Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Sequence Analysis and Biochemical Characteristics of Two Non-specific Lipid Transfer Proteins from Tartary Buckwheat Seeds

Author(s): Xiaodong Cui*, Wenhua Tian, Wenhua Wang, Jiao Li, Zhuanhua Wang and Chen Li*

Volume 30, Issue 6, 2023

Published on: 30 May, 2023

Page: [520 - 529] Pages: 10

DOI: 10.2174/0929866530666230511154511

Price: $65

Abstract

Introduction: Plant non-specific lipid transfer proteins (nsLTPs) play an important role in plant resistance to various stresses, and show potential applications in agriculture, industrial manufacturing, and medicine. In addition, as more and more nsLTPs are identified as allergens, nsLTPs have attracted interest due to their allergenicity. Two nsLTPs from Tartary buckwheat have been isolated and identified. There is a need to study their biochemical characteristics and allergenicity.

Objective: The study aims to investigate the biochemical characteristics of two nsLTPs from Tartary buckwheat seeds and evaluate their potential allergenicity.

Methods: Two nsLTPs derived from Tartary buckwheat, namely FtLTP1a and FtLTP1b, were produced by gene cloning, expression, and purification. Sequence analysis and biochemical characteristics of the proteins, including lipid binding ability, α-amylase inhibition activity, antifungal activity, and allergenic activity, were investigated.

Results: High-purity recombinant FtLTP1a and FtLTP1b were obtained. FtLTP1a and FtLTP1b exhibited similar lipid binding and antifungal properties. Only FtLTP1b showed weak inhibitory activity against α-amylase.

Conclusion: FtLTP1b could specifically bind IgE in the serum allergic to buckwheat and cross-react with pollen (w6). FtLTP1b is a novel allergenic member of the lipid-transfer protein 1 family found in Tartary buckwheat.

« Previous
Graphical Abstract

[1]
Shewry, P.R.; Beaudoin, F.; Jenkins, J.; Griffiths-Jones, S.; Mills, E.N.C. Plant protein families and their relationships to food allergy. Biochem. Soc. Trans., 2002, 30(6), 906-910.
[http://dx.doi.org/10.1042/bst0300906] [PMID: 12440943]
[2]
Nazeer, M.; Waheed, H.; Saeed, M.; Ali, S.Y.; Choudhary, M.I.; Ul-Haq, Z.; Ahmed, A. Purification and characterization of a Nonspecific Lipid Transfer Protein 1 (nsLTP1) from Ajwain (Trachyspermum ammi). Seeds. Sci. Rep., 2019, 9(1), 4148.
[http://dx.doi.org/10.1038/s41598-019-40574-x] [PMID: 30858403]
[3]
Salminen, T.A.; Blomqvist, K.; Edqvist, J. Lipid transfer proteins: Classification, nomenclature, structure, and function. Planta, 2016, 244(5), 971-997.
[http://dx.doi.org/10.1007/s00425-016-2585-4] [PMID: 27562524]
[4]
Pasquato, N.; Berni, R.; Folli, C.; Folloni, S.; Cianci, M.; Pantano, S.; Helliwell, J.R.; Zanotti, G. Crystal structure of peach Pru p 3, the prototypic member of the family of plant non-specific lipid transfer protein pan-allergens. J. Mol. Biol., 2006, 356(3), 684-694.
[http://dx.doi.org/10.1016/j.jmb.2005.11.063] [PMID: 16388823]
[5]
Hoh, F.; Pons, J.L.; Gautier, M.F.; de Lamotte, F.; Dumas, C. Structure of a liganded type 2 non-specific lipid-transfer protein from wheat and the molecular basis of lipid binding. Acta Crystallogr. D Biol. Crystallogr., 2005, 61(4), 397-406.
[http://dx.doi.org/10.1107/S0907444905000417] [PMID: 15805594]
[6]
Melnikova, D.N.; Finkina, E.I.; Bogdanov, I.V.; Ovchinnikova, T.V. Plant pathogenesis-related proteins binding lipids and other hydrophobic ligands. Russ. J. Bioorganic Chem., 2018, 44(6), 586-594.
[http://dx.doi.org/10.1134/S1068162018060055]
[7]
Finkina, E.I.; Melnikova, D.N.; Bogdanov, I.V.; Ovchinnikova, T.V. Plant pathogenesis-related proteins PR-10 and PR-14 as components of innate immunity system and ubiquitous allergens. Curr. Med. Chem., 2017, 24(17), 1772-1787.
[PMID: 27784212]
[8]
Maximiano, M.R.; Franco, O.L. Biotechnological applications of versatile plant lipid transfer proteins (LTPs). Peptides, 2021, 140, 170531.
[http://dx.doi.org/10.1016/j.peptides.2021.170531] [PMID: 33746031]
[9]
Tam, J.; Wang, S.; Wong, K.; Tan, W. Antimicrobial peptides from plants. Pharmaceuticals, 2015, 8(4), 711-757.
[http://dx.doi.org/10.3390/ph8040711] [PMID: 26580629]
[10]
Florido Lopez, J.F.; Quiralte Enriquez, J.; Arias de Saavedra Alías, J.M.; Saenz de San Pedro, B.; Martin Casañez, E. An allergen from Olea europaea pollen (Ole e 7) is associated with plant-derived food anaphylaxis. Allergy, 2002, 57(Suppl. 71), 53-59.
[http://dx.doi.org/10.1034/j.1398-9995.2002.057s71053.x] [PMID: 12173271]
[11]
Fabjan, N.; Rode, J.; Košir, I.J.; Wang, Z.; Zhang, Z.; Kreft, I. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. J. Agric. Food Chem., 2003, 51(22), 6452-6455.
[http://dx.doi.org/10.1021/jf034543e] [PMID: 14558761]
[12]
Park, J.W.; Kang, D.B.; Kim, C.W.; Ko, S.H.; Yum, H.Y.; Kim, K.E.; Hong, C-S.; Lee, K.Y. Identification and characterization of the major allergens of buckwheat. Allergy, 2000, 55(11), 1035-1041.
[http://dx.doi.org/10.1034/j.1398-9995.2000.00763.x] [PMID: 11097313]
[13]
Yoshioka, H.; Ohmoto, T.; Urisu, A.; Mine, Y.; Adachi, T. Expression and epitope analysis of the major allergenic protein Fag e 1 from buckwheat. J. Plant Physiol., 2004, 161(7), 761-767.
[http://dx.doi.org/10.1016/j.jplph.2004.01.010] [PMID: 15310064]
[14]
Rolla, G. Buckwheat allergy: An emerging clinical problem in Europe. J. Allergy Ther., 2014, 5(2), 168.
[http://dx.doi.org/10.4172/2155-6121.1000168]
[15]
Yang, Z.; Li, Y.; Li, C.; Wang, Z. Synthesis of hypoallergenic derivatives of the major allergen Fag t 1 from tartary buckwheat via sequence restructuring. Food Chem. Toxicol., 2012, 50(8), 2675-2680.
[http://dx.doi.org/10.1016/j.fct.2012.03.039] [PMID: 22449541]
[16]
Zhang, X.; Yuan, J.M.; Cui, X.D.; Wang, Z.H. Molecular cloning, recombinant expression, and immunological characterization of a novel allergen from tartary buckwheat. J. Agric. Food Chem., 2008, 56(22), 10947-10953.
[http://dx.doi.org/10.1021/jf801855a] [PMID: 18980324]
[17]
Chen, P.; Guo, Y.F.; Yan, Q.; Li, Y.H. Molecular cloning and characterization of Fag t 2: A 16-kDa major allergen from Tartary buckwheat seeds. Allergy, 2011, 66(10), 1393-1395.
[http://dx.doi.org/10.1111/j.1398-9995.2011.02657.x] [PMID: 21645012]
[18]
Zheng, B.; Zhang, H.; Shen, W.; Wang, L.; Chen, P. Core epitope analysis of 16 kDa allergen from tartary buckwheat. Food Chem., 2021, 346, 128953.
[http://dx.doi.org/10.1016/j.foodchem.2020.128953] [PMID: 33412487]
[19]
Thompson, J.D.; Higgins, D.G.; Gibson, T.J.; Clustal, W. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 1994, 22(22), 4673-4680.
[http://dx.doi.org/10.1093/nar/22.22.4673] [PMID: 7984417]
[20]
Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 2016, 33(7), 1870-1874.
[http://dx.doi.org/10.1093/molbev/msw054] [PMID: 27004904]
[21]
da Silva, F.C.V.; do Nascimento, V.V.; Machado, O.L.T.; Pereira, L.S.; Gomes, V.M.; de Oliveira Carvalho, A. Insight into the α-amylase inhibitory activity of plant lipid transfer proteins. J. Chem. Inf. Model., 2018, 58(11), 2294-2304.
[http://dx.doi.org/10.1021/acs.jcim.8b00540] [PMID: 30388003]
[22]
Cui, X.; Du, J.; Li, J.; Wang, Z. Inhibitory site of α-hairpinin peptide from tartary buckwheat has no effect on its antimicrobial activities. Acta Biochim. Biophys. Sin., 2018, 50(4), 408-416.
[http://dx.doi.org/10.1093/abbs/gmy015] [PMID: 29509838]
[23]
Lambert, R.J.W.; Pearson, J. Susceptibility testing: Accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J. Appl. Microbiol., 2000, 88(5), 784-790.
[http://dx.doi.org/10.1046/j.1365-2672.2000.01017.x] [PMID: 10792538]
[24]
Douliez, J.P.; Michon, T.; Elmorjani, K.; Marion, D. Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J. Cereal Sci., 2000, 32(1), 1-20.
[http://dx.doi.org/10.1006/jcrs.2000.0315]
[25]
García-Casado, G.; Pacios, L.F.; Díaz-Perales, A.; Sánchez-Monge, R.; Lombardero, M.; García-Selles, F.J.; Polo, F.; Barber, D.; Salcedo, G. Identification of IgE-binding epitopes of the major peach allergen Pru p 3. J. Allergy Clin. Immunol., 2003, 112(3), 599-605.
[http://dx.doi.org/10.1016/S0091-6749(03)01605-1] [PMID: 13679821]
[26]
Borges, J.P.; Barre, A.; Culerrier, R.; Granier, C.; Didier, A.; Rougé, P. Lipid transfer proteins from Rosaceae fruits share consensus epitopes responsible for their IgE-binding cross-reactivity. Biochem. Biophys. Res. Commun., 2008, 365(4), 685-690.
[http://dx.doi.org/10.1016/j.bbrc.2007.11.046] [PMID: 18036340]
[27]
Tordesillas, L.; Pacios, L.F.; Palacin, A.; Quirce, S.; Armentia, A.; Barber, D.; Salcedo, G.; Diaz-Perales, A. Molecular basis of allergen cross-reactivity: Non-specific lipid transfer proteins from wheat flour and peach fruit as models. Mol. Immunol., 2009, 47(2-3), 534-540.
[http://dx.doi.org/10.1016/j.molimm.2009.07.028] [PMID: 19846220]
[28]
Gincel, E.; Simorre, J.P.; Caille, A.; Marion, D.; Ptak, M.; Vovelle, F. Three-dimensional structure in solution of a wheat lipid-transfer protein from multidimensional 1H-NMR data. A new folding for lipid carriers. Eur. J. Biochem., 1994, 226(2), 413-422.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb20066.x] [PMID: 8001559]
[29]
Shin, D.H.; Lee, J.Y.; Hwang, K.Y.; Kyu Kim, K.; Suh, S.W. High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings. Structure, 1995, 3(2), 189-199.
[http://dx.doi.org/10.1016/S0969-2126(01)00149-6] [PMID: 7735835]
[30]
Jaeckels, N.; Tenzer, S.; Rosfa, S.; Schild, H.; Decker, H.; Wigand, P. Purification and structural characterisation of lipid transfer protein from red wine and grapes. Food Chem., 2013, 138(1), 263-269.
[http://dx.doi.org/10.1016/j.foodchem.2012.09.113] [PMID: 23265486]
[31]
Hartz, C.; Lauer, I.; del Mar San Miguel Moncin, M.; Cistero-Bahima, A.; Foetisch, K.; Lidholm, J.; Vieths, S.; Scheurer, S. Comparison of IgE-binding capacity, cross-reactivity and biological potency of allergenic non-specific lipid transfer proteins from peach, cherry and hazelnut. Int. Arch. Allergy Immunol., 2010, 153(4), 335-346.
[http://dx.doi.org/10.1159/000316344] [PMID: 20558999]
[32]
Gadermaier, G.; Harrer, A.; Girbl, T.; Palazzo, P.; Himly, M.; Vogel, L.; Briza, P.; Mari, A.; Ferreira, F. Isoform identification and characterization of Art v 3, the lipid-transfer protein of mugwort pollen. Mol. Immunol., 2009, 46(10), 1919-1924.
[http://dx.doi.org/10.1016/j.molimm.2009.03.021] [PMID: 19406480]
[33]
Diz, M.S.; Carvalho, A.O.; Ribeiro, S.F.F.; Da Cunha, M.; Beltramini, L.; Rodrigues, R.; Nascimento, V.V.; Machado, O.L.T.; Gomes, V.M. Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. Physiol. Plant., 2011, 142(3), 233-246.
[http://dx.doi.org/10.1111/j.1399-3054.2011.01464.x] [PMID: 21382036]
[34]
Zottich, U.; Da Cunha, M.; Carvalho, A.O.; Dias, G.B.; Silva, N.C.M.; Santos, I.S.; do Nacimento, V.V.; Miguel, E.C.; Machado, O.L.T.; Gomes, V.M. Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim. Biophys. Acta, Gen. Subj., 2011, 1810(4), 375-383.
[http://dx.doi.org/10.1016/j.bbagen.2010.12.002] [PMID: 21167915]
[35]
da Silva, F.C.V.; do Nascimento, V.V.; Fernandes, K.V.; Machado, O.L.T.; da Silva Pereira, L.; Gomes, V.M.; Carvalho, A.O. Recombinant production and α-amylase inhibitory activity of the lipid transfer protein from Vigna unguiculata (L. Walp.) seeds. Process Biochem., 2018, 65, 205-212.
[http://dx.doi.org/10.1016/j.procbio.2017.10.018]
[36]
Matsuura, Y. A possible mechanism of catalysis involving three essential residues in the enzymes of α-amylase family. Biologia, 2002, 11, 21-27.
[37]
Svensson, B.; Fukuda, K.; Nielsen, P.K.; Bønsager, B.C. Proteinaceous α-amylase inhibitors. Biochim. Biophys. Acta. Proteins Proteomics, 2004, 1696(2), 145-156.
[http://dx.doi.org/10.1016/j.bbapap.2003.07.004] [PMID: 14871655]
[38]
Kader, J.C. Lipid-transfer proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1996, 47(1), 627-654.
[http://dx.doi.org/10.1146/annurev.arplant.47.1.627] [PMID: 15012303]
[39]
Regente, M.C.; Giudici, A.M.; Villalaín, J.; Canal, L. The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett. Appl. Microbiol., 2005, 40(3), 183-189.
[http://dx.doi.org/10.1111/j.1472-765X.2004.01647.x] [PMID: 15715642]
[40]
Wildner, S.; Griessner, I.; Stemeseder, T.; Regl, C.; Soh, W.T.; Stock, L.G.; Völker, T.; Alessandri, C.; Mari, A.; Huber, C.G.; Stutz, H.; Brandstetter, H.; Gadermaier, G. Boiling down the cysteine-stabilized LTP fold - loss of structural and immunological integrity of allergenic Art v 3 and Pru p 3 as a consequence of irreversible lanthionine formation. Mol. Immunol., 2019, 116, 140-150.
[http://dx.doi.org/10.1016/j.molimm.2019.10.012] [PMID: 31654938]
[41]
Sánchez-López, J.; Tordesillas, L.; Pascal, M.; Muñoz-Cano, R.; Garrido, M.; Rueda, M.; Vilella, R.; Valero, A.; Díaz-Perales, A.; Picado, C.; Bartra, J. Role of Art v 3 in pollinosis of patients allergic to Pru p 3. J. Allergy Clin. Immunol., 2014, 133(4), 1018-1025.e3.
[http://dx.doi.org/10.1016/j.jaci.2013.08.005] [PMID: 24080266]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy