Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Development of Non-natural Type Nucleoside to Stabilize Triplex DNA Formation against CG and TA Inversion Site

Author(s): Lei Wang*, Yong Ling, Yan Tian, Xiao Wang, Shigeki Sasaki and Yosuke Taniguchi*

Volume 31, Issue 19, 2024

Published on: 23 June, 2023

Page: [2663 - 2686] Pages: 24

DOI: 10.2174/0929867330666230512114130

Price: $65

Abstract

Based on the sequence-specific recognition of target duplex DNA by triplexforming oligonucleotides (TFOs) at the major groove side, the antigene strategy has been exploited as a gene-targeting tool with considerable attention. Triplex DNA is formed via the specific base triplets by the Hoogsteen or reverse Hoogsteen hydrogen bond interaction between TFOs and the homo-purine strand from the target duplex DNA, leading to the established sequence-specificity. However, the presence of inversion sites, which are known as non-natural nucleosides that can form satisfactory interactions with 2′- deoxythymidine (dT) and 2′-deoxycytidine (dC) in TA and CG base pairs in the target homo-purine DNA sequences, drastically restricts the formation of classically stable base triplets and even the triplex DNA. Therefore, the design of non-natural type nucleosides, which can effectively recognize CG or/and TA inversion sites with satisfactory selectivity, should be of great significance to expanding the triplex-forming sequence. Here, this review mainly provides a comprehensive review of the current development of novel nonnatural nucleosides to recognize CG or/and TA inversion sites in triplex DNA formation against double-strand DNA (dsDNA).

[1]
Wijesinghe, S.N.; Lindsay, M.A.; Jones, S.W. Oligonucleotide therapies in the treatment of arthritis: a narrative review. Biomedicines, 2021, 9(8), 902.
[http://dx.doi.org/10.3390/biomedicines9080902] [PMID: 34440106]
[2]
Moumné, L.; Marie, A.C.; Crouvezier, N. Oligonucleotide therapeutics: From discovery and development to patentability. Pharmaceutics, 2022, 14(2), 260.
[http://dx.doi.org/10.3390/pharmaceutics14020260] [PMID: 35213992]
[3]
Lidberg, K.A.; Annalora, A.J.; Jozic, M.; Elson, D.J.; Wang, L.; Bammler, T.K.; Ramm, S.; Monteiro, M.B.; Himmelfarb, J.; Marcus, C.B. Antisense oligonucleotide development for the selective modulation of CYP3A5 in renal disease. Sci. Rep., 2021, 11(1), 1-20.
[PMID: 33414495]
[4]
Aoki, Y.; Wood, M.J.A. Emerging oligonucleotide therapeutics for rare neuromuscular diseases. J. Neuromuscul. Dis., 2021, 8(6), 869-884.
[http://dx.doi.org/10.3233/JND-200560] [PMID: 34092651]
[5]
Cartón-García, F.; Saande, C.J.; Meraviglia-Crivelli, D.; Aldabe, R.; Pastor, F. Oligonucleotide-based therapies for renal diseases. Biomedicines, 2021, 9(3), 303.
[http://dx.doi.org/10.3390/biomedicines9030303] [PMID: 33809425]
[6]
Xiong, H.; Veedu, R.N.; Diermeier, S.D. recent advances in oligonucleotide therapeutics in oncology. Int. J. Mol. Sci., 2021, 22(7), 3295.
[http://dx.doi.org/10.3390/ijms22073295] [PMID: 33804856]
[7]
Graham, M.K.; Brown, T.R.; Miller, P.S. Targeting the human androgen receptor gene with platinated triplex-forming oligonucleotides. Biochemistry, 2015, 54(13), 2270-2282.
[http://dx.doi.org/10.1021/bi501565n] [PMID: 25768916]
[8]
Govan, J.M.; Uprety, R.; Hemphill, J.; Lively, M.O.; Deiters, A. Regulation of transcription through light-activation and light-deactivation of triplex-forming oligonucleotides in mammalian cells. ACS Chem. Biol., 2012, 7(7), 1247-1256.
[http://dx.doi.org/10.1021/cb300161r] [PMID: 22540192]
[9]
Besch, R.; Giovannangeli, C.; Degitz, K. Triplex-forming oligonucleotides - sequence-specific DNA ligands as tools for gene inhibition and for modulation of DNA-associated functions. Curr. Drug Targets, 2004, 5(8), 691-703.
[http://dx.doi.org/10.2174/1389450043345100] [PMID: 15578950]
[10]
Mondal, T.; Subhash, S.; Vaid, R.; Enroth, S.; Uday, S.; Reinius, B.; Mitra, S.; Mohammed, A.; James, A.R.; Hoberg, E.; Moustakas, A.; Gyllensten, U.; Jones, S.J.M.; Gustafsson, C.M.; Sims, A.H.; Westerlund, F.; Gorab, E.; Kanduri, C. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures. Nat. Commun., 2015, 6(1), 7743.
[http://dx.doi.org/10.1038/ncomms8743] [PMID: 26205790]
[11]
Wang, S.; Ke, H.; Zhang, H.; Ma, Y.; Ao, L.; Zou, L.; Yang, Q.; Zhu, H.; Nie, J.; Wu, C.; Jiao, B. LncRNA MIR100HG promotes cell proliferation in triple-negative breast cancer through triplex formation with p27 loci. Cell Death Dis., 2018, 9(8), 805.
[http://dx.doi.org/10.1038/s41419-018-0869-2] [PMID: 30042378]
[12]
McNeer, N.A.; Anandalingam, K.; Fields, R.J.; Caputo, C.; Kopic, S.; Gupta, A.; Quijano, E.; Polikoff, L.; Kong, Y.; Bahal, R.; Geibel, J.P.; Glazer, P.M.; Saltzman, W.M.; Egan, M.E. Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium. Nat. Commun., 2015, 6(1), 6952.
[http://dx.doi.org/10.1038/ncomms7952] [PMID: 25914116]
[13]
McNeer, N.A.; Schleifman, E.B.; Cuthbert, A.; Brehm, M.; Jackson, A.; Cheng, C.; Anandalingam, K.; Kumar, P.; Shultz, L.D.; Greiner, D.L.; Mark Saltzman, W.; Glazer, P.M. Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo. Gene Ther., 2013, 20(6), 658-669.
[http://dx.doi.org/10.1038/gt.2012.82] [PMID: 23076379]
[14]
Singhal, G.; Akhter, M.Z.; Stern, D.F.; Gupta, S.D.; Ahuja, A.; Sharma, U.; Jagannathan, N.R.; Rajeswari, M.R. DNA triplex-mediated inhibition of MET leads to cell death and tumor regression in hepatoma. Cancer Gene Ther., 2011, 18(7), 520-530.
[http://dx.doi.org/10.1038/cgt.2011.21] [PMID: 21660063]
[15]
Dahmen, V.; Schmitz, S.; Kriehuber, R. Induction of the chromosomal translocation t(14;18) by targeting the BCL-2 locus with specific binding I-125-labeled triplex-forming oligonucleotides. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2017, 823, 58-64.
[http://dx.doi.org/10.1016/j.mrgentox.2017.09.002] [PMID: 28985947]
[16]
Cannata, F.; Brunet, E.; Perrouault, L.; Roig, V.; Ait-Si-Ali, S.; Asseline, U.; Concordet, J.P.; Giovannangeli, C. Triplex-forming oligonucleotide–orthophenanthroline conjugates for efficient targeted genome modification. Proc. Natl. Acad. Sci. USA, 2008, 105(28), 9576-9581.
[http://dx.doi.org/10.1073/pnas.0710433105] [PMID: 18599454]
[17]
Kaushik Tiwari, M.; Adaku, N.; Peart, N.; Rogers, F.A. Triplex structures induce DNA double strand breaks via replication fork collapse in NER deficient cells. Nucleic Acids Res., 2016, 44(16), 7742-7754.
[http://dx.doi.org/10.1093/nar/gkw515] [PMID: 27298253]
[18]
Dahmen, V.; Kriehuber, R. Cytotoxic effects and specific gene expression alterations induced by I-125-labeled triplex-forming oligonucleotides. Int. J. Radiat. Biol., 2012, 88(12), 972-979.
[http://dx.doi.org/10.3109/09553002.2012.702298] [PMID: 22694342]
[19]
Datta, H.J.; Chan, P.P.; Vasquez, K.M.; Gupta, R.C.; Glazer, P.M. Triplex-induced recombination in human cell-free extracts. Dependence on XPA and HsRad51. J. Biol. Chem., 2001, 276(21), 18018-18023.
[http://dx.doi.org/10.1074/jbc.M011646200] [PMID: 11278954]
[20]
Vasquez, K.M.; Narayanan, L.; Glazer, P.M. Specific mutations induced by triplex-forming oligonucleotides in mice. Science, 2000, 290(5491), 530-533.
[http://dx.doi.org/10.1126/science.290.5491.530] [PMID: 11039937]
[21]
Moser, H.E.; Dervan, P.B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science, 1987, 238(4827), 645-650.
[http://dx.doi.org/10.1126/science.3118463] [PMID: 3118463]
[22]
Rajagopal, P.; Feigon, J. Triple-strand formation in the homopurine:homopyrimidine DNA oligonucleotides d(G-A)4 and d(T-C)4. Nature, 1989, 339(6226), 637-640.
[http://dx.doi.org/10.1038/339637a0] [PMID: 2733796]
[23]
Sklenár̆, V.; Felgon, J. Formation of a stable triplex from a single DNA strand. Nature, 1990, 345(6278), 836-838.
[http://dx.doi.org/10.1038/345836a0] [PMID: 2359461]
[24]
Beal, P.A.; Dervan, P.B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science, 1991, 251(4999), 1360-1363.
[http://dx.doi.org/10.1126/science.2003222] [PMID: 2003222]
[25]
Lee, J.S.; Woodsworth, M.L.; Latimer, L.J.P.; Morgan, A.R. Poly(pyrimidine) poly(purine) synthetic DNAs containing 5-methylcytosine form stable triplexes at neutral pH. Nucleic Acids Res., 1984, 12(16), 6603-6614.
[http://dx.doi.org/10.1093/nar/12.16.6603] [PMID: 6473110]
[26]
Povsic, T.J.; Dervan, P.B. Triple helix formation by oligonucleotides on DNA extended to the physiological pH range. J. Am. Chem. Soc., 1989, 111(8), 3059-3061.
[http://dx.doi.org/10.1021/ja00190a047]
[27]
Xodo, L.E.; Manzini, G.; Quadrifoglio, F.; van der Marel, G.A.; van Boom, J.H. Effect pf 5-methylcytosine on the stability of triple-stranded DNA—a thermodynamic study. Nucleic Acids Res., 1991, 19(20), 5625-5631.
[http://dx.doi.org/10.1093/nar/19.20.5625] [PMID: 1945840]
[28]
Bates, P.; Laughton, C.A.; Jenkins, T.C.; Capaldi, D.C.; Roselt, P.D.; Reese, C.B.; Neidle, S. Efficient triple helix formation by oligodeoxyribonucleotides containing α- or β-2-amino-5-(2-deoxy-D-ribofuranosyl) pyridine residues. Nucleic Acids Res., 1996, 24(21), 4176-4184.
[http://dx.doi.org/10.1093/nar/24.21.4176] [PMID: 8932369]
[29]
Hildbrand, S.; Leumann, C. Enhancing DNA triple helix stability at neutral pH by the use of oligonucleotides containing a more basic deoxycytidine analog. Angew. Chem. Int. Ed. Engl., 1996, 35(17), 1968-1970.
[http://dx.doi.org/10.1002/anie.199619681]
[30]
Hildbrand, S.; Blaser, A.; Parel, S.P.; Leumann, C.J. 5-Substituted 2-aminopyridine C-nucleosides as protonated cytidine equivalents: Increasing efficiency and selectivity in DNA triple-helix formation. J. Am. Chem. Soc., 1997, 119(24), 5499-5511.
[http://dx.doi.org/10.1021/ja9704904]
[31]
Koh, J.S.; Dervan, P.B. Design of a nonnatural deoxyribonucleoside for recognition of GC base pairs by oligonucleotide-directed triple helix formation. J. Am. Chem. Soc., 1992, 114(4), 1470-1478.
[http://dx.doi.org/10.1021/ja00030a050]
[32]
Uddin, M.K.; Kato, Y.; Takagi, Y.; Mikuma, T.; Taira, K. Phosphorylation at 5′ end of guanosine stretches inhibits dimerization of G-quadruplexes and formation of a G-quadruplex interferes with the enzymatic activities of DNA enzymes. Nucleic Acids Res., 2004, 32(15), 4618-4629.
[http://dx.doi.org/10.1093/nar/gkh766] [PMID: 15333694]
[33]
Wu, R.; Zheng, K.; Zhang, J.; Hao, Y.; Tan, Z. Formation of DNA:RNA hybrid G-quadruplex in bacterial cells and its dominance over the intramolecular DNA G-quadruplex in mediating transcription termination. Angew. Chem. Int. Ed., 2015, 54(8), 2447-2451.
[http://dx.doi.org/10.1002/anie.201408719] [PMID: 25613367]
[34]
Czerniak, T.; Saenz, J.P. Lipid membranes modulate the activity of RNA through sequence-dependent interactions. Proc. Natl. Acad. Sci. USA, 2022, 119(4), e2119235119.
[http://dx.doi.org/10.1073/pnas.2119235119] [PMID: 35042820]
[35]
Radhakrishnan, I.; Patel, D.J. Solution structure and hydration patterns of a pyrimidine.purine.pyrimidine DNA triplex containing a novel T.CG base-triple. J. Mol. Biol., 1994, 241(4), 600-619.
[http://dx.doi.org/10.1006/jmbi.1994.1534] [PMID: 8057381]
[36]
Jiang, L.; Russu, I.M. Proton exchange and local stability in a DNA triple helix containing a G.TA triad. Nucleic Acids Res., 2001, 29(20), 4231-4237.
[http://dx.doi.org/10.1093/nar/29.20.4231] [PMID: 11600712]
[37]
Ji, J.; Hogan, M.E.; Gao, X. Solution structure of an antiparallel purine motif triplex containing a T·CG pyrimidine base triple. Structure, 1996, 4(4), 425-435.
[http://dx.doi.org/10.1016/S0969-2126(96)00048-2] [PMID: 8740365]
[38]
Yoon, K.; Hobbs, C.A.; Koch, J.; Sardaro, M.; Weis, A.L. Elucidation of the sequence-specific third-strand recognition of four watson-crick base pairs in a pyrimidine triplehelix motif: T.AT, C.GC, T.CG, and G.TA. Proc. Natl. Acad. Sci. USA, 1992, 89(9), 3840-3844.
[http://dx.doi.org/10.1073/pnas.89.9.3840] [PMID: 1570302]
[39]
Huang, C.Y.; Cushman, C.D.; Miller, P.S. Triplex formation by an oligonucleotide containing N4-(3-acetamidopropyl)cytosine. J. Org. Chem., 1993, 58(19), 5048-5049.
[http://dx.doi.org/10.1021/jo00071a010]
[40]
Huang, C.Y.; Miller, P.S. Triplex formation by an oligodeoxyribonucleotide containing N4-(6-aminopyridinyl)-2′-deoxycytidine. J. Am. Chem. Soc., 1993, 115(22), 10456-10457.
[http://dx.doi.org/10.1021/ja00075a110]
[41]
Huang, C.; Bi, G.; Miller, P.S. Triplex formation by oligonucleotides containing novel deoxycytidine derivatives. [published erratum appears in Nucleic Acids Res 1997 Sep 15;25(18):following 3750]. Nucleic Acids Res., 1996, 24(13), 2606-2613.
[http://dx.doi.org/10.1093/nar/24.13.2606] [PMID: 8692703]
[42]
Semenyuk, A.; Darian, E.; Liu, J.; Majumdar, A.; Cuenoud, B.; Miller, P.S.; MacKerell, A.D., Jr; Seidman, M.M. Targeting of an interrupted polypurine:polypyrimidine sequence in mammalian cells by a triplex-forming oligonucleotide containing a novel base analogue. Biochemistry, 2010, 49(36), 7867-7878.
[http://dx.doi.org/10.1021/bi100797z] [PMID: 20701359]
[43]
Hari, Y.; Akabane, M.; Hatanaka, Y.; Nakahara, M.; Obika, S. A 4-[(3R,4R)-dihydroxypyrrolidino]pyrimidin-2-one nucleobase for a CG base pair in triplex DNA. Chem. Commun. (Camb.), 2011, 47(15), 4424-4426.
[http://dx.doi.org/10.1039/c1cc10138b] [PMID: 21390385]
[44]
Gerrard, S.R.; Edrees, M.M.; Bouamaied, I.; Fox, K.R.; Brown, T. CG base pair recognition within DNA triple helices by modified N-methylpyrrolo-dC nucleosides. Org. Biomol. Chem., 2010, 8(22), 5087-5096.
[http://dx.doi.org/10.1039/c0ob00119h] [PMID: 20835452]
[45]
Hari, Y.; Akabane, M.; Obika, S. 2′,4′-BNA bearing a chiral guanidinopyrrolidine-containing nucleobase with potent ability to recognize the CG base pair in a parallel-motif DNA triplex. Chem. Commun., 2013, 49(67), 7421-7423.
[http://dx.doi.org/10.1039/c3cc44030c] [PMID: 23856971]
[46]
Obika, S.; Hari, Y.; Sekiguchi, M.; Imanishi, T.A. 2′,4′-bridged nucleic acid containing 2-pyridone as a nucleobase: efficient recognition of a C⋅G interruption by triplex formation with a pyrimidine motif. Angew. Chem. Int. Ed., 2001, 40(11), 2079-2081.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2079::AID-ANIE2079>3.0.CO;2-Z]
[47]
Obika, S.; Hari, Y.; Sekiguchi, M.; Imanishi, T. Stable oligonucleotide-directed triplex formation at target sites with CG interruptions: Strong sequence-specific recognition by 2′4′-bridged nucleic-acid-containing 2-pyridones under physiological conditions. Chemistry, 2002, 8(20), 4796-4802.
[http://dx.doi.org/10.1002/1521-3765(20021018)8:20<4796::AID-CHEM4796>3.0.CO;2-O] [PMID: 12561120]
[48]
Akabane-Nakata, M.; Obika, S.; Hari, Y. Synthesis of oligonucleotides containing N,N-disubstituted 3-deazacytosine nucleobases by post-elongation modification and their triplex-forming ability with double-stranded DNA. Org. Biomol. Chem., 2014, 12(44), 9011-9015.
[http://dx.doi.org/10.1039/C4OB01760A] [PMID: 25285418]
[49]
Prévot-Halter, I.; Leumann, C.J. Selective recognition of a C-G base-pair in the parallel DNA triple-helical binding motif. Bioorg. Med. Chem. Lett., 1999, 9(18), 2657-2660.
[http://dx.doi.org/10.1016/S0960-894X(99)00451-5] [PMID: 10509911]
[50]
Marfurt, J.; Leumann, C. Evidence for C−H⋅⋅⋅O Hydrogen bond assisted recognition of a pyrimidine base in the parallel DNA triple-helical motif. Angew. Chem. Int. Ed., 1998, 37(1-2), 175-177.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<175::AID-ANIE175>3.0.CO;2-P]
[51]
Cuenoud, B.; Casset, F.; Hüsken, D.; Natt, F.; Wolf, R.M.; Altmann, K.H.; Martin, P.; Moser, H.E. Dual recognition of double-stranded DNA by 2′-aminoethoxy-modified oligonucleotides. Angew. Chem. Int. Ed., 1998, 37(9), 1288-1291.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980518)37:9<1288::AID-ANIE1288>3.0.CO;2-U] [PMID: 29711228]
[52]
Buchini, S.; Leumann, C.J. Stable and selective recognition of three base pairs in the parallel triple-helical DNA binding motif. Angew. Chem. Int. Ed., 2004, 43(30), 3925-3928.
[http://dx.doi.org/10.1002/anie.200460159] [PMID: 15274215]
[53]
Buchini, S.; Leumann, C.J. 2´-O-aminoethyl oligoribonucleotides containing novel base analogues: Synthesis and triple-helix formation at pyrimidine/purine inversion sites. Wiley Online Library, 2006.
[54]
Ranasinghe, R.T.; Rusling, D.A.; Powers, V.E.C.; Fox, K.R.; Brown, T. Recognition of CG inversions in DNA triple helices by methylated 3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one nucleoside analogues. Chem. Commun., 2005, (20), 2555-2557.
[http://dx.doi.org/10.1039/b502325d] [PMID: 15900324]
[55]
Rusling, D.A.; Powers, V.E.; Ranasinghe, R.T.; Wang, Y.; Osborne, S.D.; Brown, T.; Fox, K.R. Four base recognition by triplex-forming oligonucleotides at physiological pH. Nucleic Acids Res., 2005, 33(9), 3025-3032.
[http://dx.doi.org/10.1093/nar/gki625] [PMID: 15911633]
[56]
Hari, Y.; Obika, S.; Inohara, H.; Ikejiri, M.; Une, D.; Imanishi, T. Synthesis and triplex-forming ability of 2′4′-BNAs bearing imidazoles as a nucleobase. Chem. Pharm. Bull., 2005, 53(7), 843-846.
[http://dx.doi.org/10.1248/cpb.53.843] [PMID: 15997150]
[57]
Koshlap, K.M.; Gillespie, P.; Dervan, P.B.; Feigon, J. Nonnatural deoxyribonucleoside D3 incorporated in an intramolecular DNA triplex binds sequence-specifically by intercalation. J. Am. Chem. Soc., 1993, 115(17), 7908-7909.
[http://dx.doi.org/10.1021/ja00070a059]
[58]
Wachowius, F.; Rettig, M.; Palm, G.; Weisz, K. Synthesis and DNA duplex recognition of a triplex-forming oligonucleotide with an ureido-substituted 4-phenylimidazole nucleoside. Tetrahedron Lett., 2008, 49(51), 7264-7267.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.015]
[59]
Purwanto, M.G.M.; Weisz, K. Synthesis and DNA triplex formation of an oligonucleotide containing an urocanamide. Tetrahedron Lett., 2006, 47(23), 3849-3852.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.180]
[60]
Hari, Y.; Obika, S.; Sekiguchi, M.; Imanishi, T. Selective recognition of CG interruption by 2′4′-BNA having 1-isoquinolone as a nucleobase in a pyrimidine motif triplex formation. Tetrahedron, 2003, 59(27), 5123-5128.
[http://dx.doi.org/10.1016/S0040-4020(03)00728-2]
[61]
McMinn, D.L.; Ogawa, A.K.; Wu, Y.; Liu, J.; Schultz, P.G.; Romesberg, F.E. Efforts toward expansion of the genetic alphabet: DNA polymerase recognition of a highly stable, self-pairing hydrophobic base. J. Am. Chem. Soc., 1999, 121(49), 11585-11586.
[http://dx.doi.org/10.1021/ja9925150]
[62]
Berger, M.; Wu, Y.; Ogawa, A.K.; McMinn, D.L.; Schultz, P.G.; Romesberg, F.E. Universal bases for hybridization, replication and chain termination. Nucleic Acids Res., 2000, 28(15), 2911-2914.
[http://dx.doi.org/10.1093/nar/28.15.2911] [PMID: 10908353]
[63]
Ogawa, A.K.; Wu, Y.; McMinn, D.L.; Liu, J.; Schultz, P.G.; Romesberg, F.E. Efforts toward the expansion of the genetic alphabet: information storage and replication with unnatural hydrophobic base pairs. J. Am. Chem. Soc., 2000, 122(14), 3274-3287.
[http://dx.doi.org/10.1021/ja9940064]
[64]
Obika, S.; Inohara, H.; Hari, Y.; Imanishi, T. Recognition of T·A interruption by 2′4′-BNAs bearing heteroaromatic nucleobases through parallel motif triplex formation. Bioorg. Med. Chem., 2008, 16(6), 2945-2954.
[http://dx.doi.org/10.1016/j.bmc.2007.12.043] [PMID: 18255299]
[65]
Guianvarc’h, D.; Fourrey, J.L.; Maurisse, R.; Sun, J.S.; Benhida, R. Synthesis, incorporation into triplex-forming oligonucleotide, and binding properties of a novel 2′-deoxy-C-nucleoside featuring a 6-(thiazolyl-5)benzimidazole nucleobase. Org. Lett., 2002, 4(24), 4209-4212.
[http://dx.doi.org/10.1021/ol026609h] [PMID: 12443060]
[66]
Hari, Y.; Nakahara, M.; Pang, J.; Akabane, M.; Kuboyama, T.; Obika, S. Synthesis and triplex-forming ability of oligonucleotides bearing 1-substituted 1H-1,2,3-triazole nucleobases. Bioorg. Med. Chem., 2011, 19(3), 1162-1166.
[http://dx.doi.org/10.1016/j.bmc.2010.12.049] [PMID: 21256033]
[67]
Hari, Y.; Matsugu, S.; Inohara, H.; Hatanaka, Y.; Akabane, M.; Imanishi, T.; Obika, S. 2′4′-BNA bearing a 2-pyridine nucleobase for CG base pair recognition in the parallel motif triplex DNA. Org. Biomol. Chem., 2010, 8(18), 4176-4180.
[http://dx.doi.org/10.1039/c004895j] [PMID: 20648389]
[68]
Guianvarc’h, D.; Benhida, R.; Fourrey, J.L.; Maurisse, R.; Sun, J.S. Incorporation of a novel nucleobase allows stable oligonucleotide-directed triple helix formation at the target sequence containing a purine·pyrimidine interruption. Chem. Commun., 2001, (18), 1814-1815.
[http://dx.doi.org/10.1039/b103743a] [PMID: 12240328]
[69]
Guianvarc’h, D.; Fourrey, J.L.; Maurisse, R.; Sun, J.S.; Benhida, R. Design of artificial nucleobases for the recognition of the AT inversion by triple-helix forming oligonucleotides: A structure–stability relationship study and neighbour bases effect. Bioorg. Med. Chem., 2003, 11(13), 2751-2759.
[http://dx.doi.org/10.1016/S0968-0896(03)00229-3] [PMID: 12788349]
[70]
Wang, Y.; Rusling, D.A.; Powers, V.E.C.; Lack, O.; Osborne, S.D.; Fox, K.R.; Brown, T. Stable recognition of TA interruptions by triplex forming oligonucleotides containing a novel nucleoside. Biochemistry, 2005, 44(15), 5884-5892.
[http://dx.doi.org/10.1021/bi050013v] [PMID: 15823047]
[71]
Hari, Y.; Nakahara, M.; Obika, S. Triplex-forming ability of oligonucleotides containing 1-aryl-1,2,3-triazole nucleobases linked via a two atom-length spacer. Bioorg. Med. Chem., 2013, 21(17), 5583-5588.
[http://dx.doi.org/10.1016/j.bmc.2013.05.034] [PMID: 23830701]
[72]
Ohkubo, A.; Yamada, K.; Ito, Y.; Yoshimura, K.; Miyauchi, K.; Kanamori, T.; Masaki, Y.; Seio, K.; Yuasa, H.; Sekine, M. Synthesis and triplex-forming properties of oligonucleotides capable of recognizing corresponding DNA duplexes containing four base pairs. Nucleic Acids Res., 2015, 43(12), 5675-5686.
[http://dx.doi.org/10.1093/nar/gkv496] [PMID: 26013815]
[73]
Ohkubo, A.; Ohnishi, T.; Nishizawa, S.; Nishimura, Y.; Hisamatsu, S. The ability of a triplex-forming oligonucleotide to recognize T-A and C-G base pairs in a DNA duplex is enhanced by incorporating N-acetyl-2,7-diaminoquinoline. Bioorg. Med. Chem., 2020, 28(7), 115350.
[http://dx.doi.org/10.1016/j.bmc.2020.115350] [PMID: 32115336]
[74]
Dittrich, K.; Gu, J.; Tinder, R.; Hogan, M.; Gao, X. T.C.G triplet in an antiparallel purine.purine.pyrimidine DNA triplex.conformational studies by NMR. Biochemistry, 1994, 33(14), 4111-4120.
[http://dx.doi.org/10.1021/bi00180a003] [PMID: 8155628]
[75]
Durland, R.H.; Rao, T.S.; Revankar, G.R.; Tinsley, J.H.; Myrick, M.A.; Seth, D.M.; Rayford, J.; Singh, P.; Jayaraman, K. Binding of T and T analogs to CG base pairs in antiparallel triplexes. Nucleic Acids Res., 1994, 22(15), 3233-3240.
[http://dx.doi.org/10.1093/nar/22.15.3233] [PMID: 8065940]
[76]
Gowers, D.; Fox, K.R. Towards mixed sequence recognition by triple helix formation. Nucleic Acids Res., 1999, 27(7), 1569-1577.
[http://dx.doi.org/10.1093/nar/27.7.1569] [PMID: 10075986]
[77]
Weerasinghe, S.; Smith, P.E.; Pettitt, B.M. Structure and stability of a model pyrimidine-purine-purine DNA triple helix with a GC.T mismatch by simulation. Biochemistry, 1995, 34(50), 16269-16278.
[http://dx.doi.org/10.1021/bi00050a006] [PMID: 8845351]
[78]
Rao, T.S.; Hogan, M.E.; Revankar, G.R. Synthesis of triple helix forming oligonucleotides containing 2′-deoxyformycin A. Nucleosides Nucleotides, 1994, 13(1-3), 95-107.
[http://dx.doi.org/10.1080/15257779408013229]
[79]
Durland, R.H.; Rao, T.S.; Bodepudi, V.; Seth, D.M.; Jayaraman, K.; Revankar, G.R. Azole substituted oligonucleotides promote antiparallel triplex formation at non-homopurine duplex targets. Nucleic Acids Res., 1995, 23(4), 647-653.
[http://dx.doi.org/10.1093/nar/23.4.647] [PMID: 7899086]
[80]
Okamura, H.; Taniguchi, Y.; Sasaki, S. N-(Guanidinoethyl)-2′-deoxy-5-methylisocytidine exhibits selective recognition of a CG interrupting site for the formation of anti-parallel triplexes. Org. Biomol. Chem., 2013, 11(23), 3918-3924.
[http://dx.doi.org/10.1039/c3ob40472b] [PMID: 23660599]
[81]
Okamura, H.; Taniguchi, Y.; Sasaki, S. An isocytidine derivative with a 2-amino-6-methylpyridine unit for selective recognition of the CG interrupting site in an antiparallel triplex DNA. Chem. Bio. Chem., 2014, 15(16), 2374-2378.
[http://dx.doi.org/10.1002/cbic.201402328] [PMID: 25186222]
[82]
Okamura, H.; Taniguchi, Y.; Sasaki, S. Aminopyridinyl-pseudodeoxycytidine derivatives selectively stabilize antiparallel triplex DNA with multiple CG inversion sites. Angew. Chem. Int. Ed., 2016, 55(40), 12445-12449.
[http://dx.doi.org/10.1002/anie.201606136] [PMID: 27576703]
[83]
Wang, L.; Taniguchi, Y.; Okamura, H.; Sasaki, S. Effect of the 3-halo substitution of the 2′-deoxy aminopyridinylpseudocytidine derivatives on the selectivity and stability of antiparallel triplex DNA with a CG inversion site. Bioorg. Med. Chem., 2017, 25(14), 3853-3860.
[http://dx.doi.org/10.1016/j.bmc.2017.05.035] [PMID: 28571974]
[84]
Wang, L.; Taniguchi, Y.; Okamura, H.; Sasaki, S. Modification of the aminopyridine unit of 2′-deoxyaminopyridinyl-pseudocytidine allowing triplex formation at CG interruptions in homopurine sequences. Nucleic Acids Res., 2018, 46(17), 8679-8688.
[http://dx.doi.org/10.1093/nar/gky704] [PMID: 30102410]
[85]
Notomi, R.; Wang, L.; Osuki, T.; Okamura, H.; Sasaki, S.; Taniguchi, Y. Synthesis of C-nucleoside analogues based on the pyrimidine skeleton for the formation of anti-parallel-type triplex DNA with a CG mismatch site. Bioorg. Med. Chem., 2020, 28(23), 115782.
[http://dx.doi.org/10.1016/j.bmc.2020.115782] [PMID: 32992254]
[86]
Stilz, H.U.; Dervan, P.B. Specific recognition of CG base pairs by 2-deoxynebularine within the purine.purine.pyrimidine triple-helix motif. Biochemistry, 1993, 32(9), 2177-2185.
[http://dx.doi.org/10.1021/bi00060a008] [PMID: 8443159]
[87]
Notomi, R.; Wang, L.; Sasaki, S.; Taniguchi, Y. Design and synthesis of purine nucleoside analogues for the formation of stable anti-parallel-type triplex DNA with duplex DNA bearing the 5m CG base pair. RSC Advances, 2021, 11(35), 21390-21396.
[http://dx.doi.org/10.1039/D1RA02831F] [PMID: 35478801]
[88]
Taniguchi, Y.; Magata, Y.; Osuki, T.; Notomi, R.; Wang, L.; Okamura, H.; Sasaki, S. Development of novel C-nucleoside analogues for the formation of antiparallel-type triplex DNA with duplex DNA that includes TA and dUA base pairs. Org. Biomol. Chem., 2020, 18(15), 2845-2851.
[http://dx.doi.org/10.1039/D0OB00420K] [PMID: 32232234]
[89]
Thuong, N.T.; Hélène, C. Sequence-specific recognition and modification of double-helical DNA by oligonucleotides. Angew. Chem. Int. Ed. Engl., 1993, 32(5), 666-690.
[http://dx.doi.org/10.1002/anie.199306661]
[90]
Sun, J.S.; Giovannangeli, C.; François, J.C.; Kurfurst, R.; Montenay-Garestier, T.; Asseline, U.; Saison-Behmoaras, T.; Thuong, N.T.; Hélène, C. Triple-helix formation by alpha oligodeoxynucleotides and alpha oligodeoxynucleotide-intercalator conjugates. Proc. Natl. Acad. Sci. USA, 1991, 88(14), 6023-6027.
[http://dx.doi.org/10.1073/pnas.88.14.6023] [PMID: 2068079]
[91]
Doronina, S.O.; Blanalt-Feidt, S.; Behr, J.P. DNA recognition by non-natural oligonucleotides. Nucleosides Nucleotides, 1999, 18(6-7), 1617-1618.
[http://dx.doi.org/10.1080/07328319908044800]
[92]
Parel, S.P.; Leumann, C.J. Triple-helix formation in the antiparallel binding motif of oligodeoxynucleotides containing N9- and N7-2-aminopurine deoxynucleosides. Nucleic Acids Res., 2001, 29(11), 2260-2267.
[http://dx.doi.org/10.1093/nar/29.11.2260] [PMID: 11376144]
[93]
Parel, S.P.; Marfurt, J.; Leumann, C.J. DNA triple-helix formation at pyrimidine-purine inversion sites. Nucleosides Nucleotides Nucleic Acids, 2001, 20(4-7), 411-417.
[http://dx.doi.org/10.1081/NCN-100002315] [PMID: 11563056]
[94]
Neidlein, U.; Leumann, C. Antiparallel thymine-thymine-duplexes in oligonucleotides containing α- and β-thymidine. Tetrahedron Lett., 1992, 33(52), 8057-8060.
[http://dx.doi.org/10.1016/S0040-4039(00)74716-2]
[95]
Timofeev, E.N.; Borisova, O.F.; Shchyolkina, A.K. Structural polymorphism of oligo(dC) with mixed α,β-anomeric backbone. J. Biomol. Struct. Dyn., 2000, 17(4), 655-664.
[http://dx.doi.org/10.1080/07391102.2000.10506556] [PMID: 10698103]
[96]
Timofeev, E.N.; Kochetkova, S.V.; Florentiev, V.L. Binding of nonnatural α, β-oligocytidylates with DNA duplexes. Mol. Biol., 2004, 38(3), 459-464.
[http://dx.doi.org/10.1023/B:MBIL.0000032219.30181.f5] [PMID: 15210347]
[97]
Kolganova, N.A.; Shchyolkina, A.K.; Chudinov, A.V.; Zasedatelev, A.S.; Florentiev, V.L.; Timofeev, E.N. Targeting duplex DNA with chimeric α,β-triplex-forming oligonucleotides. Nucleic Acids Res., 2012, 40(16), 8175-8185.
[http://dx.doi.org/10.1093/nar/gks410] [PMID: 22641847]
[98]
Sasaki, S.; Yamauchi, H.; Nagatsugi, F.; Takahashi, R.; Taniguchi, Y.; Maeda, M. W-shape nucleic acid (WNA) for selective formation of non-natural anti-parallel triplex including a TA interrupting site. Tetrahedron Lett., 2001, 42(39), 6915-6918.
[http://dx.doi.org/10.1016/S0040-4039(01)01446-0]
[99]
Sasaki, S.; Taniguchi, Y.; Takahashi, R.; Senko, Y.; Kodama, K.; Nagatsugi, F.; Maeda, M. Selective formation of stable triplexes including a TA or a CG interrupting site with new bicyclic nucleoside analogues (WNA). J. Am. Chem. Soc., 2004, 126(2), 516-528.
[http://dx.doi.org/10.1021/ja037211z] [PMID: 14719949]
[100]
Taniguchi, Y.; Nakamura, A.; Senko, Y.; Kodama, K.; Nagatsugi, F.; Sasaki, S. Expansion of triplex recognition codes by the use of novel bicyclic nucleoside derivatives (WNA). Nucleosides Nucleotides Nucleic Acids, 2005, 24(5-7), 823-827.
[http://dx.doi.org/10.1081/NCN-200060309] [PMID: 16250103]
[101]
Taniguchi, Y.; Nakamura, A.; Senko, Y.; Nagatsugi, F.; Sasaki, S. Effects of halogenated WNA derivatives on sequence dependency for expansion of recognition sequences in non-natural-type triplexes. J. Org. Chem., 2006, 71(5), 2115-2122.
[http://dx.doi.org/10.1021/jo052413u] [PMID: 16497000]
[102]
Sasaki, S.; Nasr, T.; Taniguchi, Y. Synthesis of 1′-phenyl substituted nucleoside analogs. Heterocycles, 2007, 71(12), 2659-2668.
[http://dx.doi.org/10.3987/COM-07-11150]
[103]
Taniguchi, Y.; Togo, M.; Aoki, E.; Uchida, Y.; Sasaki, S. Synthesis of p-amino-WNA derivatives to enhance the stability of the anti-parallel triplex. Tetrahedron, 2008, 64(30-31), 7164-7170.
[http://dx.doi.org/10.1016/j.tet.2008.05.096]
[104]
Taniguchi, Y.; Uchida, Y.; Takaki, T.; Aoki, E.; Sasaki, S. Recognition of CG interrupting site by W-shaped nucleoside analogs (WNA) having the pyrazole ring in an anti-parallel triplex DNA. Bioorg. Med. Chem., 2009, 17(19), 6803-6810.
[http://dx.doi.org/10.1016/j.bmc.2009.08.040] [PMID: 19736014]
[105]
Aoki, E.; Taniguchi, Y.; Wada, Y.; Sasaki, S. Efficient DNA strand displacement by a W-shaped nucleoside analogue (WNA-βT) containing an ortho-methyl-substituted phenyl ring. Chem. Bio. Chem., 2012, 13(8), 1152-1160.
[http://dx.doi.org/10.1002/cbic.201200066] [PMID: 22549913]
[106]
Nasr, T.; Taniguchi, Y.; Takaki, T.; Okamura, H.; Sasaki, S. Properties of oligonucleotide with phenyl-substituted carbocyclic nucleoside analogs for the formation of duplex and triplex DNA. Nucleosides Nucleotides Nucleic Acids, 2012, 31(12), 841-860.
[http://dx.doi.org/10.1080/15257770.2012.737970] [PMID: 23215548]
[107]
Taniguchi, Y.; Okamura, H.; Fujino, N.; Sasaki, S. Synthesis of 1′-phenyl-2′-OMe ribose analogues connecting the thymine base at the 1′ position through a flexible linker for the formation of a stable anti-parallel triplex DNA. Tetrahedron, 2013, 69(2), 600-606.
[http://dx.doi.org/10.1016/j.tet.2012.11.016]
[108]
Taniguchi, Y.; Tomizaki, A.; Matsueda, N.; Okamura, H.; Sasaki, S. Enhancement of TFO triplex formation by conjugation with pyrene via click chemistry. Chem. Pharm. Bull., 2015, 63(11), 920-926.
[http://dx.doi.org/10.1248/cpb.c15-00570] [PMID: 26521856]
[109]
Taniguchi, Y.; Sasaki, S. An efficient antigene activity and antiproliferative effect by targeting the Bcl-2 or survivin gene with triplex forming oligonucleotides containing a W-shaped nucleoside analogue (WNA-βT). Org. Biomol. Chem., 2012, 10(41), 8336-8341.
[http://dx.doi.org/10.1039/c2ob26431e] [PMID: 22987068]
[110]
Nishizawa, S.; Tu, G.; Ogata, D.; Miyauchi, K.; Ohkubo, A. Development of antiparallel-type triplex-forming oligonucleotides containing quinoline derivatives capable of recognizing a T–A base pair in a DNA duplex. Bioorg. Med. Chem., 2022, 71, 116934.
[http://dx.doi.org/10.1016/j.bmc.2022.116934] [PMID: 35921784]
[111]
Nagatsugi, F.; Kawasaki, T.; Usui, D.; Maeda, M.; Sasaki, S. Highly efficient and selective cross-linking to cytidine based on a new strategy for auto-activation within a duplex. J. Am. Chem. Soc., 1999, 121(28), 6753-6754.
[http://dx.doi.org/10.1021/ja990356e]
[112]
Kawasaki, T.; Nagatsugi, F.; Ali, M.M.; Maeda, M.; Sugiyama, K.; Hori, K.; Sasaki, S. Hybridization-promoted and cytidine-selective activation for cross-linking with the use of 2-amino-6-vinylpurine derivatives. J. Org. Chem., 2005, 70(1), 14-23.
[http://dx.doi.org/10.1021/jo048298p] [PMID: 15624902]
[113]
Nagatsugi, F.; Imoto, S. Induced cross-linking reactions to target genes using modified oligonucleotides. Org. Biomol. Chem., 2011, 9(8), 2579-2585.
[http://dx.doi.org/10.1039/c0ob00819b] [PMID: 21373696]
[114]
Ali, M.M.; Oishi, M.; Nagatsugi, F.; Mori, K.; Nagasaki, Y.; Kataoka, K.; Sasaki, S. Intracellular inducible alkylation system that exhibits antisense effects with greater potency and selectivity than the natural oligonucleotide. Angew. Chem. Int. Ed., 2006, 45(19), 3136-3140.
[http://dx.doi.org/10.1002/anie.200504441] [PMID: 16572503]
[115]
Nagatsugi, F.; Usui, D.; Kawasaki, T.; Maeda, M.; Sasaki, S. Selective reaction to a flipping cytidine of the duplex DNA mediated by triple helix formation. Bioorg. Med. Chem. Lett., 2001, 11(3), 343-345.
[http://dx.doi.org/10.1016/S0960-894X(00)00666-1] [PMID: 11212106]
[116]
Nagatsugi, F.; Matsuyama, Y.; Maeda, M.; Sasaki, S. Selective cross-linking to the adenine of the TA interrupting site within the triple helix. Bioorg. Med. Chem. Lett., 2002, 12(3), 487-489.
[http://dx.doi.org/10.1016/S0960-894X(01)00783-1] [PMID: 11814825]
[117]
Nishimoto, A.; Jitsuzaki, D.; Onizuka, K.; Taniguchi, Y.; Nagatsugi, F.; Sasaki, S. 4-vinyl-substituted pyrimidine nucleosides exhibit the efficient and selective formation of interstrand cross-links with RNA and duplex DNA. Nucleic Acids Res., 2013, 41(13), 6774-6781.
[http://dx.doi.org/10.1093/nar/gkt197] [PMID: 23778430]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy