPROvE-CED trial: Intracoronary autologous CD34+ cell therapy for treatment of coronary endothelial dysfunction in patients with angina and nonobstructive coronary arteries. Circ Res 2022; 130(3): 326-38.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.319644] [PMID: 34923853]
[48]
Kronhaus KD, Lawson WE. Enhanced external counterpulsation is an effective treatment for Syndrome X. Int J Cardiol 2009; 135(2): 256-7.
[http://dx.doi.org/10.1016/j.ijcard.2008.03.022] [PMID: 18590931]
[49]
Stys T, Lawson WE, Hui JCK, Lang G, Liuzzo J, Cohn PF. Acute hemodynamic effects and angina improvement with enhanced external counterpulsation. Angiology 2001; 52(10): 653-8.
[http://dx.doi.org/10.1177/000331970105201001] [PMID: 11666129]
[50]
Mohl W. Coronary sinus interventions: From concept to clinics. J Card Surg 1987; 2(4): 467-93.
[http://dx.doi.org/10.1111/j.1540-8191.1987.tb00205.x] [PMID: 2979994]
[51]
Mohl W. The development and rationale of pressure-controlled intermittent coronary sinus occlusion--a new approach to protect ischemic myocardium. Wien Klin Wochenschr 1984; 96(1): 20-5.
[PMID: 6608832]
[52]
Mohl W, Gangl C, Jusić A, Aschacher T, De Jonge M, Rattay F. PICSO: From myocardial salvage to tissue regeneration. Cardiovasc Revasc Med 2015; 16(1): 36-46.
[http://dx.doi.org/10.1016/j.carrev.2014.12.004] [PMID: 25616738]
[53]
Mohl W, Punzengruber C, Moser M, et al. Effects of pressure-controlled intermittent coronary sinus occlusion on regional ischemic myocardial function. J Am Coll Cardiol 1985; 5(4): 939-47.
[http://dx.doi.org/10.1016/S0735-1097(85)80437-X] [PMID: 3973296]
[54]
Weigel G, Kajgana I, Bergmeister H, et al. Beck and back: A paradigm change in coronary sinus interventions-pulsatile stretch on intact coronary venous endothelium. J Thorac Cardiovasc Surg 2007; 133(6): 1581-1587.e6.
[http://dx.doi.org/10.1016/j.jtcvs.2006.12.044] [PMID: 17532960]
[55]
Milasinovic D, Mohl W. Contemporary perspective on endogenous myocardial regeneration. World J Stem Cells 2015; 7(5): 793-805.
[http://dx.doi.org/10.4252/wjsc.v7.i5.793] [PMID: 26131310]
[56]
Zheng W, Brown MD, Brock TA, Bjercke RJ, Tomanek RJ. Bradycardia-induced coronary angiogenesis is dependent on vascular endothelial growth factor. Circ Res 1999; 85(2): 192-8.
[http://dx.doi.org/10.1161/01.RES.85.2.192] [PMID: 10417401]
[57]
Van De Hoef TP, Nolte F, Delewi R, et al. Intracoronary hemodynamic effects of pressure-controlled intermittent coronary sinus occlusion (PICSO): Results from the First-In-Man Prepare PICSO Study. J Interv Cardiol 2012; 25(6): 549-56.
[http://dx.doi.org/10.1111/j.1540-8183.2012.00768.x] [PMID: 22994798]
[58]
Mohl W, Komamura K, Kasahara H, et al. Myocardial protection via the coronary sinus. Circ J 2007; 72(4): 526-33.
[http://dx.doi.org/10.1253/circj.72.526] [PMID: 18362420]
[59]
Syeda B, Schukro C, Heinze G, et al. The salvage potential of coronary sinus interventions: Meta-analysis and pathophysiologic consequences. J Thorac Cardiovasc Surg 2004; 127(6): 1703-12.
[http://dx.doi.org/10.1016/j.jtcvs.2004.01.036] [PMID: 15173727]
[60]
van de Hoef TP, Nijveldt R, van der Ent M, et al. Pressure-controlled intermittent coronary sinus occlusion (PICSO) in acute ST-segment elevation myocardial infarction: Results of the Prepare RAMSES safety and feasibility study. EuroIntervention 2015; 11(1): 37-44.
[http://dx.doi.org/10.4244/EIJY15M03_10] [PMID: 25868741]
[61]
Scarsini R, Terentes-Printzios D, Shanmuganathan M, et al. Pressure-controlled intermittent coronary sinus occlusion improves the vasodilatory microvascular capacity and reduces myocardial injury in patients with STEMI. Catheter Cardiovasc Interv 2022; 99(2): 329-39.
[http://dx.doi.org/10.1002/ccd.29793] [PMID: 34051133]
[62]
Pappalardo F, Ancona MB, Giannini F, et al. First in man prolonged pressure-controlled intermittent coronary sinus occlusion to treat refractory left ventricular dysfunction and ischemia with patent epicardial coronary arteries. Int J Cardiol 2017; 241: 138-41.
[http://dx.doi.org/10.1016/j.ijcard.2017.05.030] [PMID: 28501350]
[63]
Giannini F, Cuenin L, Adjedj J. Impact of the coronary sinus reducer on the coronary artery circulation cases report. Eur Heart J Case Rep 2022; 6(6): ytac159.
[http://dx.doi.org/10.1093/ehjcr/ytac159] [PMID: 35673276]
[64]
Palmisano A, Giannini F, Rancoita P, et al. Feature tracking and mapping analysis of myocardial response to improved perfusion reserve in patients with refractory angina treated by coronary sinus Reducer implantation: A CMR study. Int J Cardiovasc Imaging 2021; 37(1): 291-303.
[http://dx.doi.org/10.1007/s10554-020-01964-9] [PMID: 32860122]
[65]
Zivelonghi C, Konigstein M, Azzano A, et al. Effects of coronary sinus reducer implantation on oxygen kinetics in patients with refractory angina. EuroIntervention 2021; 16(18): e1511-7.
[http://dx.doi.org/10.4244/EIJ-D-19-00766] [PMID: 32091397]
[66]
Giannini F, Palmisano A, Baldetti L, et al. Patterns of regional myocardial perfusion following coronary sinus reducer implantation. Circ Cardiovasc Imaging 2019; 12(9): e009148.
[http://dx.doi.org/10.1161/CIRCIMAGING.119.009148] [PMID: 31451003]
[67]
Banai S, Ben Muvhar S, Parikh KH, et al. Coronary sinus reducer stent for the treatment of chronic refractory angina pectoris: A prospective, open-label, multicenter, safety feasibility first-in-man study. J Am Coll Cardiol 2007; 49(17): 1783-9.
[http://dx.doi.org/10.1016/j.jacc.2007.01.061] [PMID: 17466229]
[68]
Hochstadt A, Itach T, Merdler I, et al. Effectiveness of coronary sinus reducer for treatment of refractory angina: A meta-analysis. Can J Cardiol 2022; 38(3): 376-83.
[http://dx.doi.org/10.1016/j.cjca.2021.12.009] [PMID: 34968714]
[69]
Konigstein M, Ponticelli F, Zivelonghi C, et al. Long-term outcomes of patients undergoing coronary sinus reducer implantation - A multicenter study. Clin Cardiol 2021; 44(3): 424-8.
[http://dx.doi.org/10.1002/clc.23566] [PMID: 33605473]
[70]
Verheye S, Agostoni P, Giannini F, et al. Coronary sinus narrowing for the treatment of refractory angina: a multicentre prospective open-label clinical study (the REDUCER-I study). EuroIntervention 2021; 17(7): 561-8.
[http://dx.doi.org/10.4244/EIJ-D-20-00873] [PMID: 33319762]
[71]
Parikh P, Bhatt P, Shah D, et al. First-in-human use of coronary sinus reducer in patients with refractory angina. J Am Coll Cardiol 2018; 72(24): 3227-8.
[http://dx.doi.org/10.1016/j.jacc.2018.09.061] [PMID: 30545460]
[72]
Zivelonghi C, Verheye S, Timmers L, et al. Efficacy of coronary sinus reducer in patients with non-revascularized chronic total occlusions. Am J Cardiol 2020; 126: 1-7.
[http://dx.doi.org/10.1016/j.amjcard.2020.03.042] [PMID: 32345474]
[73]
Ponticelli F, Khokhar AA, Albani S, et al. Insights into coronary sinus reducer non-responders. J Invasive Cardiol 2021; 33(11): E884-9.
[PMID: 34544037]
[74]
Picchi A, Misuraca L, Calabria P, Limbruno U. Double reducer implantation in the coronary venous system for treatment of refractory angina: A case report. Eur Heart J Case Rep 2022; 6(6): ytac210.
[http://dx.doi.org/10.1093/ehjcr/ytac210] [PMID: 35673278]
[75]
Khalaph M, Bergau L, Vanezi M, Rudolph TK, Sommer P, Sohns C. Beneficial effects of atrial fibrillation ablation in patients with angina pectoris and coronary sinus reducer. Pacing Clin Electrophysiol 2022; 45(1): 149-53.
[http://dx.doi.org/10.1111/pace.14367] [PMID: 34564879]
[76]
Vescovo GM, Zivelonghi C, Agostoni P, et al. Efficacy of coronary sinus Reducer in patients with refractory angina and diabetes mellitus. Heart Vessels 2022; 37(2): 194-9.
[http://dx.doi.org/10.1007/s00380-021-01909-9] [PMID: 34374824]
[77]
Nishida T, Shimokawa H, Oi K, et al. Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo. Circulation 2004; 110(19): 3055-61.
[http://dx.doi.org/10.1161/01.CIR.0000148849.51177.97] [PMID: 15520304]
[78]
Čelutkienė J, Burneikaitė G, Shkolnik E, et al. The effect of cardiac shock wave therapy on myocardial function and perfusion in the randomized, triple-blind, sham-procedure controlled study. Cardiovasc Ultrasound 2019; 17(1): 13.
[http://dx.doi.org/10.1186/s12947-019-0163-1] [PMID: 31272465]
[79]
Zuozienė G, Laucevičius A, Leibowitz D. Extracorporeal shockwave myocardial revascularization improves clinical symptoms and left ventricular function in patients with refractory angina. Coron Artery Dis 2012; 23(1): 62-7.
[http://dx.doi.org/10.1097/MCA.0b013e32834e4fa5] [PMID: 22107803]
[80]
Cassar A, Prasad M, Rodriguez-Porcel M, et al. Safety and efficacy of extracorporeal shock wave myocardial revascularization therapy for refractory angina pectoris. Mayo Clin Proc 2014; 89(3): 346-54.
[http://dx.doi.org/10.1016/j.mayocp.2013.11.017] [PMID: 24582193]
[81]
Prasad M, Wan Ahmad WA, Sukmawan R, et al. Extracorporeal shockwave myocardial therapy is efficacious in improving symptoms in patients with refractory angina pectoris – a multicenter study. Coron Artery Dis 2015; 26(3): 194-200.
[http://dx.doi.org/10.1097/MCA.0000000000000218] [PMID: 25734606]
[82]
Alunni G, Barbero U, Vairo A, et al. The beneficial effect of extracorporeal shockwave myocardial revascularization: Two years of follow-up. Cardiovasc Revasc Med 2017; 18(8): 572-6.
[http://dx.doi.org/10.1016/j.carrev.2017.05.006] [PMID: 28622968]
[83]
Alunni G, D’Amico S, Castelli C, et al. Impact of extracorporeal shockwave myocardial revascularization on the ischemic burden of refractory angina patients: A single photon emission computed tomography study. Minerva Cardioangiol 2020; 68(6): 567-76.
[http://dx.doi.org/10.23736/S0026-4725.20.05110-5] [PMID: 32319266]
[84]
Ceccon CL, Duque AS, Gowdak LH, et al. Shock-wave therapy improves myocardial blood flow reserve in patients with refractory angina: Evaluation by real-time myocardial perfusion echocardiography. J Am Soc Echocardiogr 2019; 32(9): 1075-85.
[http://dx.doi.org/10.1016/j.echo.2019.04.420] [PMID: 31235421]
[85]
Jia N, Zhang R, Liu B, et al. Efficacy and safety of cardiac shock wave therapy for patients with severe coronary artery disease: A randomized, double-blind control study. J Nucl Cardiol 2022; 29(5): 2404-19.
[http://dx.doi.org/10.1007/s12350-021-02768-7] [PMID: 34476776]
[86]
Shkolnik E, Burneikaite G, Jakutis G, et al. A randomized, triple-blind trial of cardiac shock-wave therapy on exercise tolerance and symptoms in patients with stable angina pectoris. Coron Artery Dis 2018; 29(7): 579-86.
[http://dx.doi.org/10.1097/MCA.0000000000000648] [PMID: 29912782]
[87]
Briones E, Lacalle JR, Marin-Leon I, Rueda JR. Transmyocardial laser revascularization versus medical therapy for refractory angina. Cochrane Libr 2015; 2015(2): CD003712.
[http://dx.doi.org/10.1002/14651858.CD003712.pub3] [PMID: 25721946]
[88]
Foreman RD, Garrett KM, Blair RW. Mechanisms of cardiac pain. Compr Physiol 2015; 5(2): 929-60.
[http://dx.doi.org/10.1002/cphy.c140032] [PMID: 25880519]
[89]
Sanderson JE, Brooksby P, Waterhouse D, Palmer RBG, Neubauer K. Epidural spinal electrical stimulation for severe angina: A study of its effects on symptoms, exercise tolerance and degree of ischaemia. Eur Heart J 1992; 13(5): 628-33.
[http://dx.doi.org/10.1093/oxfordjournals.eurheartj.a060226] [PMID: 1618204]
[90]
Smith FM, Vermeulen M, Cardinal R. Long-term spinal cord stimulation modifies canine intrinsic cardiac neuronal properties and ganglionic transmission during high-frequency repetitive activation. Physiol Rep 2016; 4(13): e12855.
[http://dx.doi.org/10.14814/phy2.12855] [PMID: 27401459]
[91]
Imran TF, Malapero R, Qavi AH, et al. Efficacy of spinal cord stimulation as an adjunct therapy for chronic refractory angina pectoris. Int J Cardiol 2017; 227: 535-42.
[http://dx.doi.org/10.1016/j.ijcard.2016.10.105] [PMID: 27836302]
[92]
Vervaat FE, van Suijlekom H, Wijnbergen IF. Single-center experience with high-density spinal cord stimulation in patients with refractory angina pectoris. Neuromodulation 2022; S1094-7159(22): 01367-8.
[http://dx.doi.org/10.1016/j.neurom.2022.11.006] [PMID: 36513588]
[93]
Goroszeniuk T, Kothari S, Hamann W. Subcutaneous neuromodulating implant targeted at the site of pain. Reg Anesth Pain Med 2006; 31(2): 168-71.
[http://dx.doi.org/10.1016/j.rapm.2006.02.001] [PMID: 16543103]
[94]
Stritesky M, Dobias M, Demes R, et al. Endoscopic thoracic sympathectomy - its effect in the treatment of refractory angina pectoris. Interact Cardiovasc Thorac Surg 2006; 5(4): 464-8.
[http://dx.doi.org/10.1510/icvts.2005.118976] [PMID: 17670622]
[95]
Sharma R, Sharma S, Fuster V. Coronary vasospastic angina: A rare case of ergonovine positivity and curative bilateral cardiac sympathectomy. EuroIntervention 2018; 14(12): e1332-3.
[http://dx.doi.org/10.4244/EIJ-D-18-00144] [PMID: 29616626]
[96]
Wilkinson HA. Radiofrequency percutaneous upper-thoracic sympathectomy. Technique and review of indications. N Engl J Med 1984; 311(1): 34-6.
[http://dx.doi.org/10.1056/NEJM198407053110106] [PMID: 6727962]
[97]
Hudec M, Jiravsky O, Spacek R, et al. Chronic refractory angina pectoris treated by bilateral stereotactic radiosurgical stellate ganglion ablation: First-in-man case report. Eur Heart J Case Rep 2021; 5(8): ytab184.
[http://dx.doi.org/10.1093/ehjcr/ytab184] [PMID: 34514297]
[98]
Tan Z, Nalpon J, Valchanov K. Case series of left stellate ganglion blocks for refractory angina pectoris: 14 years later and still efficacious. J Pain Symptom Manage 2019; 58(3): e11-4.
[http://dx.doi.org/10.1016/j.jpainsymman.2019.05.019] [PMID: 31181247]
[99]
Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis: Initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998; 98(25): 2800-4.
[http://dx.doi.org/10.1161/01.CIR.98.25.2800] [PMID: 9860779]
[100]
Kastrup J, Jørgensen E, Rück A, et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris. J Am Coll Cardiol 2005; 45(7): 982-8.
[http://dx.doi.org/10.1016/j.jacc.2004.12.068] [PMID: 15808751]
[101]
Vale PR, Losordo DW, Milliken CE, et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 2001; 103(17): 2138-43.
[http://dx.doi.org/10.1161/01.CIR.103.17.2138] [PMID: 11331253]
[102]
Leikas AJ, Hassinen I, Hedman A, Kivelä A, Ylä-Herttuala S, Hartikainen JEK. Long-term safety and efficacy of intramyocardial adenovirus-mediated VEGF-DΔNΔC gene therapy eight-year follow-up of phase I KAT301 study. Gene Ther 2022; 29(5): 289-93.
[http://dx.doi.org/10.1038/s41434-021-00295-1] [PMID: 34593990]
[103]
Grines CL, Watkins MW, Mahmarian JJ, et al. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol 2003; 42(8): 1339-47.
[http://dx.doi.org/10.1016/S0735-1097(03)00988-4] [PMID: 14563572]
[104]
Grines CL, Watkins MW, Helmer G, et al. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation 2002; 105(11): 1291-7.
[http://dx.doi.org/10.1161/hc1102.105595] [PMID: 11901038]
[105]
Kawamoto A, Iwasaki H, Kusano K, et al. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation 2006; 114(20): 2163-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.644518] [PMID: 17075009]
[106]
Henry TD, Schaer GL, Traverse JH, et al. Autologous CD34 + cell therapy for refractory angina: 2-Year outcomes from the ACT34-CMI study. Cell Transplant 2016; 25(9): 1701-11.
[http://dx.doi.org/10.3727/096368916X691484] [PMID: 27151378]
[107]
Povsic TJ, Henry TD, Traverse JH, et al. The RENEW trial. JACC Cardiovasc Interv 2016; 9(15): 1576-85.
[http://dx.doi.org/10.1016/j.jcin.2016.05.003] [PMID: 27491607]
[108]
Sung PH, Lee FY, Tong MS, et al. The five-year clinical and angiographic follow-up outcomes of intracoronary transfusion of circulation-derived CD34+ cells for patients with end-stage diffuse coronary artery disease unsuitable for coronary intervention-phase I clinical trial. Crit Care Med 2018; 46(5): e411-8.
[http://dx.doi.org/10.1097/CCM.0000000000003051] [PMID: 29465434]
[109]
Johnson GL, Henry TD, Povsic TJ, et al. CD34+ cell therapy significantly reduces adverse cardiac events, health care expenditures, and mortality in patients with refractory angina. Stem Cells Transl Med 2020; 9(10): 1147-52.
[http://dx.doi.org/10.1002/sctm.20-0046] [PMID: 32531108]
[110]
Theofilis P, Oikonomou E, Vogiatzi G, et al. The impact of proangiogenic microRNA modulation on blood flow recovery following hind limb ischemia. A systematic review and meta-analysis of animal studies. Vascul Pharmacol 2021; 141: 106906.
[http://dx.doi.org/10.1016/j.vph.2021.106906] [PMID: 34509635]
[111]
Rawal S, Munasinghe PE, Shindikar A, et al. Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy. Cardiovasc Res 2017; 113(1): 90-101.
[http://dx.doi.org/10.1093/cvr/cvw235] [PMID: 28065883]
[112]
Theofilis P, Oikonomou E, Vogiatzi G, et al. The role of microRNA-126 in atherosclerotic cardiovascular diseases. Curr Med Chem 2022; 30(17): 1902-21.
[PMID: 36043750]
[113]
Theofilis P, Vogiatzi G, Oikonomou E, et al. The effect of MicroRNA-126 mimic administration on vascular perfusion recovery in an animal model of hind limb ischemia. Front Mol Biosci 2021; 8: 724465.
[http://dx.doi.org/10.3389/fmolb.2021.724465] [PMID: 34513927]
[114]
Rakhimov K, Gori T. Non-pharmacological treatment of refractory angina and microvascular angina. Biomedicines 2020; 8(8): 285.
[http://dx.doi.org/10.3390/biomedicines8080285] [PMID: 32823683]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy